Waste from Innovative Types of Reactors and Fuel Cycles No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1, 2002, Sheraton Crystal City Hotel, Arlington, Virginia
Minutes for the Nuclear Energy Research Advisory Committee Meeting September 30 to October 1, 2002, Sheraton Crystal City Hotel, Arlington, Virginia NERAC members present: John Ahearne Dale Klein (Monday only) Thomas Cochran Robert Long Joseph Comfort Warren F. Miller, Jr. Michael Corradini Sekazi Mtingwa Jose Luis Cortez Richard Reba (Monday only) Maureen Crandall (Monday afternoon Joy Rempe and Tuesday only) Allen Sessoms Allen Croff Daniel Sullivan James Duderstadt (Chair) John Taylor Marvin Fertel (Monday only) Neil Todreas Beverly Hartline Joan Woodard (Monday only) Andrew Klein NERAC members absent: Steve Fetter Lura Powell Leslie Hartz C. Bruce Tarter J. Bennett Johnston Ashok Thadani (ad hoc) Linda C. Knight Charles E. Till Benjamin F. Montoya Also present: Ralph Bennett, Director for Advanced Nuclear Energy, Idaho National Engineering and Environmental Laboratory David Berg, Office of Environmental Management, DOE Nancy Carder, NERAC Staff Herbert Feinroth, President, Gamma Engineering Corp. John Gutteridge, University Programs, NE, USDOE Norton Haberman, Senior Technical Advisor, NE, USDOE Anthony Hechanova, Director, AAA University Participation Program, University of Nevada at Las Vegas R. Shane Johnson, Associate Director, Office of Technology and International Cooperation, NE, USDOE Silvia Jurisson, Department of Chemistry, University of Missouri, Columbia Owen Lowe, Associate Director, Office of Isotopes for Medicine and Science, NE, USDOE William Magwood, Director, NE, USDOE William Martin, Washington Policy Institute -
小型飛翔体/海外 [Format 2] Technical Catalog Category
小型飛翔体/海外 [Format 2] Technical Catalog Category Airborne contamination sensor Title Depth Evaluation of Entrained Products (DEEP) Proposed by Create Technologies Ltd & Costain Group PLC 1.DEEP is a sensor analysis software for analysing contamination. DEEP can distinguish between surface contamination and internal / absorbed contamination. The software measures contamination depth by analysing distortions in the gamma spectrum. The method can be applied to data gathered using any spectrometer. Because DEEP provides a means of discriminating surface contamination from other radiation sources, DEEP can be used to provide an estimate of surface contamination without physical sampling. DEEP is a real-time method which enables the user to generate a large number of rapid contamination assessments- this data is complementary to physical samples, providing a sound basis for extrapolation from point samples. It also helps identify anomalies enabling targeted sampling startegies. DEEP is compatible with small airborne spectrometer/ processor combinations, such as that proposed by the ARM-U project – please refer to the ARM-U proposal for more details of the air vehicle. Figure 1: DEEP system core components are small, light, low power and can be integrated via USB, serial or Ethernet interfaces. 小型飛翔体/海外 Figure 2: DEEP prototype software 2.Past experience (plants in Japan, overseas plant, applications in other industries, etc) Create technologies is a specialist R&D firm with a focus on imaging and sensing in the nuclear industry. Createc has developed and delivered several novel nuclear technologies, including the N-Visage gamma camera system. Costainis a leading UK construction and civil engineering firm with almost 150 years of history. -
Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization
materials Review Ceramic Mineral Waste-Forms for Nuclear Waste Immobilization Albina I. Orlova 1 and Michael I. Ojovan 2,3,* 1 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603950 Nizhny Novgorod, Russian Federation 2 Department of Radiochemistry, Lomonosov Moscow State University, Moscow 119991, Russia 3 Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK * Correspondence: [email protected] Received: 31 May 2019; Accepted: 12 August 2019; Published: 19 August 2019 Abstract: Crystalline ceramics are intensively investigated as effective materials in various nuclear energy applications, such as inert matrix and accident tolerant fuels and nuclear waste immobilization. This paper presents an analysis of the current status of work in this field of material sciences. We have considered inorganic materials characterized by different structures, including simple oxides with fluorite structure, complex oxides (pyrochlore, murataite, zirconolite, perovskite, hollandite, garnet, crichtonite, freudenbergite, and P-pollucite), simple silicates (zircon/thorite/coffinite, titanite (sphen), britholite), framework silicates (zeolite, pollucite, nepheline /leucite, sodalite, cancrinite, micas structures), phosphates (monazite, xenotime, apatite, kosnarite (NZP), langbeinite, thorium phosphate diphosphate, struvite, meta-ankoleite), and aluminates with a magnetoplumbite structure. These materials can contain in their composition various cations in different combinations and ratios: Li–Cs, Tl, Ag, Be–Ba, Pb, Mn, Co, Ni, Cu, Cd, B, Al, Fe, Ga, Sc, Cr, V, Sb, Nb, Ta, La, Ce, rare-earth elements (REEs), Si, Ti, Zr, Hf, Sn, Bi, Nb, Th, U, Np, Pu, Am and Cm. They can be prepared in the form of powders, including nano-powders, as well as in form of monolith (bulk) ceramics. -
Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81. -
Preparing for Nuclear Waste Transportation
Preparing for Nuclear Waste Transportation Technical Issues that Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 U.S. Nuclear Waste Technical Review Board This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Preparing for Nuclear Waste Transportation Technical Issues That Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Jean M. Bahr, Ph.D., Chair University of Wisconsin, Madison, Wisconsin Steven M. Becker, Ph.D. Old Dominion University, Norfolk, Virginia Susan L. Brantley, Ph.D. Pennsylvania State University, University Park, Pennsylvania Allen G. Croff, Nuclear Engineer, M.B.A. Vanderbilt University, Nashville, Tennessee Efi Foufoula-Georgiou, Ph.D. University of California Irvine, Irvine, California Tissa Illangasekare, Ph.D., P.E. Colorado School of Mines, Golden, Colorado Kenneth Lee Peddicord, Ph.D., P.E. Texas A&M University, College Station, Texas Paul J. Turinsky, Ph.D. North Carolina State University, Raleigh, North Carolina Mary Lou Zoback, Ph.D. Stanford University, Stanford, California Note: Dr. Linda Nozick of Cornell University served as a Board member from July 28, 2011, to May 9, 2019. During that time, Dr. Nozick provided valuable contributions to this report. iii This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Staff Executive Staff Nigel Mote Executive Director Neysa Slater-Chandler Director of Administration Senior Professional Staff* Bret W. -
Nuclear Engineering
Academic Program Review Self-Study Report February 8-11, 2015 Table of Contents I. Executive Summary of the Self-Study Report ..................................................... 1 A. Message from the Department Head and Graduate Program Adviser ................................ 1 B. Charge to the External Review Team .................................................................................. 2 II. Introduction to Department ..................................................................................3 A. Brief departmental history ................................................................................................... 3 B. Mission and goals ................................................................................................................ 3 C. Administrative structure ...................................................................................................... 4 D. Advisory Council ................................................................................................................. 7 E. Department and program resources ..................................................................................... 8 1. Facilities ........................................................................................................................... 8 2. Institutes and Centers ..................................................................................................... 11 3. Finances ........................................................................................................................ -
Economic Development Board 1 South Australia
ECONOMIC DEVELOPMENT BOARD 1 SOUTH AUSTRALIA 3 August 2015 Rear Admiral the Honourable Kevin Sca rce AC CSC RAN (Rtd) Roya l Commissioner for the Nuclear Fuel Cycle Royal Commission Level 5, 50 Grenfell Street Adelaide SA 5000 Dear Commissioner RE: Nuclear fuel Cycle Royal Commission I write to provide a discussion paper prepared by ThinkCiimate for the Economic Development Board (EDB), that responds to the four issues papers released by the Nuclear Fuel Cycle Roya l Commission on: Exploration, Extraction and Milling; Further Processing and Manufacture; Electricity Generation; and Management, Storage and Disposal of Waste. In October 2014, in the absence of reliable and cu rrent data and evidence on the nuclear value chain, the EDB commissioned ThinkCiimate Consulting to prepare a discussion paper. The purpose of the discussion paper was to explore the opportunities for an expanded role for South Australia in the nuclear value chain and to provide a high level business case to indicate if there is sufficient economic potential to warrant a more thorough investigation. The discussion paper, provided to you as Attachment 1 to this letter, explores the economic opportunities for South Australia at each point in the nuclear value cha in and, therefore, responds to the four Issues Papers released. The discussion paper concludes that: • There is potentially a major economic opportunity for South Australia in the safe management of spent nuclear fuel based on merging mature Intermediate Spent Fuel Storage Installation (ISFI) technology with Generation IV recycling and reactor technology. • Further a preliminary project assessment finds that a proposed configuration of an ISFSI and Integrated Fast Reactor (IFR) technology would utilise up to approximately 99% of the stored fuel to generate electricity as a low-cost, emissions free baseload with potentially significant economic benefits to South Australia within a relatively short timeframe. -
The Source Is Published Annually by the Department of Nuclear Engineering at the University of Tennessee
THESOURCE ALUMNI MAGAZINE • FALL 2018 The Right Stuff to Propel us to MARSpage 12 A Department on the Rise • Traveling to Mars • Nuclear Pinch Hitter From the Department Head Table of CONTENTS Department Head Message 1 Best of the Best 2 Department sets new record for PhD graduates in 2018 Before, During, and After the Bomb 6 John Auxier II prepares for the unthinkable Pinch-Hitter & Nuclear Grandpa 8 Lawrence Heilbronn is always on deck for students Moving On Up 10 Faculty and staff move up the Hill to make room for new facilities 2 On a Scientific Mission to Mars 12 Going nuclear to get to Mars PULSR Powers the Road to Mars 14 Senior design project powers a 20-year mission Coble Maintains Winning Faculty Energy 15 Coble recognized with university and ANS awards DEPARTMENTS This is a truly exciting time for us here on Rocky Top. When I say we grew out of our building, I really mean Faculty Notes 16 14 The university recently welcomed its largest freshman it. Last year, we had 368 students, our largest class Staff Notes 17 class and the quality of students is amazing. The Tickle ever. Our 132 PhD students was the largest nuclear Student Notes 18 College of Engineering also welcomed its largest- engineering PhD student class in the history of the ever freshman class, including a record percentage United States. Additionally, we graduated 24 PhDs, First Step Awards 20 of women. As for our department, we have 56 new which was the largest graduating class in US history, and Community Outreach 22 freshmen with 20 percent bringing in enough AP credits yes, they are all getting challenging jobs at government Around the Department 24 to make them sophomores and an average math ACT agencies, universities, and in industry. -
Nuclear Engineering
WHAT CAN I DO WITH A MAJOR IN … NUCLEAR ENGINEERING OCCUPATIONAL SUMMARY: The UNM Department of Chemical and Nuclear Engineering (2013) describes the field of nuclear engineering as “an exciting, rapidly-evolving field which requires engineers with an understanding of physical processes of nuclear energy and an ability to apply concepts in new and creative ways. Nuclear engineers are primarily concerned with the control, monitoring, and use of energy released in nuclear processes.” The department goes on to explain that, “some nuclear engineers work on the design and safety aspects of environmentally-sound, passively safe nuclear fission reactors. Others are looking to future energy solutions through development and implementation of nuclear fusion systems. Others are helping in the exploration and utilization of outer space by developing long term, reliable nuclear energy sources. With the renewed concern in environmental science, nuclear engineers are working on safe disposal concepts for radioactive waste and on methods for reduction of radiation releases from industrial facilities. They also work in developing a wide variety of applications for radioisotopes such as the treatment and diagnosis of diseases, food preservation, manufacturing development, processing and quality control, and biological and mechanical process tracers. For each of these fields there are numerous opportunities for nuclear engineers in basic research, applications, operations, and training.” EMPLOYMENT REQUIRMENTS: The Bureau of Labor Statistics (2012) explains that a bachelor's degree in nuclear engineering is the minimum formal education required to work as a nuclear engineer. BLS further explains that many employers value practical experience, making it important for nuclear engineering students to participate in internships and Co-ops while completing their degree. -
Nuclear and Radiological Engineering and the Medical Physics Programs 2004-2005
THE ANNUAL REPORT OF THE NUCLEAR AND RADIOLOGICAL ENGINEERING AND THE MEDICAL PHYSICS PROGRAMS 2004-2005 George W. Woodruff School of Mechanical Engineering GEORGIA INSTITUTE OF TECHNOLOGY MESSAGE FROM THE LETTER FROM THE CHAIR OF WOODRUFF SCHOOL CHAIR THE NRE AND MP PROGRAMS Dear Friends: Dear Colleagues and Friends: We are pleased to bring you Welcome to the fourth edition of the another annual report of the annual report for the Nuclear and Nuclear and Radiological Radiological Engineering and Medical Engineering and Medical Physics Physics (NRE/MP) Programs. The Programs of the George W. NRE/MP programs enjoy a healthy Woodruff School. This report enrollment of 146 undergraduate and 73 covers the academic year ending graduate students. These correspond to in June 2005. enrollment increases of 62 percent and 70 This was another very percent, respectively, since fall 2002, soon successful year for the Nuclear after the reorganization of the program. and Radiological Engineering and Medical Physics Programs. We Two factors contributing to the enrollment trend are the increased have again experienced significant increases in enrollment at both student recruiting effort by the faculty and the undergraduate the undergraduate and graduate levels. In the undergraduate scholarship program funded by our industry sponsors and the program, nuclear engineering enrollment is rapidly growing as a Department of Energy matching grant. Additionally, the sponsored result of the quality of our programs and the increased interest in funds have helped us attract high quality students into the program. the country in nuclear power as a possible solution to meeting the Fall 2005 is the start of the second year of the Georgia Tech country's energy needs as well as helping with environmental and Emory University cooperative on-campus and distance learning issues. -
Progress Report
SYNROC STUDY GROUP PROGRESS REPORT August 1991 SYNROC STUDY PROGRESS REPORT August 1991 The Broken Hill Proprietary Company Limited (A.CN. 004 028 077) CRA Limited (A.C.N. 004 458 404) Energy Resources of Australia Limited (A.C.N. 008 550 865) Western Mining Corporation Limited (A.C.N. 004 184 598) Australian Nuclear Science and Technology Organisation Australian National University OVERVIEW This Progress Report has been prepared by the Synroc Study Group (SSG), comprising staff members of The Australian Nuclear Science and Technology Organisation (ANSTO), The Australian National University (ANU), BHP, CRA, Energy Resources of Australia (ERA) and Western Mining Corporation (WMC). It also draws upon work undertaken for the SSG by consultants from Nuclear Assurance Corporation (market estimates), the Swedish Nuclear Fuel and Waste Management Company (SKB) (cost estimates and other data) and Wave Hill Associates (US and international perspectives). Synroc is applicable solely to the immobilisation of liquid high-level waste after such waste has been separated from spent fuel in a reprocessing operation; use of Synroc therefore requires prior construction of a reprocessing plant An alternative management strategy, based upon direct disposal of encapsulated spent nuclear fuel, does not require reprocessing, and therefore makes no use of Synroc. The SSG has examined both of these alternatives and also a third, which is to defer decision-making on reprocessing versus direct disposal for a lengthy period while spent fuel is held in interim storage. The SSG recognises that many utilities and countries have deferred decisions as between reprocessing and direct disposal of spent fuel. The construction of interim spent fuel storage facilities and related infrastructure appears to be a practical strategy in the short term, although for many utilities and countries this period of satisfactory and acceptable deferral may be starting to run out. -
The Dupont Company the Forgotten Producers of Plutonium
The DuPont Company The Forgotten Producers of Plutonium Assembled by the “DuPont Story” Committee of the B Reactor Museum Association Ben Johnson, Richard Romanelli, Bert Pierard 2015 Revision 3 – March 2017 FOREWORD Like the world’s tidal waters, the study of our national story sometimes leads us into historical eddies, rich in human interest content, that have been bypassed by the waves of words of the larger accounting of events. Such is the case of the historical accounts of the Manhattan Project which tend to emphasize the triumphs of physicists, while engineering accomplishments, which were particularly important at the Hanford Site, have been brushed over and receive less recognition. The scientific possibility of devising a weapon based on using the energy within the nucleus of the atom was known by physicists in both the United States and Germany before World War II began. After the start of hostilities, these physicists were directed by their respective governments to begin development of atomic bombs. The success of the American program, compared with the German program, was due largely to the extensive involvement in the U.S. Manhattan Project of large and experienced engineering firms whose staff worked with the physicists. The result was the successful production of weapons materials, in an amazingly short time considering the complexity of the program, which helped end World War II. One view which effectively explains these two markedly different historical assessments of accomplishments, at least for Hanford, is noted in the literature with this quote. - "To my way of thinking it was one of the greatest interdisciplinary efforts ever mounted.