1001 Installation & Operation Manual V0r0

Total Page:16

File Type:pdf, Size:1020Kb

1001 Installation & Operation Manual V0r0 Installation & Operation Manual ComNav 1001 Autopilot COMPLIES WITH CE REGULATIONS P/N 29010007 WARRANTY NOTICE Prior to the installation and/or operation of the Equipment, ensure that you read, understand and accept the conditions of the warranties as detailed on the following pages. OPERATORS WARNING This Autopilot will automatically steer your vessel however, it is only an aid to navigation. Its performance can be affected by many factors including equipment failure, environmental conditions and improper handling or use. This system does not reduce your responsibility for the control of the vessel when underway. You must always be in a position to monitor the course, supervise the Autopilot, and resume manual control if the need to do so arises. Whenever underway, your vessel must be under the control of a qualified and alert person. TABLE OF CONTENTS 1001 AUTOPILOT SYSTEM DRAWING _________________________________________ 3 BASIC OPERATION __________________________________________________________ 3 AUTOPILOT _____________________________________________________________________ 4 REMOTE CONTROL _____________________________________________________________ 6 INTRODUCTION ____________________________________________________________ 7 SPECIFICATIONS ___________________________________________________________ 8 1001 AUTOPILOT INTERCONNECTION DIAGRAM ______________________________ 9 OPTIONAL DRIVE SYSTEMS ________________________________________________ 11 INSTALLATION INSTRUCTIONS _____________________________________________ 12 AUTOPILOT____________________________________________________________________ 12 COMPASS______________________________________________________________________ 13 DISTRIBUTION BOX ____________________________________________________________ 18 RUDDER FOLLOWER___________________________________________________________ 21 NAVIGATION INTERFACE __________________________________________________ 24 CROSS TRACK ERROR RESPONSE ______________________________________________ 26 CHECKSUM EVALUATION ______________________________________________________ 27 DOCKSIDE SET-UP _________________________________________________________ 28 SETTING OF RUDDER TRAVEL LIMITS __________________________________________ 28 ADJUST RUDDER ANGLE INDICATOR (if installed) ________________________________ 29 CONFIGURING THE COMPASS __________________________________________________ 30 NAVIGATION EQUIPMENT INTERFACING _______________________________________ 30 SEA TRIALS________________________________________________________________ 31 CONTROLS ________________________________________________________________ 36 MASTER SELECT SWITCH ______________________________________________________ 36 MEMBRANE KEYPAD___________________________________________________________ 37 SPECIAL TURNS____________________________________________________________ 40 EMERGENCY TURN ____________________________________________________________ 40 CONTINUOUS TURN ____________________________________________________________ 40 U TURN ________________________________________________________________________ 41 OPERATION _______________________________________________________________ 42 STANDBY ______________________________________________________________________ 42 POWER STEER _________________________________________________________________ 43 1 PILOT _________________________________________________________________________ 44 NAV ___________________________________________________________________________ 47 REMOTE CONTROLS ___________________________________________________________ 48 REMOTE CONTROLS _______________________________________________________ 50 COMNAV 101 REMOTE CONTROL _______________________________________________ 50 COMNAV 201 REMOTE CONTROL _______________________________________________ 53 COMNAV 211 REMOTE CONTROL _______________________________________________ 54 ERROR CHECKING _________________________________________________________ 55 PROBLEM SOLVING ____________________________________________________________ 59 CE COMPLIANCE __________________________________________________________ 62 2 1001 AUTOPILOT SYSTEM DRAWING 3 BASIC OPERATION AUTOPILOT 1. TO INITIALIZE THE AUTOPILOT\ 2. TO POWER STEER THE VESSEL\ STANDBY MODE POWER STEER MODE z Turn the master select switch to z To turn the rudder to port and to the STANDBY position. The display will starboard, turn the master select switch to show the vessel's current compass the POWER STEER position. While heading. If the heading displayed by the either the red or green ARROW key is autopilot does not agree with the pressed, the display will show the compass, press the ADJUST key twice to vessel’s rudder angle and will show the display the current heading offset, and vessel's current compass heading at all then use the up or down ARROW key to other times. adjust the offset by the amount of the error. z To display the vessel's rudder angle, press the TURN key once. To z To turn on the speed sensitivity return compass information to the display, that switches between FAST and SLOW press the TURN key again. when in PILOT or NAV, with the Pilot in Standby press the ADJUST key until z To zero the digital rudder angle 'SP: 0' is displayed. Press the up display, turn the rudder to dead ahead, ARROW key until the desired speed is press the ADJUST key until the flashing displayed. rudder angle display appears and press the up or down ARROW key until the z To turn off the speed sensitivity, rudder angle display shows ' :00'. press the down ARROW key until the display reads 'SP: 0'. 3. TO BEGIN AUTOPILOT CONTROL OF THE VESSEL: z If the display is too bright or too dim when viewed in full darkness, press z To have the vessel continue on its the ADJUST key until 'Lt ' is displayed, present heading under autopilot control, and then use the up or down ARROW turn the master select switch to the key to adjust the minimum brightness PILOT position. level between 0-9. z To select either the 'FASt' (High z To select a Special Turn as Speed) mode or the 'Slow' (Low Speed) described in (4) below, press the TURN mode, press the ADJUST key once key followed by either the red or green followed by the up or down ARROW key. ARROW key. This will be done automatically if the speed sensitive switching has been z To initiate a Full Reset, press and turned on in (1) above. hold both the up and down ARROW keys for one second. This will reset all autopilot z To adjust the rudder gain setting parameters back to factory settings and for the High or Low speed mode, press the Pilot will go into Reset mode. A the ADJUST key until 'rud' is displayed, dockside set-up will be required after followed by the up or down ARROW every Full Reset. keys. Similarly adjust the counter rudder ('ctr') and yaw ('YAW') settings for best steering. 4 4. TO CHANGE THE VESSEL'S 6. TO INTERFACE WITH A COURSE: NAVIGATION COMPUTER\NAV MODE z To obtain the desired course, z Start navigating towards a leave the master select switch in the selected route or waypoint, using a PILOT position. Estimate the number of Navigation Computer which has an degrees of course change required. NMEA 0183 output. z Until the display shows the desired z Turn the autopilot master select course, alter the course in one degree switch to the NAV position. The autopilot steps by pressing and releasing either the will set its own course using information red or green ARROW key. sent to it by the Navigation Computer. --- Or --- z To select the response to cross track error (normal or reversed), press the Alter course by ten degrees per second TURN key and then the green ARROW by pressing and holding either the red or key. green ARROW key. z The DODGE keys operate as z To select a special turn (U-turn, described in (5) above, except that the Emergency Turn, or Continuous Turn), vessel will return to the original track to with the Pilot in Standby mode, press the the waypoint, rather than the original Turn key once followed by the Green key course, when the DODGE keys are until the desired Turn is displayed. released. z To adjust the rate at which the For more complete operating instructions, vessel will turn to the new course, press refer to the CONTROLS and the ADJUST key until 'trn' is displayed OPERATION sections. and then press the up or down ARROW key 5. TO DODGE THE VESSEL OFF COURSE\PILOT MODE z To avoid obstacles in the water, press either the red or green DODGE key for a panic turn in the desired direction. z To keep the vessel off course, after it has turned far enough to clear the obstacle, press and hold both DODGE keys. z To return to the programmed course at the rate set by the turn rate control. Release the DODGE key 5 REMOTE CONTROL The autopilot master control unit must be on to use any remote control. The vessel’s compass heading is shown at all times on the display of the unit that is NOT in control. As a further reminder, the function indicator (see Figure 8) will be flashing on the display of the unit that is NOT in control. 1. TO USE THE COMNAV 101 z The 1101 second station operates REMOTE CONTROL: identically to the autopilot, except that the OFF/FUNCTION will not operate. The z To take control at the Remote, autopilot must be turned ON and OFF press both its pushbuttons for one from the autopilot front panel. second. The command point on all displays will move to the REMOTE 3. TO TAKE CONTROL AT THE position. This control operates identically AUTOPILOT FRONT PANEL: to the autopilot, except that there is a toggle switch, used together with one of z To
Recommended publications
  • 1850 Pro Tiller
    1850 Pro Tiller Specs Colors GENERAL 1850 PRO TILLER STANDARD Overall Length 18' 6" 5.64 m Summit White base w/Black Metallic accent & Tan interior Boat/Motor/Trailer Length 21' 5" 6.53 m Summit White base w/Blue Flame Boat/Motor/Trailer Width 8' 6" 2.59 m Metallic accent & Tan interior Summit White base w/Red Flame Boat/Motor/Trailer Height 5' 10" 1.78 m Metallic accent & Tan interior Beam 94'' 239 cm Summit White base w/Storm Blue Metallic accent & Tan interior Chine width 78'' 198 cm Summit White base w/Silver Metallic Max. Depth 41'' 104 cm accent & Gray interior Max cockpit depth 22" 56 cm Silver Metallic base w/Black Metallic accent & Gray interior Transom Height 25'' 64 cm Silver Metallic base w/Blue Flame Deadrise 12° Metallic accent & Gray interior Weight (Boat only, dry) 1,375# 624 kg Silver Metallic base w/Red Flame Metallic accent & Gray interior Max. Weight Capacity 1,650# 749 kg Silver Metallic base w/Storm Blue Max. Person Weight Capacity 6 Metallic accent & Gray interior Max. HP Capacity 90 Fuel Capacity 32 gal. 122 L OPTIONAL Mad Fish graphics HULL Shock Effect Wrap Aluminum gauge bottom 0.100" Aluminum gauge sides 0.090'' Aluminum gauge transom 0.125'' Features CONSOLE/INSTRUMENTATION Command console, w/lockable storage & electronics compartment, w/pull-out tray, lockable storage drawer, tackle storage, drink holders (2), gauges, rocker switches & 12V power outlet Fuel gauge Tachometer & voltmeter standard w/pre-rig Master power switch Horn FLOORING Carpet, 16 oz. marine-grade, w/Limited Lifetime Warranty treated panel
    [Show full text]
  • Use of Rudder on Boeing Aircraft
    12ADOBL02 December 2011 Use of rudder on Boeing aircraft According to Boeing the Primary uses for rudder input are in crosswind operations, directional control on takeoff or roll out and in the event of engine failure. This Briefing Leaflet was produced in co-operation with Boeing and supersedes the IFALPA document 03SAB001 and applies to all models of the following Boeing aircraft: 707, 717, 727, 737, 747, 757, 767, 777, 787, DC-8, DC-9, DC-10, MD-10, md-11, MD-80, MD-90 Sideslip Angle Fig 1: Rudder induced sideslip Background As part of the investigation of the American Airlines Flt 587 crash on Heading Long Island, USA the United States National Transportation Safety Board (NTSB) issued a safety recommendation letter which called Flight path for pilots to be made aware that the use of “sequential full opposite rudder inputs can potentially lead to structural loads that exceed those addressed by the requirements of certification”. Aircraft are designed and tested based on certain assumptions of how pilots will use the rudder. These assumptions drive the FAA/EASA, and other certifica- tion bodies, requirements. Consequently, this type of structural failure is rare (with only one event over more than 45 years). However, this information about the characteristics of Boeing aircraft performance in usual circumstances may prove useful. Rudder manoeuvring considerations At the outset it is a good idea to review and consider the rudder and it’s aerodynamic effects. Jet transport aircraft, especially those with wing mounted engines, have large and powerful rudders these are neces- sary to provide sufficient directional control of asymmetric thrust after an engine failure on take-off and provide suitable crosswind capability for both take-off and landing.
    [Show full text]
  • An Orientation for Getting a Navy 44 Underway
    Departure and return procedure for the Navy 44 • Once again, the Boat Information Book for the United States Naval Academy Navy 44 Sailing Training Craft is the final authority. • Please do not change this presentation without my permission. • Please do not duplicate and distribute this presentation without the permission of the Naval Academy Sailing Training Officer • Comments welcomed!! “Welcome aboard crew. Tami, you have the helm. If you’d be so kind, take us out.” When we came aboard, we all pitched in to ready the boat to sail. We all knew what to do and we went to work. • The VHF was tuned to 82A and the speakers were set to “both”. • The engine log book & hernia box were retrieved from the Cutter Shed. • The halyards were brought back to the bail at the base of the mast, but we left the dockside spinnaker halyard firmly tensioned on deck so boarding crew could use it to aid boarding. • The sail and wheel covers were removed and stored below. • The reef lines were attached and laid out on deck. • The five winch handles were placed in their proper holders. • The engine was checked: fuel level, fuel lines open, bilge level/condition, alternator belt tension, antifreeze level, oil and transmission level, RACOR filter, raw water intake set in the flow position, engine hours. This was all entered into the log book. • Sails were inventoried. We use the PESO system. We store sails in the forward compartment with port even, starboard odd. •The AC main was de-energized at the circuit panel.
    [Show full text]
  • Sea Kayak Handling Sample Chapter
    10 STERN RUDDERS Stern rudders are used to keep the kayak going in a straight line and make small directional changes when on the move. The stern rudder only works if the kayak is travelling at a reasonable speed, but it has many applications. The most common is when there is a following wind or sea pushing the kayak along at speed. In this situation, forward sweep strokes are not quick enough to have as much effect as the stern rudder. A similar application is when controlling the kayak while surfi ng. A more ‘gentle’ application is when moving in and out of rocks, caves and arches at slower speeds. Here, the stern rudder provides control and keeps the kayak on course in these tight spaces. Low angle stern rudder This is the classic stern rudder and works well to keep the kayak running in a straight line. It is best combined with the push/pull method of turning with a stern rudder (see below). • The kayak must be moving at a reasonable speed. • Fully rotate the body so that both hands are out over the side. • Keep looking forwards. • Place the blade nearest the stern of the kayak in the water as far back as your rotation allows. • The blade face should be parallel to the side of the kayak so that it cuts through the water and you feel no resistance. 54 • The blade should be fully submerged and will act like a rudder, controlling the direction of the kayak. • The front hand should be across the kayak and at a height between your stomach and chest.
    [Show full text]
  • Touring Rudder Sit-On Top Kit Kit to Fit Rudder Enabled Sit-On Tops with a 10Mm Rudder Fixing Point
    touring rudder sit-on top kit Kit to fit rudder enabled sit-on tops with a 10mm rudder fixing point. Note: It is easier to fit the Touring Rudder System if you have a screw hatch fitted to the rear stowage area of the kayak. If your kayak does not have this screw hatch and you wish to fit one, please contact a Perception dealer for advice. These instructions explain how to fit the rudder kit to a kayak with or without a rear screw hatch in place. Please make sure you follow the correct steps for your version of sit-on top kayak. This kit should contain the following: 1x rudder assembly with up-haul rope & split ring 4x deck fittings 4x length of rudder hose 5x self tapping screws 2x Dyneema control line - with cord end assembly 2x oval toggle 1x pair of Tip-Toes control footrests with foam washers 1x length of 4mm shock cord 6x footrest screws, washers and nuts - pre-fitted 1x rudder park - inc. hook, shock cord & fixing block You will also require some tools to fit this kit: Drill with 3mm, 5mm and 6mm drill bits Marker pen Short phillips screwdriver Wire cutters Small adjustable spanner or pair of pliers Lighter Tape measure Small amount of sticky tape Please read these instructions carefully before fitting! Step 1 - Control line entry points The rudder will need to have two control lines attached, each one running through hose sections inside the kayak from the rudder to the Tip-Toes footrests. This kit has four hose sections (two pairs) as two sections are needed per control line.
    [Show full text]
  • December 2007 Crew Journal of the Barque James Craig
    December 2007 Crew journal of the barque James Craig Full & By December 2007 Full & By The crew journal of the barque James Craig http://www.australianheritagefleet.com.au/JCraig/JCraig.html Compiled by Peter Davey [email protected] Production and photos by John Spiers All crew and others associated with the James Craig are very welcome to submit material. The opinions expressed in this journal may not necessarily be the viewpoint of the Sydney Maritime Museum, the Sydney Heritage Fleet or the crew of the James Craig or its officers. 2 December 2007 Full & By APEC parade of sail - Windeward Bound, New Endeavour, James Craig, Endeavour replica, One and All Full & By December 2007 December 2007 Full & By Full & By December 2007 December 2007 Full & By Full & By December 2007 7 Radio procedures on James Craig adio procedures being used onboard discomfort. Effective communication Rare from professional to appalling relies on message being concise and clear. - mostly on the appalling side. The radio Consider carefully what is to be said before intercoms are not mobile phones. beginning to transmit. Other operators may The ship, and the ship’s company are be waiting to use the network. judged by our appearance and our radio procedures. Remember you may have Some standard words and phases. to justify your transmission to a marine Affirm - Yes, or correct, or that is cor- court of inquiry. All radio transmissions rect. or I agree on VHF Port working frequencies are Negative - No, or this is incorrect or monitored and tape recorded by the Port Permission not granted.
    [Show full text]
  • Aerosport Modeling Rudder Trim
    AEROSPORT MODELING RUDDER TRIM Segment: MOBILITY PARTS PROVIDERS | Engineering companies Application vertical: MOBILITY AND TRANSPORTATION | AircraFt Application type: FINAL PART: Short runs THE CUSTOMER FINAL PART: SHORT RUNS AEROSPORT MODELING RUDDER TRIM COMPANY DESCRIPTION APPLICATION TRADITIONAL MANUFACTURING Some planes are equipped with small tabs on the control surfaces (e.g., rudder trim Assembly of 26 different machined and standard parts Aerosport Modeling & Design was established in tabs, aileron tabs, elevator tabs) so the pilot can make minute adjustments to pitch, September 1996, and since then, they have worked to yaw, and roll to keep the airplane flying a true, clean line through the air. This produce the highest-possible quality prototypes, improves speed by reducing drag from the larger, constant movements of the full appearance models, working models, and machined rudder, aileron, and elevator. parts, and to meet or exceed client expectations. The company strives to be seen as a partner to their Many airplanes also have rudder and/or aileron trim systems. On some, the rudder clients and an extension of their design and trim tab is rigid but adjustable on the ground by bending: It is angled slightly to the development team, not just a supplier of prototyping left (when viewed from behind) to lessen the need for the pilot to push the rudder services. pedal constantly in order to overcome the left-turning tendencies of many prop- driven aircraft. Some aircraft have hinged rudder trim tabs that the pilot can adjust Aerosport Products spun off from sister company in flight. Aerosport Modeling & Design in 2009 to develop products for experimental aircraft, the first of which When a servo tab is employed, it is moved into the slipstream opposite of the was the RV-10 Carbon Fiber Instrument Panel.
    [Show full text]
  • 7180 Rudder Angle Indicator Manual
    7180 Rudder Angle Indicator Owner’s Operation, Installation & Maintenance Manual February 2019 Kobelt Manufacturing Co. Ltd. 7180 Rudder Angle Indicator Kobelt Manufacturing Co. Ltd. NOTES: RECORD DATA BEFORE INSTALLATION FOR FUTURE REFERENCE Model #: Serial #: Date of Purchase: Date of Installation: Rev B MNL_7180 2 of 24 7180 Rudder Angle Indicator Kobelt Manufacturing Co. Ltd. TABLE OF CONTENTS 1 Introduction ............................................................................................................ 4 1.1 Contact .................................................................................................................... 4 1.2 Safety ....................................................................................................................... 4 2 Product Description ................................................................................................. 6 2.1 Technical Data ......................................................................................................... 7 3 Operation ................................................................................................................ 8 4 Installation .............................................................................................................. 9 4.1 Mechanical .............................................................................................................. 9 4.2 Electrical ................................................................................................................ 10 5 Commissioning
    [Show full text]
  • Know About Boating Before You Go Floating
    Know About Boating Before You Go Floating KEY TERMS All-around white light: Navigation light that Gunwale: Upper edge of a boat’s side. is visible in all directions around the boat from Hull: The main body of a boat. 2 miles away. Port: The left side of a boat. Bow: The front part of a boat. Propeller: A device with two or more blades Buoy: An object that floats on the water in that turn quickly and cause a boat to move. a bay, river, lake or other body of water and Sidelights: Red (port side) and green provides information to boats. (starboard side) navigation lights on a boat, Capsize: To turn a craft upside down in visible from 1 mile away. the water. Skipper: The person who commands a boat. Cleat: A wooden or metal fitting on the deck Starboard: The right side of a boat. of a boat. It has two projecting horns around which a rope or line may be tied. Stern: The back part of a boat. OBJECTIVES After completing this lesson, students will be able to: zz Name the main parts of a boat. zz Explain some boating terms. zz Describe some important safety equipment that should be on a boat. zz Demonstrate putting on a life jacket. zz Explain how to board a boat. zz Understand how to balance a boat. zz Explain what to do if a boat capsizes (turns over). MATERIALS, EQUIPMENT AND SUPPLIES zz Poster: Know About Boating Before You Go Floating zz Several Type II and/or Type III life jackets (in the various sizes that would fit the students) zz Mat or tape to create outline of boat zz Chairs (6) zz Watch or clock with a second hand zz Crayons, markers
    [Show full text]
  • Skilful Vessel Handling
    Skilful Vessel Handling Capt. Øystein Johnsen MNI Buskerud and Vestfold University College March 2014 Manoeuvring of vessels that are held back by an external force This consideration is written in belated wisdom according to the accident of Bourbon Dolphin in April 2007 When manoeuvring a vessel that are held back by an external force and makes little or no speed through the water, the propulsion propellers run up to the maximum, and the highest sideways force might be required against wind, waves and current. The vessel is held back by 1 800 meters of chain and wire, weight of 300 tons. 35 knops wind from SW, waves about 6 meter and 3 knops current heading NE has taken her 840 meters to the east (stb), out of the required line of bearing for the anchor. Bourbon Dolphin running her last anchor. The picture is taken 37 minutes before capsizing. The slip streams tells us that all thrusters are in use and the rudders are set to port. (Photo: Sean Dickson) 2 Lack of form stability I Emil Aall Dahle It is Aall Dahle’s opinion that the whole fleet of AHT/AHTS’s is a misconstruction because the vessels are based on the concept of a supplyship (PSV). The wide open after deck makes the vessels very vulnerable when tilted. When an ordinary vessel are listing an increasingly amount of volume of air filled hull is forced down into the water and create buoyancy – an up righting (rectification) force which counteract the list. Aall Dahle has a doctorate in marine hydrodynamics, has been senior principle engineer in NMD and DNV.
    [Show full text]
  • After 88 Years - Four-Masted Barque PEKING Back in Her Homeport Hamburg
    Four-masted barque PEKING - shifting Wewelfsfleth to Hamburg - September 2020 After 88 Years - Four-masted Barque PEKING Back In Her Homeport Hamburg Four-masted barque PEKING - shifting Wewelfsfleth to Hamburg - September 2020 On February 25, 1911 - 109 years ago - the four-masted barque PEKING was launched for the Hamburg ship- ping company F. Laeisz at the Blohm & Voss shipyard in Hamburg. The 115-metres long, and 14.40 metres wide cargo sailing ship had no engine, and was robustly constructed for transporting saltpetre from the Chilean coast to European ports. The ship owner’s tradition of naming their ships with words beginning with the letter “P”, as well as these ships’ regular fast voyages, had sailors all over the world call the Laeisz sailing ships “Flying P-Liners”. The PEKING is part of this legendary sailing ship fleet, together with a few other survivors, such as her sister ship PASSAT, the POMMERN and PADUA, the last of the once huge fleet which still is in active service as the sail training ship KRUZENSHTERN. Before she was sold to England in 1932 as stationary training ship and renamed ARETHUSA, the PEKING passed Cape Horn 34 times, which is respected among seafarers because of its often stormy weather. In 1975 the four-master, renamed PEKING, was sold to the USA to become a museum ship near the Brooklyn Bridge in Manhattan. There the old ship quietly rusted away until 2016 due to the lack of maintenance. -Af ter returning to Germany in very poor condition in 2017 with the dock ship COMBI DOCK III, the PEKING was meticulously restored in the Peters Shipyard in Wewelsfleth to the condition she was in as a cargo sailing ship at the end of the 1920s.
    [Show full text]
  • COURSE INFORMATION M1
    AII/1 Standard Wheel Orders All wheel orders given should be repeated by the helmsman and the officer of the watch should ensure that they are carried out correctly and immediately. All wheel orders should be held until countermanded. The helmsman should report immediately if the vessel does not answer the wheel. When there is concern that the helmsman is inattentive s/he should be questioned: "What is your heading ?" And s/he should respond: "My heading is ... degrees." Order Meaning 1. Midships Rudder to be held in the fore and aft position. 2. Port / starboard five 5° of port / starboard rudder to be held. 3. Port / starboard ten 10°of port / starboard rudder to be held. 4. Port / starboard fifteen 15°of port / starboard rudder to be held. 5. Port / starboard twenty 20° of port / starboard rudder to be held. 6. Port / starboard twenty-five 25°of port / starboard rudder to be held. 7. Hard -a-port / starboard Rudder to be held fully over to port / starboard. 8. Nothing to port/starboard Avoid allowing the vessel’s head to go to port/starboard . 9.Meet her Check the swing of the vessel´s head in a turn. 10. Steady Reduce swing as rapidly as possible. 11. Ease to five / ten Reduce amount of rudder to 5°/10°/15°/20° and hold. / fifteen / twenty 12. Steady as she goes Steer a steady course on the compass headin g indicated at the time of the order. The helmsman is to repeat the order and call out the compass heading on receiving the order.
    [Show full text]