9.08 Thermal Evolution of the Mantle G

Total Page:16

File Type:pdf, Size:1020Kb

9.08 Thermal Evolution of the Mantle G 9.08 Thermal Evolution of the Mantle G. F. Davies, Australian National University, Canberra, ACT, Australia ª 2007 Elsevier B.V. All rights reserved. 9.08.1 Introduction 197 9.08.1.1 Cooling and the Age of Earth 197 9.08.1.2 A Static Conductive Mantle? 198 9.08.2 The Convecting Mantle 198 9.08.2.1 A Reference Thermal History 200 9.08.3 Internal Radioactivity and the Present Cooling Rate 202 9.08.4 Variations on Standard Cooling Models 203 9.08.4.1 Effect of Volatiles on Mantle Rheology 203 9.08.4.2 Two-Layer Mantle Convection 204 9.08.4.3 Static Lithosphere Convection, and Venus 205 9.08.5 Coupled Core–Mantle Evolution and the Geodynamo 206 9.08.6 Alternative Models of Thermal History 208 9.08.6.1 Episodic Histories 208 9.08.6.2 Strong Compositional Lithosphere 209 9.08.7 Implications for Tectonic Evolution 210 9.08.7.1 Viability of Plate Tectonics 211 9.08.7.2 Alternatives to Plate Tectonics 212 9.08.7.3 History of Plumes 212 9.08.8 Conclusion 214 References 214 9.08.1 Introduction age emerged. This was done by William Thomson, better known as Lord Kelvin, who played a key role The thermal evolution of Earth’s interior has fea- in the development of thermodynamics, notably as tured fundamentally in the geological sciences, and the formulator of the ‘second law’. it continues to do so. This is because Earth’s internal Kelvin actually calculated an age for the Sun first, heat fuels the driving mechanism of tectonics, and using estimates of the gravitational energy released by hence of all geological processes except those driven the Sun’s accretion from a nebular cloud, the heat at the surface by the heat of the Sun. The thermal content of the present Sun, and the rate of radiation of evolution also featured famously in a nineteenth- heat, concluding that the Sun was likely to be younger century debate about the age of Earth. than 100 Ma and most unlikely to be older than 500 Ma (Kelvin, 1862). The following year Kelvin calculated an age of Earth using different physics (Kelvin, 1863). He 9.08.1.1 Cooling and the Age of Earth reasoned that the known geothermal gradient of about –1 According to Hallam (1989), from the time when the 20Ckm near Earth’s surface would have declined origin of Earth was considered by scientists of the from an essentially infinite gradient at the time of European Enlightenment it was conceived as having Earth’s formation. Making use of Fourier’s law to started hot, notably in the nebular theories of Kant solve the resulting thermal diffusion problem (Davies, and Laplace. This led to conjectures and very rough 1999) he obtained an age between 20 and 400 Ma with estimates of how long it may have taken to cool his most probable value being 98 Ma. There ensued down, and thus to estimates of the age of Earth. several decades of heated debate between and among However, it was not until Fourier had formulated geologists and physicists, with Kelvin’s last estimate his ‘law’ of conduction and the science of thermody- (Kelvin, 1899)beingonly24Ma. namics was established that a quantitatively reliable, A number of Kelvin’s assumptions were challenged though physically inappropriate, estimate of Earth’s duringthecourseofthislongcontroversy,themost 197 198 Thermal Evolution of the Mantle telling challenge in retrospect coming from The through a liquid because a liquid does not have any Reverend Osmond Fisher (Fisher, 1881) who pointed shear strength. A second argument is that Earth’s out that if Earth’s interior were ‘plastic’ (meaning in response to tidal forces implies quite high rigidity. some degree fluid), then a much greater reservoir of Finally, Earth has, on average, a slightly greater equa- heatwouldbetappedandtheresultingagecouldbe torial bulge than is accounted for by its rotation, and much greater. Fisher’s point was that conduction alone this was intepreted to imply that the mantle has a would have cooled only the outer few hundred kilo- viscosity (a fluid’s resistance to flow) sufficiently high meters of Earth, whereas a circulating fluid could bring to preclude significant internal motion. Against this, heat from much deeper as well, so it would take longer the concept of a deformable ‘asthenosphere’ extending for the larger amount of heat to be removed at the down for several hundred kilometers was widely held currently observed rate. Fisher’s point did little to among geologists as necessary to accommodate the settle the nineteenth-century controversy, but it considerable movements they inferred to have returned in a slightly different guise a century later. occurred in the crust (Barrell, 1914). The controversy with Kelvin was finally settled The initial presumption used to reconcile the through the discovery of radioactivity, which pro- observed heat flow with a static mantle was that the vided a previously unknown source of heat within radioactivity must be confined to within about 20 km Earth, so heat could be replenished as it is lost of the surface, and observations in continental areas through the surface, and the flow of heat thus main- support this (Jeffreys, 1976). The implication is that tained for much longer than Kelvin’s estimates. The most of the heat emerging from continental crust is actual determination of Earth’s age relied on exploit- generated there and can readily be conducted to the ing a different aspect of radioactivity, the production surface. The amount of heat coming from deeper was of daughter isotopes. This task was pursued most presumed or implied to be very small. However, this notably by Holmes from early in the twentieth cen- encounters the problem that heat flow from ocean tury (Holmes, 1911, 1913) but not completed to basins is greater than from continents, but the thin, general satisfaction until meteorites were dated by less radioactive oceanic crust can account for only a the lead–lead method and Earth was shown to fit small fraction of the total (Sclater et al., 1980). within the meteorite trend (Patterson, 1956). The A later presumption was that thermal conductiv- age of Earth is still determined only indirectly. ity must increase substantially with depth, so that a sufficient heat flow could be sustained for a much greater time. This possibility was bolstered by the 9.08.1.2 A Static Conductive Mantle? proposal that radiative transfer of heat could be The discovery of the heat generated by radioactivity important in the mantle (Clark, 1957). The idea is provided Earth with an enduring source of heat, but that if mantle minerals are sufficiently transparent, it created another problem by breaking the consis- then the blackbody radiation of the hot materials tency in Kelvin’s argument between age and the could transmit significant distances. Since the trans- removal of heat by conduction. If heat escapes from mission would be like a random walk it constitutes a Earth’s interior by conduction, then Kelvin’s argu- diffusion process and so can be described by an ment would still seem to require Earth to be less than enhanced effective conductivity. However, the pre- 100 My old, otherwise the surface heat flow would be sence of iron in minerals tends to reduce the much less than is observed. Put another way, if Earth transparency of the minerals at the relevant wave- is 4.5 Gy old, roughly 100 times Kelvin’s estimate, lengths (Shankland et al., 1979). Thus, it was not at all then the geothermal gradient ought to be 10 times obvious that radiative transfer could resolve the issue. less than the 15–20CkmÀ1 commonly observed in There have been recent claims for a significant effect deep mines and boreholes. This is because in the (Hofmeister, 2005), though if they are significant it relevant thermal diffusion process the heat flow would probably only be for the deepest mantle. (and the temperature gradient) declines in propor- tion to the square root of time (Davies, 1999). Until the 1960s, it was most generally held that 9.08.2 The Convecting Mantle Earth’s mantle is solid and unyielding (Jeffreys, 1976). This conclusion was based on several lines of evidence, The emergence of plate tectonics in the 1960s the most obvious being that the mantle transmits seis- directly implied that at least the upper part of the mic shear waves, and shear waves cannot propagate mantle is mobile. In 1969 Goldreich and Toomre Thermal Evolution of the Mantle 199 (1969) pointed out that the excess bulge at the equa- Subsequently several groups realized, more-or- tor varied about as much with longitude as with less independently, that the relationship could be latitude, so the old explanation that it was a fossil used to calculate the thermal evolution of the Earth from past faster rotation could not be correct. In their without assuming that heat loss is equal to heat pro- reinterpretation, the Earth adjusts its rotation to bring duction. Sharpe and Peltier (1978, 1979) were the its largest bulges to the equator, and this implies an first, although they implemented it in terms of an ‘upper’ bound on viscosity that is quite compatible enhanced thermal diffusion, which does not accu- with a mobile mantle. With later interpretations of rately represent the internal temperature profile. postglacial rebound constraints and positive geoids Others soon used it to characterize the total heat over subduction zones, the current picture is that the transport in terms of a representative internal tem- 20 upper mantle has a viscosity of (1–3) Â 10 Pa s perature (Cassen et al., 1979; Schubert, 1979; while the lower mantle is perhaps 30 times more Schubert et al., 1979a, 1979b, 1980; Stevenson and viscous than this (Hager, 1984; Mitrovica, 1996; Turner, 1979; Davies, 1980; Stacey, 1980).
Recommended publications
  • Chapter 3. the Crust and Upper Mantle
    Theory of the Earth Don L. Anderson Chapter 3. The Crust and Upper Mantle Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: T he structure of the Earth's interior is fairly well known from seismology, and knowledge of the fine structure is improving continuously. Seismology not only provides the structure, it also provides information about the composition, crystal structure or mineralogy and physical state. In subsequent chapters I will discuss how to combine seismic with other kinds of data to constrain these properties. A recent seismological model of the Earth is shown in Figure 3-1. Earth is conventionally divided into crust, mantle and core, but each of these has subdivisions that are almost as fundamental (Table 3-1). The lower mantle is the largest subdivision, and therefore it dominates any attempt to perform major- element mass balance calculations. The crust is the smallest solid subdivision, but it has an importance far in excess of its relative size because we live on it and extract our resources from it, and, as we shall see, it contains a large fraction of the terrestrial inventory of many elements. In this and the next chapter I discuss each of the major subdivisions, starting with the crust and ending with the inner core.
    [Show full text]
  • Archimedean Proof of the Physical Impossibility of Earth Mantle Convection by J. Marvin Herndon Transdyne Corporation San Diego
    Archimedean Proof of the Physical Impossibility of Earth Mantle Convection by J. Marvin Herndon Transdyne Corporation San Diego, CA 92131 USA [email protected] Abstract: Eight decades ago, Arthur Holmes introduced the idea of mantle convection as a mechanism for continental drift. Five decades ago, continental drift was modified to become plate tectonics theory, which included mantle convection as an absolutely critical component. Using the submarine design and operation concept of “neutral buoyancy”, which follows from Archimedes’ discoveries, the concept of mantle convection is proven to be incorrect, concomitantly refuting plate tectonics, refuting all mantle convection models, and refuting all models that depend upon mantle convection. 1 Introduction Discovering the true nature of continental displacement, its underlying mechanism, and its energy source are among the most fundamental geo-science challenges. The seeming continuity of geological structures and fossil life-forms on either side of the Atlantic Ocean and the apparent “fit’ of their opposing coastlines led Antonio Snider-Pellegrini to propose in 1858, as shown in Fig. 1, that the Americas were at one time connected to Europe and Africa and subsequently separated, opening the Atlantic Ocean (Snider-Pellegrini, 1858). Fig. 1 The opening of the Atlantic Ocean, reproduced from (Snider-Pellegrini, 1858). 1 Half a century later, Alfred Wegener promulgated a similar concept, with more detailed justification, that became known as “continental drift” (Wegener, 1912). Another half century later, continental drift theory was modified to become plate tectonics theory (Dietz, 1961;Hess, 1962;Le Pichon, 1968;Vine and Matthews, 1963). Any theory of continental displacement requires a physically realistic mechanism and an adequate energy source.
    [Show full text]
  • Structure of the Earth
    TheThe Earth’sEarth’s StructureStructure fromfrom TravelTravel TimesTimes SphericallySpherically symmetricsymmetric structure:structure: PREMPREM --CCrustalrustal StructuStructurree --UUpperpper MantleMantle structustructurree PhasePhase transitiotransitionnss AnisotropyAnisotropy --LLowerower MantleMantle StructureStructure D”D” --SStructuretructure ofof thethe OuterOuter andand InnerInner CoreCore 3-3-DD StStructureructure ofof thethe MantleMantle fromfrom SeismicSeismic TomoTomoggrraphyaphy --UUpperpper mantlemantle -M-Miidd mmaannttllee -L-Loowweerr MMaannttllee Seismology and the Earth’s Deep Interior The Earth’s Structure SphericallySpherically SymmetricSymmetric StructureStructure ParametersParameters wwhhichich cancan bebe determineddetermined forfor aa referencereferencemodelmodel -P-P--wwaavvee v veeloloccitityy -S-S--wwaavvee v veeloloccitityy -D-Deennssitityy -A-Atttteennuuaattioionn ( (QQ)) --AAnisonisotropictropic parame parametersters -Bulk modulus K -Bulk modulus Kss --rrigidityigidity µ µ −−prepresssuresure - -ggravityravity Seismology and the Earth’s Deep Interior The Earth’s Structure PREM:PREM: velocitiesvelocities andand densitydensity PREMPREM:: PPreliminaryreliminary RReferenceeference EEartharth MMooddelel (Dziewonski(Dziewonski andand Anderson,Anderson, 1981)1981) Seismology and the Earth’s Deep Interior The Earth’s Structure PREM:PREM: AttenuationAttenuation PREMPREM:: PPreliminaryreliminary RReferenceeference EEartharth MMooddelel (Dziewonski(Dziewonski andand Anderson,Anderson, 1981)1981) Seismology and the
    [Show full text]
  • (2 Points Each) 1. the Velocity Of
    GG 101, Spring 2006 Name_________________________ Exam 2, March 9, 2006 A. Fill in the blank (2 points each) 1. The velocity of an S-wave is ______lower_________ than the velocity of a P-wave. 2. What type of seismic wave is being recorded by the above diagram? A __P__ wave. 3. The most voluminous layer of Earth is the ___mantle_________. 4. The rigid layer of Earth which consists of the crust and uppermost mantle is called the __ lithosphere__________. 5. Which of the major subdivisions of Earth's interior is thought to be liquid? ____outer core________. 6. When the giant ice sheets in the northern hemisphere melted after the last ice age, the Earth's crust ____rebounded____ because a large weight was removed. Name _______________________________ GG 101 Exam 2 Page 2 7. The process described in question 6 is an example of ___isostasy____. 8. Earth's dense core is thought to consist predominantly of ____iron________. 9. The island of Hawaii experiences volcanism because it is located above a(n) ___hot spot_________. 10. The Himalaya Mountains were caused by ___collision__ between ___India__________ and Asia. 11. ___Folds____ are the most common ductile response to stress on rocks in the earth’s crust. 12. ___Faults___ are the most common brittle response to stress on rocks in the earth’s crust. 13. What types of faults are depicted in the cross section shown above? ___thrust_______ faults. Name _______________________________ GG 101 Exam 2 Page 3 14. The structure shown in the above diagram is a(n) ____anticline_____. 15. The name of a fold that occurs in an area of intense deformation where one limb of the fold has been tilted beyond the vertical is called a(n) ____overturned____ fold.
    [Show full text]
  • INTERIOR of the EARTH / an El/EMEI^TARY Xdescrrpntion
    N \ N I 1i/ / ' /' \ \ 1/ / / s v N N I ' / ' f , / X GEOLOGICAL SURVEY CIRCULAR 532 / N X \ i INTERIOR OF THE EARTH / AN El/EMEI^TARY xDESCRrPNTION The Interior of the Earth An Elementary Description By Eugene C. Robertson GEOLOGICAL SURVEY CIRCULAR 532 Washington 1966 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director First printing 1966 Second printing 1967 Third printing 1969 Fourth printing 1970 Fifth printing 1972 Sixth printing 1976 Seventh printing 1980 Free on application to Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, VA 22202 CONTENTS Page Abstract ......................................................... 1 Introduction ..................................................... 1 Surface observations .............................................. 1 Openings underground in various rocks .......................... 2 Diamond pipes and salt domes .................................. 3 The crust ............................................... f ........ 4 Earthquakes and the earth's crust ............................... 4 Oceanic and continental crust .................................. 5 The mantle ...................................................... 7 The core ......................................................... 8 Earth and moon .................................................. 9 Questions and answers ............................................. 9 Suggested reading ................................................ 10 ILLUSTRATIONS
    [Show full text]
  • The Upper Mantle and Transition Zone
    The Upper Mantle and Transition Zone Daniel J. Frost* DOI: 10.2113/GSELEMENTS.4.3.171 he upper mantle is the source of almost all magmas. It contains major body wave velocity structure, such as PREM (preliminary reference transitions in rheological and thermal behaviour that control the character Earth model) (e.g. Dziewonski and Tof plate tectonics and the style of mantle dynamics. Essential parameters Anderson 1981). in any model to describe these phenomena are the mantle’s compositional The transition zone, between 410 and thermal structure. Most samples of the mantle come from the lithosphere. and 660 km, is an excellent region Although the composition of the underlying asthenospheric mantle can be to perform such a comparison estimated, this is made difficult by the fact that this part of the mantle partially because it is free of the complex thermal and chemical structure melts and differentiates before samples ever reach the surface. The composition imparted on the shallow mantle by and conditions in the mantle at depths significantly below the lithosphere must the lithosphere and melting be interpreted from geophysical observations combined with experimental processes. It contains a number of seismic discontinuities—sharp jumps data on mineral and rock properties. Fortunately, the transition zone, which in seismic velocity, that are gener- extends from approximately 410 to 660 km, has a number of characteristic ally accepted to arise from mineral globally observed seismic properties that should ultimately place essential phase transformations (Agee 1998). These discontinuities have certain constraints on the compositional and thermal state of the mantle. features that correlate directly with characteristics of the mineral trans- KEYWORDS: seismic discontinuity, phase transformation, pyrolite, wadsleyite, ringwoodite formations, such as the proportions of the transforming minerals and the temperature at the discontinu- INTRODUCTION ity.
    [Show full text]
  • LESSON PLAN from Core to Crust Craters of the Moon National Monument & Preserve
    LESSON PLAN From Core to Crust Craters of the Moon National Monument & Preserve Side view of mantle and crust GRADE LEVEL: Fifth Grade-Sixth Grade SUBJECT: Earth Science, Geology DURATION: 2-3 hours GROUP SIZE: Up to 36 (6-12 breakout groups) SETTING: classroom NATIONAL/STATE STANDARDS: CCRA.SL.1 NGSS.SEP.2 KEYWORDS: stratigraphy, earth science, geology Overview Students act out different parts of the Earth and then build models of the Earth showing its layers. (CLASSROOM ACTIVITY) Objective(s) Students will be able to name the parts of the Earth. Students will understand that the Earth is dynamic. Background The Earth, like the life on its surface, is changing all the time. Parts of it are molten and slowly rise, cool, and sink back toward the Earth's core, like soup simmering over a fire. Continents drift around the globe creating the features we think of when we think of geology. But most of the Earth lies unseen between our feet and the other side of the world. The Earth is made up of the crust, the mantle, and the core. Although geologists have only drilled a few miles into the Earth's crust, they have indirectly deduced much about the remainder of the planet's composition. The Crust What we walk on and see is the crust. It is wafer thin, only 3 to 22 miles thick. If the Earth were the size of a billiard ball, the crust would be as thick as a postage stamp stuck to its surface (think how thick the membrane of life would be that coats the Earth!).
    [Show full text]
  • The Relation Between Mantle Dynamics and Plate Tectonics
    The History and Dynamics of Global Plate Motions, GEOPHYSICAL MONOGRAPH 121, M. Richards, R. Gordon and R. van der Hilst, eds., American Geophysical Union, pp5–46, 2000 The Relation Between Mantle Dynamics and Plate Tectonics: A Primer David Bercovici , Yanick Ricard Laboratoire des Sciences de la Terre, Ecole Normale Superieure´ de Lyon, France Mark A. Richards Department of Geology and Geophysics, University of California, Berkeley Abstract. We present an overview of the relation between mantle dynam- ics and plate tectonics, adopting the perspective that the plates are the surface manifestation, i.e., the top thermal boundary layer, of mantle convection. We review how simple convection pertains to plate formation, regarding the aspect ratio of convection cells; the forces that drive convection; and how internal heating and temperature-dependent viscosity affect convection. We examine how well basic convection explains plate tectonics, arguing that basic plate forces, slab pull and ridge push, are convective forces; that sea-floor struc- ture is characteristic of thermal boundary layers; that slab-like downwellings are common in simple convective flow; and that slab and plume fluxes agree with models of internally heated convection. Temperature-dependent vis- cosity, or an internal resistive boundary (e.g., a viscosity jump and/or phase transition at 660km depth) can also lead to large, plate sized convection cells. Finally, we survey the aspects of plate tectonics that are poorly explained by simple convection theory, and the progress being made in accounting for them. We examine non-convective plate forces; dynamic topography; the deviations of seafloor structure from that of a thermal boundary layer; and abrupt plate- motion changes.
    [Show full text]
  • Geothermal Gradient - Wikipedia 1 of 5
    Geothermal gradient - Wikipedia 1 of 5 Geothermal gradient Geothermal gradient is the rate of increasing temperature with respect to increasing depth in the Earth's interior. Away from tectonic plate boundaries, it is about 25–30 °C/km (72-87 °F/mi) of depth near the surface in most of the world.[1] Strictly speaking, geo-thermal necessarily refers to the Earth but the concept may be applied to other planets. The Earth's internal heat comes from a combination of residual heat from planetary accretion, heat produced through radioactive decay, latent heat from core crystallization, and possibly heat from other sources. The major heat-producing isotopes in the Earth are potassium-40, uranium-238, uranium-235, and thorium-232.[2] At the center of the planet, the temperature may be up to 7,000 K and the pressure could reach 360 GPa (3.6 million atm).[3] Because much of the heat is provided by radioactive decay, scientists believe that early in Earth history, before isotopes with short half- lives had been depleted, Earth's heat production would have been much Temperature profile of the inner Earth, higher. Heat production was twice that of present-day at approximately schematic view (estimated). 3 billion years ago,[4] resulting in larger temperature gradients within the Earth, larger rates of mantle convection and plate tectonics, allowing the production of igneous rocks such as komatiites that are no longer formed.[5] Contents Heat sources Heat flow Direct application Variations See also References Heat sources Temperature within the Earth
    [Show full text]
  • The Mantle of Mars
    The Mantle of Mars: Insights from Theory, Geophysics, High-Pressure Studies, and Meteorites Program and Abstract Volume LPI Contribution No. 1684 The Mantle of Mars: Insights from Theory, Geophysics, High-Pressure Studies, and Meteorites October 10–12, 2012 • Houston, Texas Sponsors Universities Space Research Association Lunar and Planetary Institute Jet Propulsion Laboratory Conveners Jim Papike University of New Mexico Charles Shearer University of New Mexico Dave Beaty Jet Propulsion Laboratory Scientific Organizing Committee Bruce Banerdt, Jet Propulsion Laboratory Dave Beaty, Jet Propulsion Laboratory Lars Borg, Lawrence Livermore National Laboratory Linda Elkins-Tanton, Department of Terrestrial Magnetism, Carnegie Institution of Washington Yingwei Fei, Geophysical Laboratory, Carnegie Institution of Washington Jim Papike, University of New Mexico Kevin Righter, NASA Johnson Space Center Charles Shearer, University of New Mexico Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1684 Compiled in 2012 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication.
    [Show full text]
  • The Earth's Structure
    THE EARTH’S STRUCTURE Geology is the study of the earth, including its structure, rocks, minerals, history, and the forces that affect it. The Earth’s surface has not always had its present form; it has changed over time. The three main layers of the Earth, the crust, mantle, and core, are all made of different materials (Figure 1). The crust is solid rock and can range in thickness from three miles (the ocean floor) to 37 miles (mountain ranges). Project Mohole, began by U.S. scientists in 1959, was designed to drill a hole all the way through the crust into the mantle. The drilling began under the Pacific Ocean, but the project ran out of money and was stopped in 1967. To date, no one has been able to get a sample of material from the mantle, but it is thought to be hotter and denser or heavier than the crust and more plastic or able to flow and change its shape under pressure. The mantle reaches 1800 miles below the crust (84% of the earth’s volume). The core contains more than 15% of the earth’s volume. Many geologists are unwilling to guess what the core is made of, but they think it must be very hot and dense. The earth’s crust is broken into several pieces called plates. These plates rest on and slide across the mantle. These plates are constantly drifting and moving the continents with them. Geologists believe that, millions of years ago, all of the continents were one huge land mass.
    [Show full text]
  • Mantle Plumes and Their Record in Earth History by KC Condie
    Mantle Plumes and Their Record in Earth History by K. C. Condie, 2001: Cambridge University Press, 40 West 20th Street, New York, NY 10011-4211 USA; hardcover, US$110, ISBN 0-521-80604-6; soft cover, US$40 ISBN 0-521-01472-7., 306 pages. This book is a synthesis of much of the work on mantle plumes that has occurred over the past 10 - 15 years. As such, the information is current and relevant to research on the origin and effects of plumes. Half of the 700 plus cited references were published in or after 1995, making this book an excellent research reference. Additionally, the text is well designed for being a usable textbook for advance undergraduates and graduate students. In essence, this book is an expanded compilation of recent publications by Condie with the addition of introductory chapters that provide a review of mantle plume hypotheses and supporting data. Although the book is geared toward igneous geochemists and petrologists, it also addresses some sedimentary topics related to the effects of plumes. The book contains nine chapters that cover most aspects of mantle plumes. The organization of the book follows a format of presenting the observational, geochemical, and experimental evidence supporting the existence of mantle plumes, followed by the more speculative hypotheses, including the role of plumes in the evolution of the earth. Chapter one presents an overview of the structure of plumes and the mantle. Chapter two discusses hotspots, including their tracks, geochemistry, and relationship to geoid highs and mantle upwellings. Chapter three covers large igneous provinces (LIPS), including those in the oceans, on the continents, and on Mars and Venus.
    [Show full text]