Where to Buy Carbon Copy Invoices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Edge-Bonded Sets of Carbonless Copy Paper
Europaisches Patentamt 0 358 351 European Patent Office 00 Publication number: A2 Office europeen des brevets EUROPEAN PATENT APPLICATION 123/08 © Application number: 89308295.8 © int. a* B41 L 1/36 , C09D , C09D 191/06 © Date of filing: 16.08.89 © Priority: 29.08.88 US 237544 Applicant: MINNESOTA MINING AND MANUFACTURING COMPANY © Date of publication of application: 3M Center, P.O. Box 33427 14.03.90 Bulletin 90/11 Saint Paul, MN 55133- 3427{US) © Designated Contracting States: Inventor: Perrington, Kenneth J. c/o DE FR GB IT SE Minnesota Mining and Manufacturing Company 2501 Hudson Road P.O. Box 33427 St. Paul Minnesota 55133(US) Inventor: DeWanz, James M. c/o Minnesota Mining and Manufacturing Company 2501 Hudson Road P.O. Box 33427 St. Paul Minnesota 55133(US) Representative: Baillie, lain Cameron et al c/o Ladas & Parry Isartorplatz 5 D-8000 Munchen 2(DE) Edge-bonded sets of carbonless copy paper. © Adhesively edge-padded stack of carbonless copy paper better separates upon fanning into collated sets when a thin layer of hot-melt adhesive is used for the edge-padding. As in the prior art, the outer surfaces of each set should have a release coating such as a fluorocarbon. The layer of hot-melt adhesive includes, by weight: 20-50% thermoplastic copolymer, 15-50% tackifying resin, and * 20-60% wax having a melting point of at least 60 C. As soon as the adhesive has cooled below its softening point, the stack can be fanned, thus breaking it into sets. Fanning can usually be performed within 45 seconds, because there is no need to wait for the adhesive to dry as has been necessary with the aqueous adhesives that have been used in the prior art. -
Print Definitions
Publishing & Distribution DEPARTMENT OF ADMINISTRATIVE SERVICES Print Definitions Accordion fold: To fold into Bond Paper: Variety of paper pleats resembling the bellows usually with high cotton fiber of an accordion: to make a fan content. by accordion-folding a sheet Break for color: Also known of paper. as color break or color Against the grain: The separation. Separate the parts arrangement, direction, or to be printed in different pattern of the fibrous tissue in colors. wood/paper. Brightness: The attribute of Alteration: A change; light-source colors by which modification or adjustment. emitted light is ordered Banding: A thin strip of flexible continuously from light to dark material used to encircle and in correlation with its intensity. bind one object or to hold a The brilliance or reflectance of number of objects together. paper. Bind: To fasten or secure. Carbonless: Pressure sensitive writing paper that does not Bindery: A place where books use carbon; paper that makes are bound or printed materials multiple copies without are finished. intervening layers. Bleed: To permit (printed Camera-ready copy: Print illustrations or ornamentation) ready art, hard copy paper to run off the page or sheet. originals. Blind embossing: To emboss Cast coated: Coated paper or impress (the cover or spine with a high gloss reflective of a book) without using ink or finish. foil. A-Cam | Page 1 Coated paper: Clay coated Cover paper: A heavy printing printing paper with a smooth paper used to cover books. finish. Crash number: Numbering Coil Binding: A method of paper by pressing an image binding books by threading on the first sheet which is wire or plastic coils into transferred to all parts of the punched holes. -
UPM EN643 Grades
EN643 code Name and grade description Group 1 – Ordinary Grades 1.01.00 Ordinary mixed Paper and Board, a mixture of various grades of paper and board 1.06.00 Magazines, with or without glue 1.06.01 Magazines without glue 1.06.02 Magazines with Product Samples 1.07.00 Telephone Books. New and used telephone books, with unlimited content of pages coloured in the mass, with and without glue. Shavings allowed. 1.09.00 Newspapers and Magazines. Mixture of newspapers and magazines, predominantly unsold; each of them with a minimum of 30%. 1.11.00 Sorted Graphic Paper for Deinking. Sorted graphic paper, consisting of a minimum of 80 % newspapers and magazines. It shall contain at least 30% newspapers and 40% magazines. Print products which are not suitable for deinking are limited to 1,5% Group 2 – Medium Grades 2.01.00 Newspapers, containing a maximum of 5% of newspapers or advertisements coloured in the mass. 2.03.00 Lightly printed white Shavings. Lightly printed white shavings, coated or uncoated, mainly mechanical pulp-based paper with no restriction for glue. 2.06.00 Ordinary sorted Coloured Letters. Paper, as typically generated by offices, shredded or unshredded, lightly printed, mass coloured paper allowed, but no deep coloured papers, with a minimum of 70% woodfree paper, free of carbon and principally free of carbonless copy paper, (ccp)/no carbon required (NCR), free of manila envelopes, file covers, newspapers and cardboard. Group 3– High Grades 3.10.00 Medium printed multi Printing. Medium and heavily printed wood free coated papers in sheets or trim, free from wet-strength paper and from paper coloured in the mass. -
A3 Paper Size: ISO Paper Size 297 X 420Mm Used for Small Poster Or Small News Paper
A3 Paper size: ISO paper size 297 x 420mm used for small poster or small news paper. A4 Paper size: ISO paper size 210 x 297mm used for Letterhead. Accordion fold: Bindery term, two or more parallel folds which open like an accordion. Acetate: a transparent sheet placed over artwork allowing the artist to write instructions or indicate where second colour is to be placed. Acid Resist: An acid-proof protective coating applied to metal plates prior to etching. Against the grain: At right angles to direction of paper grain. Alteration: Change in copy of specifications after production has begun. Aqueous Coating: Coating in a water base and applied like ink by a printing press to protect and enhance the printing underneath. Artboard: Alternate term for mechanical art. Ascender: any part of a lower case letter extending above the x-height. For example, the upper half of the vertical in the letters b or h. Authors corrections: changes made to the copy by the author after typesetting but not including those made as a result of errors in keying in the copy. Back up: Printing the second side of a sheet already printed on one side. Backslant: Letters that slant the opposite way from italic characters. Banding: Method of packaging printed pieces of paper using rubber or paper bands. Basis weight: Weight in pounds of a ream of paper cut to the basic size for its grade. Bind: To fasten sheets or signatures with wire, thread, glue. or by other means. Bindery: The finishing department of a print shop or firm specializing in finishing printed products. -
DRAFT UGANDA STANDARD First Edition 2015-Mm-Dd
DUS DEAS 857 DRAFT UGANDA STANDARD First Edition 2015-mm-dd Specification for carbon paper STANDARD UGANDA DRAFT Reference number DUS DEAS 857: 2015 © UNBS 2015 DUS DEAS 857:2015 Compliance with this standard does not, of itself confer immunity from legal obligations A Uganda Standard does not purport to include all necessary provisions of a contract. Users are responsible for its correct application STANDARD UGANDA © UNBS 2015 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilised in any form or by any means, electronicDRAFT or mechanical, including photocopying and microfilm, without prior written permission from UNBS. Requests for permission to reproduce this document should be addressed to The Executive Director Uganda National Bureau of Standards P.O. Box 6329 Kampala Uganda Tel: 256 41 505 995 Fax: 256 41 286 123 E-mail: [email protected] Web: www.unbs.go.ug ii © UNBS 2015 - All rights reserved DUS DEAS 857:2015 National foreword Uganda National Bureau of Standards (UNBS) is a parastatal under the Ministry of Trade, Industry and Cooperatives established under Cap 327, of the Laws of Uganda, as amended. UNBS is mandated to co- ordinate the elaboration of standards and is (a) a member of International Organisation for Standardisation (ISO) and (b) a contact point for the WHO/FAO Codex Alimentarius Commission on Food Standards, and (c) the National Enquiry Point on TBT Agreement of the World Trade Organisation (WTO). The work of preparing Uganda Standards is carried out through Technical Committees. A Technical Committee is established to deliberate on standards in a given field or area and consists of representatives of consumers, traders, academicians, manufacturers, government and other stakeholders. -
Evidence for Unique and Ubiquitous Environmental Sources Of
Environ. Sci. Technol. 2010, 44, 2816–2821 the production and use in commerce of PCBs was banned Evidence for Unique and Ubiquitous by a series of legislative acts, including the 1973 act that prohibited the use of PCBs in open applications. These open Environmental Sources of applications included the use of PCBs as a transfer agent in 3,3′-Dichlorobiphenyl (PCB 11) carbonless copy paper. An important and often overlooked loophole in the various laws regulating PCB use was that the ,† † inadvertent production of PCBs was allowed to continue as LISA A. RODENBURG,* JIA GUO, long as monitoring requirements were met. Despite this SONGYAN DU,† AND exclusion, PCBs in the United States and in many other GREGORY J. CAVALLO‡ countries are regulated as the sum of all 209 congeners Department of Environmental Sciences, Rutgers University, (∑PCBs). In the United States, the Clean Water Act requires 14 College Farm, Road, New Brunswick, New Jersey 08901, that waterways in which ∑PCBs exceed the applicable water and Delaware River Basin Commission, 25 State Police Drive, quality standard must be subjected to a process in which a West Trenton, New Jersey 08628 total maximum daily load (TMDL) is calculated, promulgated, and implemented. Thus, although inadvertent production Received April 16, 2009. Revised manuscript received July of PCBs is not banned in the United States, it will increasingly 29, 2009. Accepted August 7, 2009. be subject to regulation via the Clean Water Act and the TMDL process. The dichloro congener 3,3′dichlorobiphenyl (PCB 11) is produced inadvertently during the production of diarylide The non-Aroclor congener 3,3 -dichlorobiphenyl (PCB 11) has ′ yellow pigments, which are the most common yellow been recently detected in air, water, biota, sediment, and pigments used in printing as well as a wide variety of other suspended sediment. -
The Exciting History of Carbon Paper!
The Exciting History of Carbon Paper! What Is It? Carbon paper is thin paper coated with a mixture of wax and pigment, that is used between two sheets of ordinary paper to make one or more copies of an original document. When Was It Invented And Why? The exact origin of carbon paper is somewhat uncertain. The first documented use of the term "carbonated paper" was in 1806, when an Englishman, named Ralph Wedgwood, issued a patent for his "Stylographic Writer." However, Pellegrino Turri had invented a typewriting machine in Italy by at least 1808, and since "black paper" was essential for the operation of his machine, he must have perfected his form of carbon paper at virtually the same time as Wedgwood, if not before (Adler, 1973). Interestingly, both men invented their "carbon paper" as a means to an end; they were both trying to help blind people write through the use of a machine, and the "black paper" was really just a substitute for ink. In its original form Wedgwood's "Stylographic Writer" was intended to help the blind write through the use of a metal stylus instead of a quill. A piece of paper soaked in printer's ink and dried, was then placed between two sheets of writing paper in order to transfer a copy onto the bottom sheet. Horizontal metal wires on the writing-board acted as feeler-guides for the stylus and presumably helped the blind to write. [Although invented in 1803, the steel pen only became common around the middle of the nineteenth century; the quill was still in use at the end of the century, and remained the symbol of the handwriting age. -
Recyclingecycling
YOUR COMMUNITY. YOUR ENVIRONMENT. RRecyclingecycling YOUR CHOICE. www.chulavistaca.gov/clean Funded by a grant from the California Department of Conservation, Division of Recycling ENVIRONMENTAL SERVICES DIVISION Public Works Department 1800 Maxwell Road,Chula Vista, CA 91911 (619) 691-5122 Printed on 30% post-consumer content paper. ATAT WORKWORK Be a part of the solution! WHY RECYCLE?Some facts... We can all do our part to help our environment with the right tools and a little practice! Recycling is easier than ever----and we hope As more people become aware of our environment and what’s happening you’ll look at “trash” in a whole new way! around us, it’s important to let them know the facts---and how every little bit can help. We can make a difference. Let’s get started! •Each worker generates 5 pounds of office-related waste each day. •Recycling one ton of paper will save approcimately 3.3 cubic yards of landfill space. Important things to know about: •Every ton of paper recycled saves 17 trees. RECYCLING •It takes 64% less energy to make paper products from recycled paper. •Using recycled paper to manufacture new paper produces about 50% less air and water pollution. No more sorting recyclables! •Recycling one ton of office paper keeps 7,000 gallons of water out of the 1 Paper, cans, bottles, plastics and other recyclable papermaking process. items don’t need to get sorted! Simply put them all in your recycle bin, cart, or container. •It takes 95% less energy to make aluminum products from recycled aluminum. -
The Effects of Deinking on the Coating Compounds Used on Carbonless Business Forms
Rochester Institute of Technology RIT Scholar Works Theses 11-1-1991 The Effects of deinking on the coating compounds used on carbonless business forms Brooke Merrill Tinney Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Tinney, Brooke Merrill, "The Effects of deinking on the coating compounds used on carbonless business forms" (1991). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. School ofPrinting Management and Sciences Rochester Institute of Technology Rochester, New York Certificate of Approval Master's Thesis This is to certify that the Master's Thesis of Brooke Merrill Tinney With a major in Printing Technology has been approved by the Thesis Committee as satisfactory for the thesis requirement for the Master of Science degree at the convocation of Thesis Committee: Joseph E. Brown Thesis Advisor Andreas Lenger Research Advi$or Joseph L. Noga Graduate Program Coordinator George H. Ryan Director or Designate The Effects of Deinking on the Coating Compounds Used on Carbonless Business Forms by Brooke Merrill Tinney A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Printing Management and Sciences in the College of Graphic Arts and Photography of the Rochester Institute of Technology November 1991 Thesis Advisor: Professor Joseph E. Brown Research Advisor: Dr. Andreas Langner Title of Thesis: The Effects of Deinking on the Coating Compounds Used on Carbonless Business Forms I, Brooke Merrill Tinney, hereby grant permission to the Wallace Memorial Library of R.I.T. -
The Pulp Invasion – Thailand
CHRISLANG.ORG Join the transformation C The Pulp Invasion – Thailand By Chris Lang, published by WRM, December 2002. Back to contents (https://chrislang.org/2002/12/01/the-pulp-invasion-the-international-pulp-and- paper-industry-in-the-mekong-region/) THAILAND: The fast-growing pulp and paper industry This report looks at the expansion of the pulp and paper industry in Thailand. It starts with an overview of the industry today. Rather than providing a reliable source of paper needed by the people of Thailand, however, the industry today is dependent on imports, exports and lavish subsidies from the government and international “aid” agencies. The Thai government has actively supported the development of the industry, through subsidies, pro- cash crop and plantation policies, tax relief and favourable import duties on machinery imports. The second section looks at some of the government support, and includes a brief introduction to some of the background political situation in the country during the early 1990s. The third section looks at some of the international support to the industry in Thailand, largely through multilateral and bilateral “aid”. The fourth section looks at some of the Thai companies involved in the pulp and paper sector. While they have made profits, they have also run up enormous debts. This, accompanied by the economic crisis in 1997, has opened the door for international companies to buy up shares in Thai companies. Some of these companies are also profiled in this section, along with international consultants who provide advice and legitimacy for the industry. Associated with the expansion of the pulp and paper industry, the area of fast-growing tree plantations has also expanded, often with disastrous impacts for many local communities. -
Ep 2223941 A1
(19) TZZ ¥__T (11) EP 2 223 941 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 01.09.2010 Bulletin 2010/35 C08B 37/00 (2006.01) C08L 5/00 (2006.01) C03C 25/32 (2006.01) (21) Application number: 10152292.8 (22) Date of filing: 01.02.2010 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Brady, Jean HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Maple Glen, PA 19002 (US) PT RO SE SI SK SM TR • Weinstein, Barry Designated Extension States: Dresher, PA 19025 (US) AL BA RS • Kelly, Michael Dewayne North Wales, PA 19454 (US) (30) Priority: 27.02.2009 US 208736 P (74) Representative: Buckley, Guy Julian (71) Applicant: Rohm and Haas Company Patent Outsourcing Limited Philadelphia, 1 King Street Pennsylvania 19106-2399 (US) Bakewell Derbyshire DE45 1DZ (GB) (54) Rapid cure carbohydrate composition (57) A curable binder composition consisting essen- terials comprising the curable binder composition, and tially of one or more ammonium salt of an inorganic acid methods of application. and at least one carbohydrate, and the use thereof as a thermosetting binder. Also described are composite ma- EP 2 223 941 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 223 941 A1 Description [0001] This invention is a carbohydrate curable composition useful as a thermosetting binder for a variety of applica- tions. More particularly, the present invention relates to aqueous binder compositions comprising one or more ammonium 5 salt of an inorganic acid and at least one carbohydrate, and the use thereof as curable binders. -
NIAC 2014 Phase I Bin Chen Final Report 3D Photocatalytic Air
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA-INSTITUTE-FOR-ADVANCED-CONCEPTS-(NIAC) PHASE I FINAL TECHNICAL REPORT ON 3D Photocatalytic Air Processor for Dramatic Reduction of Life Support Mass and Complexity April 27, 2015 Reporting period: 07/07/14 to 04/27/2015 From NASA Ames Research Center Moffett Field, CA Technical Point of Contact: Dr. Bin Chen Principal Investigator Tel: 650 6040310 Fax: 650 604 6779 Email: [email protected] Co- Investigators: Darrell Jan Kenny Cheung John Hogan NASA Ames Research Center 1 3D Photocatalytic Air Processor for Dramatic Reduction of Life Support Mass and Complexity Final Report for the Period of July 07, 2014 to April 27, 2015 1. Summary To dramatically reduce the cost and risk of CO2 management systems in future extended missions, we have conducted preliminary studies on the materials and device development for advanced “artificial photosynthesis” reaction systems termed the High Tortuosity PhotoElectroChemical (HTPEC) system. Our Phase I studies have demonstrated that HTPEC operates in much the same way a tree would function, namely directly contacting the cabin air with a photocatalyst in the presence of light and water (as humidity) to immediately conduct the process of CO2 reduction to O2 and useful, “tunable” carbon products. This eliminates many of the inefficiencies associated with current ISS CO2 management systems. We have laid the solid foundation for Phase II work to employ novel and efficient reactor geometries, lighting approaches, 3D manufacturing methods and in-house grown novel catalytic materials. The primary objective of the proposed work is to demonstrate the scientific and engineering foundation for light-activated, compact devices capable of converting CO2 to O2 and mission- relevant carbon compounds.