Andrew Vanderburg
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827*†
The Astronomical Journal, 161:47 (16pp), 2021 January https://doi.org/10.3847/1538-3881/abca39 © 2020. The American Astronomical Society. All rights reserved. Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827*† Molly R. Kosiarek1,35 , David A. Berardo2 , Ian J. M. Crossfield3, Cesar Laguna1,4 , Caroline Piaulet5 , Joseph M. Akana Murphy1,35 , Steve B. Howell6 , Gregory W. Henry7 , Howard Isaacson8,9 , Benjamin Fulton10 , Lauren M. Weiss11 , Erik A. Petigura12 , Aida Behmard13 , Lea A. Hirsch14 , Johanna Teske15, Jennifer A. Burt16 , Sean M. Mills17 , Ashley Chontos18,35 , Teo Močnik19 , Andrew W. Howard17 , Michael Werner16 , John H. Livingston20 , Jessica Krick21 , Charles Beichman22 , Varoujan Gorjian16 , Laura Kreidberg23,24 , Caroline Morley25 , Jessie L. Christiansen21 , Farisa Y. Morales16 , Nicholas J. Scott6 , Jeffrey D. Crane26 , Sharon Xuesong Wang27,28 , Stephen A. Shectman26, Lee J. Rosenthal17 , Samuel K. Grunblatt29,30 , Ryan A. Rubenzahl17,35 , Paul A. Dalba31,36 , Steven Giacalone32 , Chiara Dane Villanueva1,4, Qingtian Liu1,4, Fei Dai13 , Michelle L. Hill31 , Malena Rice33 , Stephen R. Kane31 , and Andrew W. Mayo32,34 1 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; [email protected] 2 Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 4 Department -
Homogeneous Spectroscopic Parameters for Bright Planet Host Stars from the Northern Hemisphere the Impact on Stellar and Planetary Mass (Research Note)
A&A 576, A94 (2015) Astronomy DOI: 10.1051/0004-6361/201425227 & c ESO 2015 Astrophysics Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere The impact on stellar and planetary mass (Research Note) S. G. Sousa1,2,N.C.Santos1,2, A. Mortier1,3,M.Tsantaki1,2, V. Adibekyan1, E. Delgado Mena1,G.Israelian4,5, B. Rojas-Ayala1,andV.Neves6 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidade de La Laguna, 38205 La Laguna, Tenerife, Spain 6 Departamento de Física, Universidade Federal do Rio Grande do Norte, Brazil Received 27 October 2014 / Accepted 19 February 2015 ABSTRACT Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius. -
Download the Search for New Planets
“VITAL ARTICLES ON SCIENCE/CREATION” September 1999 Impact #315 THE SEARCH FOR NEW PLANETS by Don DeYoung, Ph.D.* The nine solar system planets, from Mercury to Pluto, have been much-studied targets of the space age. In general, a planet is any massive object which orbits a star, in our case, the Sun. Some have questioned the status of Pluto, mainly because of its small size, but it remains a full-fledged planet. There is little evidence for additional solar planets beyond Pluto. Instead, attention has turned to extrasolar planets which may circle other stars. Intense competition has arisen among astronomers to detect such objects. Success insures media attention, journal publication, and continued research funding. The Interest in Planets Just one word explains the intense interest in new planets—life. Many scientists are convinced that we are not alone in space. Since life evolved on Earth, it must likewise have happened elsewhere, either on planets or their moons. The naïve assumption is that life will arise if we “just add water”: Earth-like planet + water → spontaneous life This equation is falsified by over a century of biological research showing the deep complexity of life. Scarcely is there a fact more certain than that matter does not spring into life on its own. Drake Equation Astronomer Frank Drake pioneered the Search for ExtraTerrestrial Intelligence project, or SETI, in the 1960s. He also attempted to calculate the total number of planets with life. The Drake Equation in simplified form is: Total livable Probability of Planets with planets x evolution = evolved life *Don DeYoung, Ph.D., is an Adjunct Professor of Physics at ICR. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Collisional Modelling of the AU Microscopii Debris Disc
A&A 581, A97 (2015) Astronomy DOI: 10.1051/0004-6361/201525664 & c ESO 2015 Astrophysics Collisional modelling of the AU Microscopii debris disc Ch. Schüppler1, T. Löhne1, A. V. Krivov1, S. Ertel2, J. P. Marshall3;4, S. Wolf5, M. C. Wyatt6, J.-C. Augereau7;8, and S. A. Metchev9 1 Astrophysikalisches Institut und Universitätssternwarte, Friedrich-Schiller-Universität Jena, Schillergäßchen 2–3, 07745 Jena, Germany e-mail: [email protected] 2 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago, Chile 3 School of Physics, University of New South Wales, NSW 2052 Sydney, Australia 4 Australian Centre for Astrobiology, University of New South Wales, NSW 2052 Sydney, Australia 5 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany 6 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 7 Université Grenoble Alpes, IPAG, 38000 Grenoble, France 8 CNRS, IPAG, 38000 Grenoble, France 9 University of Western Ontario, Department of Physics and Astronomy, 1151 Richmond Avenue, London, ON N6A 3K7, Canada Received 14 January 2015 / Accepted 12 June 2015 ABSTRACT AU Microscopii’s debris disc is one of the most famous and best-studied debris discs and one of only two resolved debris discs around M stars. We perform in-depth collisional modelling of the AU Mic disc including stellar radiative and corpuscular forces (stellar winds), aiming at a comprehensive understanding of the dust production and the dust and planetesimal dynamics in the system. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3 mm to spatially resolved polarisation measurements in the visible. -
TESS Discovery of a Super-Earth and Three Sub-Neptunes Hosted by the Bright, Sun-Like Star HD 108236
Swarthmore College Works Physics & Astronomy Faculty Works Physics & Astronomy 2-1-2021 TESS Discovery Of A Super-Earth And Three Sub-Neptunes Hosted By The Bright, Sun-Like Star HD 108236 T. Daylan K. Pinglé J. Wright M. N. Günther K. G. Stassun Follow this and additional works at: https://works.swarthmore.edu/fac-physics See P nextart of page the forAstr additionalophysics andauthors Astr onomy Commons Let us know how access to these works benefits ouy Recommended Citation T. Daylan, K. Pinglé, J. Wright, M. N. Günther, K. G. Stassun, S. R. Kane, A. Vanderburg, D. Jontof-Hutter, J. E. Rodriguez, A. Shporer, C. X. Huang, T. Mikal-Evans, M. Badenas-Agusti, K. A. Collins, B. V. Rackham, S. N. Quinn, R. Cloutier, K. I. Collins, P. Guerra, Eric L.N. Jensen, J. F. Kielkopf, B. Massey, R. P. Schwarz, D. Charbonneau, J. J. Lissauer, J. M. Irwin, Ö Baştürk, B. Fulton, A. Soubkiou, B. Zouhair, S. B. Howell, C. Ziegler, C. Briceño, N. Law, A. W. Mann, N. Scott, E. Furlan, D. R. Ciardi, R. Matson, C. Hellier, D. R. Anderson, R. P. Butler, J. D. Crane, J. K. Teske, S. A. Shectman, M. H. Kristiansen, I. A. Terentev, H. M. Schwengeler, G. R. Ricker, R. Vanderspek, S. Seager, J. N. Winn, J. M. Jenkins, Z. K. Berta-Thompson, L. G. Bouma, W. Fong, G. Furesz, C. E. Henze, E. H. Morgan, E. Quintana, E. B. Ting, and J. D. Twicken. (2021). "TESS Discovery Of A Super-Earth And Three Sub-Neptunes Hosted By The Bright, Sun-Like Star HD 108236". -
The Constellation Microscopium, the Microscope Microscopium Is A
The Constellation Microscopium, the Microscope Microscopium is a small constellation in the southern sky, defined in the 18th century by Nicolas Louis de Lacaille in 1751–52 . Its name is Latin for microscope; it was invented by Lacaille to commemorate the compound microscope, i.e. one that uses more than one lens. The first microscope was invented by the two brothers, Hans and Zacharius Jensen, Dutch spectacle makers of Holland in 1590, who were also involved in the invention of the telescope (see below). Lacaille first showed it on his map of 1756 under the name le Microscope but Latinized this to Microscopium on the second edition published in 1763. He described it as consisting of "a tube above a square box". It contains sixty-nine stars, varying in magnitude from 4.8 to 7, the lucida being Gamma Microscopii of apparent magnitude 4.68. Two star systems have been found to have planets, while another has a debris disk. The stars that now comprise Microscopium may formerly have belonged to the hind feet of Sagittarius. However, this is uncertain as, while its stars seem to be referred to by Al-Sufi as having been seen by Ptolemy, Al-Sufi does not specify their exact positions. Microscopium is bordered Capricornus to the north, Piscis Austrinus and Grus to the west, Sagittarius to the east, Indus to the south, and touching on Telescopium to the southeast. The recommended three-letter abbreviation for the constellation, as adopted Seen in the 1824 star chart set Urania's Mirror (lower left) by the International Astronomical Union in 1922, is 'Mic'. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
Information Bulletin on Variable Stars
COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November ::::::::::::::::::::::::::::::::::::::: -
Arxiv:2009.03398V2 [Astro-Ph.EP] 12 Sep 2020
vDraft version September 15, 2020 Typeset using LATEX twocolumn style in AASTeX63 Physical Parameters of the Multi-Planet Systems HD 106315 and GJ 9827∗y Molly R. Kosiarek,1, z David A. Berardo,2 Ian J. M. Crossfield,3 Cesar Laguna,4 Joseph M. Akana Murphy,1, z Steve B. Howell,5 Gregory W. Henry,6 Howard Isaacson,7, 8 Lauren M. Weiss,9 Erik A. Petigura,10 Benjamin Fulton,11 Aida Behmard,12 Lea A. Hirsch,13 Johanna Teske,14 Jennifer A. Burt,15 Sean M. Mills,16 Ashley Chontos,17, z Teo Mocnik,18 Andrew W. Howard,16 Michael Werner,15 John H. Livingston,19 Jessica Krick,20 Charles Beichman,21 Varoujan Gorjian,15 Laura Kreidberg,22, 23 Caroline Morley,24 Jessie L. Christiansen,20 Farisa Y. Morales,15 Nicholas J. Scott,5 Jeffrey D. Crane,25 Lee J. Rosenthal,16 Samuel K. Grunblatt,26, 27 Ryan A. Rubenzahl,16, z Paul A. Dalba,28, x Steven Giacalone,29 Chiara Dane Villanueva,4 Qingtian Liu,4 Fei Dai,12 Michelle L. Hill,28 Malena Rice,30 Stephen R. Kane,28 Andrew W. Mayo,29, 31 | 1Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 2Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 4Department of Physics, University of California, Santa Cruz, CA 95064, USA 5NASA Ames Research Center, Moffett Field, CA 94035, USA 6Center of Excellence in Information Systems, Tennessee State University, Nashville, TN -
Curriculum Vitae John P
Curriculum Vitae John P. Blakeslee National Research Council of Canada Phone: 1-250-363-8103 Herzberg Astronomy & Astrophysics Programs Fax: 1-250-363-0045 5071 West Saanich Road Cell: 1-250-858-1357 Victoria, B.C. V9E 2E7 Email: [email protected] Canada Citizenship: USA Education 1997 Ph.D., Physics, Massachusetts Institute of Technology (supervisor: Prof. John Tonry) 1991 B. A., Physics, University of Chicago (Honors; supervisor: Prof. Donald York) Employment History 2007 – present Astronomer, Senior Research Officer NRC Herzberg Institute of Astrophysics 2008 – present Adjunct Associate Professor Department of Physics, University of Victoria 2008 – 2013 Adjunct Professor Washington State University 2005 – 2007 Assistant Professor of Physics Washington State University 2004 – 2005 Research Scientist Johns Hopkins University 2000 – 2004 Associate Research Scientist Johns Hopkins University 1999 – 2000 Postdoctoral Research Associate University of Durham, U.K. 1996 – 1999 Fairchild Postdoctoral Scholar California Institute of Technology Fellowships and Awards 2004 Ernest F. Fullam Award for Innovative Research in Astronomy, Dudley Observatory 2003 NASA Certificate for contributions to the success of HST Servicing Mission 3B 1996 – 1999 Sherman M. Fairchild Postdoctoral Fellowship in Astronomy, Caltech Professional Service 2016 – present Canadian Large Synoptic Survey Telescope (LSST) Consortium, Co-PI 2014 – present Chair, NOAO Time Allocation Committee (TAC) Extragalactic Panel 2008 – present National Representative, Gemini International -
Stars and Their Spectra: an Introduction to the Spectral Sequence Second Edition James B
Cambridge University Press 978-0-521-89954-3 - Stars and Their Spectra: An Introduction to the Spectral Sequence Second Edition James B. Kaler Index More information Star index Stars are arranged by the Latin genitive of their constellation of residence, with other star names interspersed alphabetically. Within a constellation, Bayer Greek letters are given first, followed by Roman letters, Flamsteed numbers, variable stars arranged in traditional order (see Section 1.11), and then other names that take on genitive form. Stellar spectra are indicated by an asterisk. The best-known proper names have priority over their Greek-letter names. Spectra of the Sun and of nebulae are included as well. Abell 21 nucleus, see a Aurigae, see Capella Abell 78 nucleus, 327* ε Aurigae, 178, 186 Achernar, 9, 243, 264, 274 z Aurigae, 177, 186 Acrux, see Alpha Crucis Z Aurigae, 186, 269* Adhara, see Epsilon Canis Majoris AB Aurigae, 255 Albireo, 26 Alcor, 26, 177, 241, 243, 272* Barnard’s Star, 129–130, 131 Aldebaran, 9, 27, 80*, 163, 165 Betelgeuse, 2, 9, 16, 18, 20, 73, 74*, 79, Algol, 20, 26, 176–177, 271*, 333, 366 80*, 88, 104–105, 106*, 110*, 113, Altair, 9, 236, 241, 250 115, 118, 122, 187, 216, 264 a Andromedae, 273, 273* image of, 114 b Andromedae, 164 BDþ284211, 285* g Andromedae, 26 Bl 253* u Andromedae A, 218* a Boo¨tis, see Arcturus u Andromedae B, 109* g Boo¨tis, 243 Z Andromedae, 337 Z Boo¨tis, 185 Antares, 10, 73, 104–105, 113, 115, 118, l Boo¨tis, 254, 280, 314 122, 174* s Boo¨tis, 218* 53 Aquarii A, 195 53 Aquarii B, 195 T Camelopardalis,