Data, Reagents, Assays and Merits of Proteomics for SARS-Cov-2 Research and Testing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Recombinant African Swine Fever Virus from a Field Isolate Using
Journal of Virological Methods 183 (2012) 86–89 Contents lists available at SciVerse ScienceDirect Journal of Virological Methods j ournal homepage: www.elsevier.com/locate/jviromet Short communication Novel approach for the generation of recombinant African swine fever virus from a field isolate using GFP expression and 5-bromo-2!-deoxyuridine selection a b a, Raquel Portugal , Carlos Martins , Günther M. Keil ∗ a Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany b Laboratório de Doenc¸ as Infecciosas, CIISA, Faculdade de Medicina Veterinária, Technical University of Lisbon, Lisbon, Portugal a b s t r a c t Article history: Generation of African swine fever virus (ASFV) recombinants has so far relied mainly on the manipulation Received 4 August 2011 of virus strains which had been adapted to growth in cell culture, since field isolates do not usually Received in revised form 14 March 2012 replicate efficiently in established cell lines. Using wild boar lung cells (WSL) which allow for propagation Accepted 21 March 2012 of ASFV field isolates, a novel approach for the generation of recombinant ASFV directly from field isolates Available online 4 April 2012 was developed which includes the integration into the viral thymidine kinase (TK) locus of an ASFV p72- promoter driven expression cassette for enhanced green fluorescent protein (EGFP) embedded in a 16 kbp Keywords: mini F-plasmid into the genome of the ASFV field strain NHV. This procedure enabled the monitoring of African swine fever virus recombinants recombinant virus replication by EGFP autofluorescence. Selection for the TK-negative (TK−) phenotype Field isolate of the recombinants on TK− Vero (VeroTK−) cells in the presence of 5-bromo-2!-deoxyuridine (BrdU) Green fluorescent protein + Thymidine kinase led to efficient isolation of recombinant virus due to the elimination of TK wild type virus by BrdU- BrdU selection phosporylation in infected VeroTK− cells. -
A Genome-Wide Screen in Mice to Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation
FEATURED ARTICLE MUTANT SCREEN REPORT A Genome-Wide Screen in Mice To Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation Louise van der Weyden,1 Agnieszka Swiatkowska, Vivek Iyer, Anneliese O. Speak, and David J. Adams Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom ORCID IDs: 0000-0002-0645-1879 (L.v.d.W.); 0000-0003-4890-4685 (A.O.S.); 0000-0001-9490-0306 (D.J.A.) ABSTRACT Metastatic colonization, whereby a disseminated tumor cell is able to survive and proliferate at a KEYWORDS secondary site, involves both tumor cell-intrinsic and -extrinsic factors. To identify tumor cell-extrinsic metastasis (microenvironmental) factors that regulate the ability of metastatic tumor cells to effectively colonize a metastatic tissue, we performed a genome-wide screen utilizing the experimental metastasis assay on mutant mice. colonisation Mutant and wildtype (control) mice were tail vein-dosed with murine metastatic melanoma B16-F10 cells and microenvironment 10 days later the number of pulmonary metastatic colonies were counted. Of the 1,300 genes/genetic B16-F10 locations (1,344 alleles) assessed in the screen 34 genes were determined to significantly regulate pulmonary lung metastatic colonization (15 increased and 19 decreased; P , 0.005 and genotype effect ,-55 or .+55). mutant While several of these genes have known roles in immune system regulation (Bach2, Cyba, Cybb, Cybc1, Id2, mouse Igh-6, Irf1, Irf7, Ncf1, Ncf2, Ncf4 and Pik3cg) most are involved in a disparate range of biological processes, ranging from ubiquitination (Herc1) to diphthamide synthesis (Dph6) to Rho GTPase-activation (Arhgap30 and Fgd4), with no previous reports of a role in the regulation of metastasis. -
Vero Cell Line Profile
Cell line profile Vero (ECACC catalogue no. 84113001) Cell line history The original Vero cell line was established from the kidney of an African green monkey in 1962 by Y. Yasumura and Y. Kawakita at the Chiba University in Japan1. It is currently one of the most used continuous cell lines in the world and has been cited in over 10,000 research publications. The cell line was originally described as derived from African green monkey of the genus Cercopithecus, confusingly used synonymously with the terms Grivet and Vervet monkey. This has been replaced with the genus Chlorocebus. The species designation of Vero is commonly cited as Chlorocebus aethiops. However, recent whole genome sequencing has re-designated the species as the closely related Chlorocebus sabaeus2. Key characteristics The Vero cell line is continuous and aneuploid. Continuous cell lines of mammalian origin have been an extremely valuable resource for the production of biological pharmaceuticals. Vero is susceptible to infection from a number of viruses such as SV-40, measles virus, arboviruses, rubella virus, polioviruses, influenza viruses and simian syncytial viruses3. It is also susceptible to bacterial toxins including diphtheria toxin and Shiga-like toxins. Interestingly, when the whole genome of Vero was sequenced it was found there was a 9-Mb deletion on chromosome 12, which resulted in the loss of the type 1 interferon gene cluster, in addition to the cyclin-dependent kinase inhibitor genes. The authors suggested this could be the reason for the continuous nature of the cell line and its susceptibility to a variety of pathogens2. Vero cells in the early stages (24 hours) of cell culture Applications Due to the continuous nature of the cell lines and its sensitivity to a number of different viruses, Vero has been used extensively in the fields of vaccine production and to study various types of emerging pathogens such as H5N1 influenza virus, middle-eastern respiratory syndrome (MERS) coronavirus, Zika virus and a number of haemorrhagic fever viruses. -
Vero Cell Upstream Bioprocess Development for the Production of Viral Vectors and Vaccines T ⁎ Sascha Kiesslich, Amine A
Biotechnology Advances 44 (2020) 107608 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Vero cell upstream bioprocess development for the production of viral vectors and vaccines T ⁎ Sascha Kiesslich, Amine A. Kamen Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada ARTICLE INFO ABSTRACT Keywords: The Vero cell line is considered the most used continuous cell line for the production of viral vectors and Vero vaccines. Historically, it is the first cell line that was approved by the WHO for the production of human vac- Cell culture cines. Comprehensive experimental data on the production of many viruses using the Vero cell line can be found Process development in the literature. However, the vast majority of these processes is relying on the microcarrier technology. While Virus production this system is established for the large-scale manufacturing of viral vaccine, it is still quite complex and labor Optimization intensive. Moreover, scale-up remains difficult and is limited by the surface area given by the carriers. To Vaccines ffi Bioreactor overcome these and other drawbacks and to establish more e cient manufacturing processes, it is a priority to Microcarrier further develop the Vero cell platform by applying novel bioprocess technologies. Especially in times like the Suspension culture current COVID-19 pandemic, advanced and scalable platform technologies could provide more efficient and cost-effective solutions to meet the global vaccine demand. Herein, we review the prevailing literature on Vero cell bioprocess development for the production of viral vectors and vaccines with the aim to assess the recent advances in bioprocess development. -
Variation in Protein Coding Genes Identifies Information Flow
bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number. -
Omaima Nasir1
Available online freely at www.isisn.org Bioscience Research Print ISSN: 1811-9506 Online ISSN: 2218-3973 Journal by Innovative Scientific Information & Services Network RESEARCH ARTICLE BIOSCIENCE RESEARCH, 2020 17(1): 327-346. OPEN ACCESS Exploring the Physiological and Molecular Mechanism of the Gum arabic ( Acacia senegal ) Based on Gene Expression Microarray Omaima Nasir1 1Department of Biology, Turabah University College, Taif University, Saudi Arabia. *Correspondence: [email protected], [email protected] Received 22-01-2019, Revised: 16-02-2020, Accepted: 20- 02-2020 e-Published: 01-03-2020 To investigate the differential expression of genes after Gum Arabic (Acacia senegal) administration by microarray study.The microarray was performed using colonic tissue of BALB/c s at 8 weeks of age treated with10% (w/w) GA dissolved in drinking water and control had a normal tap water for 4 days. A total 100 genes were analyzed by the pathway, gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes—miRNA interaction network, target and genes-transcription factor (TF) interaction. We discuss key issues pertaining to experimental design, data preprocessing, and gene selection methods. Common types of data representation are illustrated. A total of 100 differentially miRNAs were screened and identified by microarray according to fold change the top genes which were significantly 59 genes with up-regulation and 41 genes down regulation, after Gum Arabic administration for 4 days. The data may unravel the future molecular mechanisms of Gum arabic by applying various bio-informatical approaches, we have revealed top score upregulation genes were 23, and down regulated genes with top score were 38. -
Adjuvant Activity of Vero Cell on Cellular and Humoral Immunity Responses Against E
Research iMedPub Journals Archives of Clinical Microbiology 2021 www.imedpub.com Vol.12 No.1:137 ISSN 1989-8436 Department of Microbiology, Razi Vaccine and Serum Research Institute, Shiraz Branch, Agricultue Razi Vaccine and Serum Research Institute, Shiraz Branch, Agriculture Research, Education and Extension Organization (AREEO), Shiraz, Iran Adjuvant Activity of Vero Cell on Cellular and Humoral Immunity Responses against E. coli O157:H7 Infections in Balb/c Mice Alborzi Research Center, Namazi Hospital, Shiraz, Iran 2 Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran Hajar Molaee1, Yahya Tahamtan1* and Nahid Haidari 2DepOrganizationartment of Microbio l(AREEO),ogy, Razi Vaccin Shiraz,e and Seru mIran Research Institute Shiraz Branch, Agricultural Research, Education and Extension 1Department of Microbiology, Razi Vaccine and Serum Research Institute, Shiraz Branch, Agriculture Research, Education and Extension Organization (AREEO), Shiraz, Iran Organization 2Department of Microbiology, Alborzi Research Center, Namazi Hospital, Shiraz, Iran 3 *Corresponding author: Yahya Tahamtan, Department of Microbiology, Razi Vaccine and Serum Research Institute Shiraz Branch, Agricultural Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran Research, Education and Extension Organization (AREEO), Shiraz, Iran, E-mail: [email protected] Received date: December 18, 2020; Accepted date: January 01, 2021; Published date: January 08, 2021 Citation: Homayoon M, Tahamtan Y, Kargar M (2021) Adjuvant Activity of Vero Cell on Cellular and Humoral Immunity Responses against E. Coli O157:H7 Infections in Balb/c Mice. Arch Clin Microbiol Vol.12 No.1:137. Introduction Abstract Eenterovirulent Escherichia coli rank among the most common relevant agents of bacterial diarrhea in humans and Enterohemorrhagic Escherichia coli constitute an important several animal species. -
JAZF1, a Novel P400/TIP60/Nua4 Complex Member, Regulates H2A.Z Acetylation at Regulatory Regions
International Journal of Molecular Sciences Article JAZF1, A Novel p400/TIP60/NuA4 Complex Member, Regulates H2A.Z Acetylation at Regulatory Regions Tara Procida 1, Tobias Friedrich 1,2, Antonia P. M. Jack 3,†, Martina Peritore 3,‡ , Clemens Bönisch 3,§, H. Christian Eberl 4,k , Nadine Daus 1, Konstantin Kletenkov 1, Andrea Nist 5, Thorsten Stiewe 5 , Tilman Borggrefe 2, Matthias Mann 4, Marek Bartkuhn 1,6,* and Sandra B. Hake 1,3,* 1 Institute for Genetics, Justus-Liebig University Giessen, 35392 Giessen, Germany; [email protected] (T.P.); [email protected] (T.F.); [email protected] (N.D.); [email protected] (K.K.) 2 Institute for Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany; [email protected] 3 Department of Molecular Biology, BioMedical Center (BMC), Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany; [email protected] (A.P.M.J.); [email protected] (M.P.); [email protected] (C.B.) 4 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; [email protected] (H.C.E.); [email protected] (M.M.) 5 Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, 35043 Marburg, Germany; [email protected] (A.N.); [email protected] (T.S.) 6 Biomedical Informatics and Systems Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany * Correspondence: [email protected] (M.B.); [email protected] (S.B.H.); Tel.: +49-(0)641-99-30522 (M.B.); +49-(0)641-99-35460 (S.B.H.); Fax: +49-(0)641-99-35469 (S.B.H.) † Current Address: Sandoz/Hexal AG, 83607 Holzkirchen, Germany. -
A Genome-Wide Screen in Mice to Identify Cell-Extrinsic Regulators of Pulmonary Metastatic Colonisation
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941401; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A genome-wide screen in mice to identify cell-extrinsic regulators of pulmonary 2 metastatic colonisation 3 4 5 Louise van der Weyden1*, Agnieszka Swiatkowska1, Vivek Iyer1, Anneliese O. Speak1, David J. 6 Adams1 7 8 9 1Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, 10 United Kingdom 11 12 13 *Corresponding author 14 Louise van der Weyden 15 Experimental Cancer Genetics 16 Wellcome Sanger Institute 17 Wellcome Genome Campus 18 Hinxton 19 Cambridge 20 CB10 1SA 21 United Kingdom 22 Tel: +44-1223-834-244 23 Email: [email protected] 24 25 26 KEYWORDS: metastasis, metastatic colonisation, microenvironment, B16-F10, lung, mutant, 27 mouse. 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941401; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 32 ABSTRACT 33 34 Metastatic colonisation, whereby a disseminated tumour cell is able to survive and 35 proliferate at a secondary site, involves both tumour cell-intrinsic and -extrinsic factors. -
Characterization & Qualification of Cell Substrates & Other Biological
Guidance for Industry Characterization and Qualification of Cell Substrates and Other Biological Materials Used in the Production of Viral Vaccines for Infectious Disease Indications Additional copies of this guidance are available from the Office of Communication, Outreach and Development (OCOD) (HFM-40), 1401 Rockville Pike, Suite 200N, Rockville, MD 20852 1448, or by calling 1-800-835-4709 or 301-827-1800, or email [email protected], or from the Internet at http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida nces/default.htm. For questions on the content of this guidance, contact OCOD at the phone numbers listed above. U.S. Department of Health and Human Services Food and Drug Administration Center for Biologics Evaluation and Research [February 2010] Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION.........................................................................................................................................1 II. DEFINITION.................................................................................................................................................2 III. CHARACTERIZATION AND QUALIFICATION OF CELL SUBSTRATES, VIRAL SEEDS, BIOLOGICAL RAW MATERIALS AND VACCINE INTERMEDIATES ...........................................2 A. PRODUCT-SPECIFIC PARAMETERS INFLUENCING CHARACTERIZATION AND QUALIFICATION OF CELL SUBSTRATES ...........................................................................................3 1. Vaccine Purity ............................................................................................................................................3