Interactions the Newsletter of the UB Department of Physics Volume 4, Issue 2 Fall 2011

Total Page:16

File Type:pdf, Size:1020Kb

Interactions the Newsletter of the UB Department of Physics Volume 4, Issue 2 Fall 2011 Interactions The Newsletter of the UB Department of Physics Volume 4, Issue 2 Fall 2011 established well formulated procedures for all the graduate studies. He continues to be a source of information and ad- vice for our graduate program. Our majors, headed by Alec Cheney, were instrumental in starting a new chapter of the Sigma Pi Sigma, the Phys- ics Honors Society, at UB. They collected signatures and petitioned the Society for a UB chapter. After successfully receiving approval, they also made arrangements for the installation. The President of the Sigma PI Sigma, Dr. Di- ane Jacobs, presided the chapter installation ceremony on November 4. Five students, Alec Cheney, Matthew Gorfien, Connor Gorman, Chun Kwan and Katherine Spoth, were in- Dear alumni and friends, ducted during the ceremony. It was very rewarding to see As I mentioned in the previous issue, the new President and our majors take charge, accomplish their goals and receive the Dean of CAS are now in office. The SUNY2020 legisla- recognition for their outstanding achievements. tion was passed and signed into law, which allows UB for This year’s Homecoming was made special by the return of the first time to plan on a five-year horizon. The new direc- our distinguished alumnus, Dr. Thomas Bogdan (featured tions and initiatives that are being implemented by the new in Alumni in Focus), to give an exciting public lecture on administration are therefore more tangible than symbolic. space weather. He has been the Director of the National This means opportunities for the Department. It is encour- Space Weather Prediction Center, and was recently named aging to see that the President’s plan for the University over- the President of the University Corporation for Atmospheric laps with some of the main concerns and aspirations of the Research, starting January 9, 2012. Department. Two workshops took place this semester. The first one, Uli As many of you know, the quality of education and research Baur Memorial Symposium, organized by Professor Do- in the Department has seen marked improvement in recent reen Wackeroth and the high energy physics and cosmol- years. This has a lot to do with the infusion of new and ex- ogy group, was held at UB on Sept. 24, 2011. It had a list cellent faculty members. The pause of this process in the of distinguished scientists attending from around the world. last couple years due to the economic down turn appears to The second one was organized by Professor Xuedong Hu, be ending and we are on the right track again. Towards this titled Buffalo Workshop on Quantum Computing, held on end, the Department is currently searching to hire a tenure September 17 – 18. It attracted researchers from institutions track high energy experimentalist. in North America, Asia and Europe. I am very grateful to Professor Xuedong Hu for agreeing to serve as the Graduate Director, starting this academic As always, keep in touch. year, succeeding Professor Athos Petrou, who served in this capacity for 16 years. The responsibilities entailed in Best regards, this position have direct impact in several key areas in the Department, ranging from undergraduate teaching through TA appointments to the vitality of graduate research. Pro- Hong Luo, Chair fessor Petrou provided great leadership over the years and Professor of Physics Banner: The Sabres may not have won the NHL Championship in 2011, but an important member of the UB community did! UB Council Chairman, Jeremy M. Jacobs is also the owner of the Stanley Cup winning Boston Bruins and generously shared the Cup with us in June 2011. Here, we see our own Kevin Cullinan (left) and Tom Gruenauer (third from left) along with Tom’s daughter Shannon and son Brian with the Stanley Cup. Faculty in Focus Interactions Volume 4, Issue 2 McCombe and Gasparini – Achievements as Administrators By Drs. Hong Luo and S. Ganapathy Professor Bruce McCombe stepped down as the Dean of CAS in the sum- mer of 2011. Just when we thought Bruce was staying in the Department for good and it was a good time to look back at what he did while being away from the Department, since Jan. 2005, he was asked again to be the interim Provost, starting Jan. 3, 2012. This in itself gives an idea about what he ac- complished as the Dean of the Gradu- ate School (Jan. 2005 – June 2006) and as interim Dean and then Dean of CAS (July 2006—June 2011). The actual list of his accomplishments is quite long, as one would expect, and we will just list a few that directly im- pacted us. The one that was the closest to our heart was the increase in graduate sti- pend that stayed the same for years. As soon as Bruce became the Dean of Graduate School, he negotiated and implemented a $2000 increase to the base stipend starting the 05-06 academic year, followed by another Photo: Douglas Levere $1500 increase, which brought us to a competitive level with peer institutions. One of the most important things that Bruce initiated major increase in sum- As an effort to ensure quality of our we noticed at the department level mer programs and negotiated income education, Bruce created a process was his leadership during the worst sharing with the provost. This resulted and procedures for and implemented financial crisis in years, in terms of in $1M/year of additional state dollars university-wide comprehensive pro- both minimizing cuts to departmental for CAS by fall 2011, part of it will be gram reviews for both undergraduate operating budgets and in maintaining returned to the departments respon- and graduate programs. Bruce rec- the strength of CAS, with retention of sible for the income. ognized the important contributions of senior faculty members and protect- postdoctoral scholars, and created the ing untenured junior faculty members. For amusement, Bruce calculated the Office of Postdoctoral Scholars, which Bruce also visited all departments, so time, the way he often does for other has provided guidance, services and that the faculty could be informed of things, that he spent in meetings. The career development to this group of scholars. the budget situation and approaches result came to 3 years of working time he was implementing. This is espe- in meeting during the 5 years in the After becoming the Interim Dean and cially heart felt in light of the difficulties Dean’s Office! While Bruce believes Dean of CAS, Bruce contributed to the experienced by colleagues in other that he did “what was necessary”, it growth of CAS, bringing the total CAS universities, especially public universi- is clear that many greatly appreciated faculty count to 487 as of Fall 2008. ties, including other SUNY campuses. what he deemed as necessary. 2 Banner: Bruce McCombe and Renee Bush attending one of the UB events. Photo: Nancy J. Parisi Faculty in Focus CONTINUED Professor Frank Gasparini has already recently because of the budget cuts. Among these new hires four assistant spent a year doing his regular duties as But if we didn’t have this increase, professors have received NSF CA- a faculty member after stepping down something else would have been cut REER awards. These hires allowed us as the Chair since Fall 2010 after six in its place. Frank also set aside a to establish a new group in high ener- years. Looking back, one can’t help support fund from the departmental gy experimental research, and expand but notice that his tenure as the Chair budget for graduate students attend- the biophysics group. Increase of the covers the period of arguably the big- ing meetings to present their research faculty size also led to an increase in gest change in the Department. Here ($200 per meeting per student). the number of graduate students from is a list of things that he did since he about 80 to over 90. The teaching load started his chairmanship in 2004. He The faculty count increased from 21 to was also changed from 3 courses per negotiated an increase in TA support 32, then coming back down to 28. This year to 2 courses per year. This was which amounted to a $500 yearly raise was achieved through the hiring of 14 for each TA in the Department. This, new faculty members over a period of in keeping with peer institutions and to combined with what Bruce did as the 6 years. Retirements and people leav- improve our research posture relative Dean, made our stipend much more ing for other institutions brought this to other institutions. What is not seen attractive than before. He then negoti- number below 30. With the financial in these numbers is a corresponding ated a permanent addition to the op- situation at UB improving, hopefully we change of the level of expectation, as erating budget of the Department. He will be able to reach and surpass the can be seen from a list of benchmarks also points out that it was taken back number in the near future. for research productivity. For citations in particular, the Department received Photo: Douglas Levere 3000 citations during 2005. This was 5700 in 2010. This is a good gauge of the quality of the faculty who were hired. Also a goal of 35 for overall faculty size was set which would be in keeping with UB’s size and a broader range of faculty research fields. Frank was actively involved in devel- opment efforts. During his period as chair, two new endowments were started: Excellence Endowment, and with the leadership of Y. C. Lee the Ta You Wu Endowment.
Recommended publications
  • Tcomposite Weak Bosons, Leptons and Quarks
    Subnuclear Physics: Past, Present and Future Pontifical Academy of Sciences, Scripta Varia 119, Vatican City 2014 www.pas.va/content/dam/accademia/pdf/sv119/sv119-fritzsch.pdf TComposite Weak Bosons, Leptons and Quarks HARALD FRITZSCH University of Munich Faculty of Physics, Arnold Sommerfeld Center for Theoretical Physics, Abstract The weak bosons consist of two fermions, bound by a new confin- ing gauge force. The mass scale of this new interaction is determined. At energies below 0.5 TeV the standard electroweak theory is valid. AneutralisoscalarweakbosonX must exist - its mass is less than 1TeV.Itwilldecaymainlyintoquarkandleptonpairsandintotwo or three weak bosons. Above the mass of 1 TeV one finds excitations of the weak bosons, which mainly decay into pairs of weak bosons. Leptons and quarks consist of a fermion and a scalar. Pairs of leptons and pairs of quarks form resonances at very high energy. 280 Subnuclear Physics: Past, Present and Future COMPOSITE WEAK BOSONS, LEPTONS AND QUARKS In the Standard Model the leptons, quarks and weak bosons are pointlike particles. I shall assume that they are composite particles with a finite size. The present limit on the size of the electron, the muon and of the light quarks is about 10−17 cm. The constituents of the weak bosons and of the leptons and quarks are bound by a new confining gauge interaction. Due to the parity violation in the weak interactions this theory must be a chiral gauge theory, unlike quantum chromodynamics. The Greek translation of ”simple” is ”haplos”. We denote the con- stituents as ”haplons” and the new confining gauge theory as quantum hap- lodynamics ( QHD ).
    [Show full text]
  • Richard Feynman by Harald Fritzsch
    ARTSCIENCE MUSEUM™ PRESENTS ALL POSSIBLE Harald Fritzsch Richard Feynman RICHARD FEYNMAN’S CURIOUS LIFE In 1968, I escaped from East Germany with a folding canoe, crossing the Black In 1975, Feynman bought a Dodge Tradesman Maxivan and had it painted with Sea from Northern Bulgaria to Turkey. Then I worked as a Ph.D. student at the Feynman diagrams. Once, we were going camping with Feynman and his wife Max-Planck-Institute in Munich. In the Fall of 1970, I went for 6 months to the in the Anza Borrego desert park near Palm Springs. Feyman drove his big Stanford Linear Accelerator Center (SLAC) in Palo Alto, California. Since at that camping car. On the way back, Feynman stopped at a gas station in Palm time I collaborated with Murray Gell-Mann, I went twice a month for a few days Springs. The guy at the station asked Feynman: “Why you have these to the California Institute of Technology (Caltech) in Pasadena, about 360 miles Feynman Diagrams on your car?” Feynman told him, that he is Feynman, and south from Palo Alto. the guy answered: “Well, in this case you do not have to pay for the gasoline.” In Caltech I met Richard Feynman for the first time, and we discussed physics Feynman had a house at the beach near Ensenada in Baja California, Mexico. almost every day, in particular his parton model. He assumed that the nucleons He called the house “Casita Barranca”. Feynman invited us to plan a visit to consist of small pointlike constituents, which he called partons.
    [Show full text]
  • Particle & Nuclear Physics Quantum Field Theory
    Particle & Nuclear Physics Quantum Field Theory NOW AVAILABLE New Books & Highlights in 2019-2020 ON WORLDSCINET World Scientific Lecture Notes in Physics - Vol 83 Lectures of Sidney Coleman on Quantum Field Field Theory Theory A Path Integral Approach Foreword by David Kaiser 3rd Edition edited by Bryan Gin-ge Chen (Leiden University, Netherlands), David by Ashok Das (University of Rochester, USA & Institute of Physics, Derbes (University of Chicago, USA), David Griffiths (Reed College, Bhubaneswar, India) USA), Brian Hill (Saint Mary’s College of California, USA), Richard Sohn (Kronos, Inc., Lowell, USA) & Yuan-Sen Ting (Harvard University, “This book is well-written and very readable. The book is a self-consistent USA) introduction to the path integral formalism and no prior knowledge of it is required, although the reader should be familiar with quantum “Sidney Coleman was the master teacher of quantum field theory. All of mechanics. This book is an excellent guide for the reader who wants a us who knew him became his students and disciples. Sidney’s legendary good and detailed introduction to the path integral and most of its important course remains fresh and bracing, because he chose his topics with a sure application in physics. I especially recommend it for graduate students in feel for the essential, and treated them with elegant economy.” theoretical physics and for researchers who want to be introduced to the Frank Wilczek powerful path integral methods.” Nobel Laureate in Physics 2004 Mathematical Reviews 1196pp Dec 2018
    [Show full text]
  • Murray Gell-Mann Hadrons, Quarks And
    A Life of Symmetry Dennis Silverman Department of Physics and Astronomy UC Irvine Biographical Background Murray Gell-Mann was born in Manhattan on Sept. 15, 1929, to Jewish parents from the Austro-Hungarian empire. His father taught German to Americans. Gell-Mann was a child prodigy interested in nature and math. He started Yale at 15 and graduated at 18 with a bachelors in Physics. He then went to graduate school at MIT where he received his Ph. D. in physics at 21 in 1951. His thesis advisor was the famous Vicky Weisskopf. His life and work is documented in remarkable detail on videos that he recorded on webofstories, which can be found by just Google searching “webofstories Gell-Mann”. The Young Murray Gell-Mann Gell-Mann’s Academic Career (from Wikipedia) He was a postdoctoral fellow at the Institute for Advanced Study in 1951, and a visiting research professor at the University of Illinois at Urbana– Champaign from 1952 to 1953. He was a visiting associate professor at Columbia University and an associate professor at the University of Chicago in 1954-55, where he worked with Fermi. After Fermi’s death, he moved to the California Institute of Technology, where he taught from 1955 until he retired in 1993. Web of Stories video of Gell-Mann on Fermi and Weisskopf. The Weak Interactions: Feynman and Gell-Mann •Feynman and Gell-Mann proposed in 1957 and 1958 the theory of the weak interactions that acted with a current like that of the photon, minus a similar one that included parity violation.
    [Show full text]
  • Advanced Information on the Nobel Prize in Physics, 5 October 2004
    Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force.
    [Show full text]
  • Asymptotic Freedom and QCD–A Historical Perspective
    Nuclear Physics B (Proc. Suppl.) 135 (2004) 193–211 www.elsevierphysics.com Asymptotic Freedom and QCD–a Historical Perspective David J. Grossa aKavli Institute for Theoretical Physics, University of California, Santa Barbara CA 93106-4030, USA I describe the theoretical scene in the 1960’s and the developments that led to the discovery of asymptotic freedom and to QCD. 1. INTRODUCTION there was a rather successful phenomenological theory, but not much new data. The strong in- It was a pleasure to attend Loops and Legs in teractions were where the experimental and theo- Quantum Field Theory, 2004, and to deliver a his- retical action was, particularly at Berkeley. They torical account of the origins of QCD. The talks were regarded as especially unfathomable. The delivered at this exciting meeting are a dramatic prevalent feeling was that it would take a very illustration of how far QCD has developed since long time to understand the strong interactions its inception thirty years ago. Current and forth- and that it would require revolutionary concepts. coming experiments are performing tests of QCD For a young graduate student this was clearly the with amazing precision, and theoretical calcula- major challenge. The feeling at the time was well tions of perturbative QCD are truly heroic. In expressed by Lev Landau in his last paper, called particular it was especially satisfying for me to “Fundamental Problems,” which appeared in a meet at this conference some of the people, who memorial volume to Wolfgang Pauli in 1959 [1] . over the last 30 years have calculated the two, In this paper he argued that quantum field the- − three and four loop corrections to the β function ory had been nullified by the discovery of the zero that we calculated to one loop order 31 years ago.
    [Show full text]
  • Escape Form Leipzig (144 Pages)
    6698tp.indd 1 1/2/08 2:45:25 PM This page intentionally left blank Harald Fritzsch University of Munich, Germany Translated by K. Heusch World Scientific NEWJERSEY . LONDON . SINGAPORE . BEIJING . SHANGHAI . HONG KONG . TAIPEI . CHENNAI 6698tp.indd 2 1/2/08 2:45:27 PM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Fritzsch, Harald, 1943– [Flucht aus Leipzig. English] Escape from Leipzig / by H. Fritzsch ; translated by K. Heusch ; with a foreword written by G. 't Hooft. p. cm. ISBN-13: 978-981-279-009-5 (hardcover : alk. paper) ISBN-10: 981-279-009-8 (hardcover : alk. paper) ISBN-13: 978-981-279-306-5 (paperback : alk. paper) ISBN-10: 981-279-306-2 (paperback : alk. paper) 1. Germany (East)--Politics and government. 2. Fritzsch, Harald, 1943– 3. Escapes--Germany. 4. Political refugees--Germany. I. Heusch, Karin. II. Hooft, G. 't III. Title. DD287.4.F7513 2008 943'.1087092--dc22 [B] 2007044688 Flucht aus Leipzig © 1990, 2004 (revised edition) by Piper Verlag GmbH, München. British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2008 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.
    [Show full text]
  • The Problem of Mass and Mass Generation Harald Fritzsch
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server MPI–PhT/96–32 The problem of Mass and Mass Generation∗† Harald Fritzsch Ludwig–Maximilians–Universit¨at, Sektion Physik, Theresienstraße 37, D–80333 M¨unchen Max–Planck–Institut f¨ur Physik, Werner–Heisenberg–Institut, F¨ohringer Ring 6, D-80805 M¨unchen E–Mail: [email protected]–muenchen.de ∗Supported by EC Projects Athen contract–no. SCI–CT 91–0729, Marseille contract–no. CHRX–CT–0579 and GIF Israel contract–no. I 0304–120.07/93 †Invited talk given at the Warsaw Meeting “Physics at the turn of the century” from 29 – 30 January 1996 1 Towards the end of the last century the electron was discovered. In retrospect this discovery marked the beginning of a remarkable development, which eventually led to the emergence of the “Standard Model of Fundamental Particles and Forces” in the 70ies. According to the letter all the visible matter in the universe is composed of fundamental objects of two different categories – leptons (among them the electron) and quarks. The latter do not exist as free particles, but are bound among each other to form the protons and neutrons, the building blocks of the atomic nuclei. The dynamics of matter in our universe can be traced back to the action of four types of fundamental forces: the strong forces among the quarks, the electromagnetic forces among charged particles, the weak interactions responsible for the phenomenon of radioactivity, and gravity. With the exception of the strong forces all other interactions were known, at least through their indirect effects, at the turn of the last century.
    [Show full text]
  • {\Bf Consitutent Quarks, Chiral Symmetry and the Nucleon Spin
    CERN-TH.7079/93 Constituent Quarks, Chiral Symmetry and the Nucleon Spin1, 2 H. FRITZSCH Theory Division, CERN, Geneva and Sektion Physik, Universit¨at M¨unchen Abstract It is argued that the constituent quarks are expected to show a non-trivial spin and flavor structure, due to the anomalous breaking of the chiral symmetry in the U(1) sector. arXiv:hep-ph/9403206v1 2 Mar 1994 CERN.TH.7079/93 November 1993 1Supported in part by DFG-contract No. F412/19-1 and C.E.C. project SCI-CT-91-0729 2Invited talk given at the Leipzig Workshop “Quantum Field Theory Aspects of High Energy Physics,” Kyffh¨auser, Bad Frankenhausen, Germany, Sept. 20-24, 1993 Constituent Quarks, Chiral Symmetry and the Nucleon Spin1, 2 Harald Fritzsch Theory Division, CERN, Geneva and Sektion Physik, Universit¨at Munchen¨ Abstract. It is argued that the constituent quarks are expected to show a non-trivial spin and flavor structure, due to the anomalous breaking of the chiral symmetry in the U(1) sector. Deep inelastic scattering reveals that the nucleon is a rather complicated object consisting of an infinite number of quarks, antiquarks and gluons. Although there is only scarce information about the internal structure of the other strongly interacting particles, nobody doubts that the same is true for all mesons and baryons. Nevertheless it seems that under certain circumstances they behave as if they were composed of a single constituent quark and another constituent antiquark or three constituent quarks. Examples are the magnetic moments of the baryons, the spectroscopy of mesons and baryons, the meson- baryon couplings, the ratios of total cross sections like σ(πN)σ(NN) and so on.
    [Show full text]
  • Murray Gell-Mann Hadrons, Quarks And
    A Life of Symmetry Dennis Silverman Department of Physics and Astronomy UC Irvine Biographical Background Murray Gell-Mann was born in Manhattan on Sept. 15, 1929, to Jewish parents from the Austro-Hungarian empire. His father taught German to Americans. Gell-Mann was a child prodigy interested in nature and math. He started Yale at 15 and graduated at 18 with a bachelors in Physics. He then went to graduate school at MIT where he received his Ph. D. in physics at 21 in 1951. His thesis advisor was the famous Vicky Weisskopf. His life and work is documented in remarkable detail on videos that he recorded on webofstories, which can be found by just Google searching “webofstories Gell-Mann”. The Young Murray Gell-Mann Gell-Mann’s Academic Career (from Wikipedia) He was a postdoctoral fellow at the Institute for Advanced Study in 1951, and a visiting research professor at the University of Illinois at Urbana– Champaign from 1952 to 1953. He was a visiting associate professor at Columbia University and an associate professor at the University of Chicago in 1954-55, where he worked with Fermi. After Fermi’s death, he moved to the California Institute of Technology, where he taught from 1955 until he retired in 1993. Web of Stories video of Gell-Mann on Fermi and Weisskopf. The Weak Interactions: Feynman and Gell-Mann •Feynman and Gell-Mann proposed in 1957 and 1958 the theory of the weak interactions that acted with a current like that of the photon, minus a similar one that included parity violation.
    [Show full text]
  • Murray Gell-Mann Papers
    http://oac.cdlib.org/findaid/ark:/13030/kt687026tv No online items Finding Aid for the Murray Gell-Mann Papers 1931-2001, bulk 1955-1993 Processed by Charlotte E. Erwin, Loma Karklins, Kevin Knox, Nurit Lifshitz, and Elisa Piccio. Caltech Archives Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu/ ©2007 California Institute of Technology. All rights reserved. Finding Aid for the Murray 10219-MS 1 Gell-Mann Papers 1931-2001, bulk 1955-1993 Descriptive Summary Title: Murray Gell-Mann Papers, Date (inclusive): 1931-2001, bulk 1955-1993 Collection number: 10219-MS Creator: Gell-Mann, Murray 1929- Extent: 54 linear feet Repository: California Institute of Technology. Caltech Archives Pasadena, California 91125 Abstract: The scientific and personal correspondence, organizational and government files, technical and teaching notes, writings and talks, civic and social action files, biographical and family papers, and a small collection of audiovisual material of Murray Gell-Mann (b. 1929) form the collection known as the Murray Gell-Mann Papers in the Archives of the California Institute of Technology (Caltech). Professor at Caltech beginning 1955, Gell-Mann won the Nobel Prize in physics in 1969 for his work on the theory of elementary particles. Gell-Mann is a founder of the Santa Fe Institute and writes on complex adaptive systems. He became emeritus from Caltech in 1993. Physical location: California Institute of Technology, Institute Archives Language of Material: Languages represented in the collection: English, Spanish, French Access The collection is open for research.
    [Show full text]
  • Conjecture on the Physical Implications of the Scale Anomaly
    FERMILAB-CONF-05/482-T Conjecture on the Physical Implications of the Scale Anomaly Christopher T. Hill Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510, USA Invited Talk delivered at the Santa Fe Institute on the Occasion of the Celebration of the 75th Birthday of Murray Gell-Mann. July 23, 2005 (Dated: September 17, 2018) Abstract Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, ΛQCD. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, ~ 0, limit. This principle has implications for the dimensionality of arXiv:hep-th/0510177v2 21 Oct 2005 → space-time, the cosmological constant, the weak scale, and Planck scale. 1 I. A STORY I arrived at Caltech as a beginning graduate student in the Fall of 1972 and immediately beamed myself up to the fourth floor of the Lauritsen Laboratory of High Energy Physics, to see what was going on and to catch a glimpse of the great men, Richard Feynman and Murray Gell-Mann. Feynman had recently attended a meeting in Chicago at which he had broken his knee by tripping on a street curb. He was in a cast, and mostly working at home. On the first occasion of a seminar in the fall quarter, however, Murray Gell-Mann showed up. He was dressed in a blue suit, smoking a cigar, and began describing the results of his previous sabbatical year spent at CERN.
    [Show full text]