Burkholderia Pseudomallei in Northern Vietnam

Total Page:16

File Type:pdf, Size:1020Kb

Burkholderia Pseudomallei in Northern Vietnam Burkholderia pseudomallei in Northern Vietnam: Environmental Detection and Molecular Characterization of Strains I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald 2012 vorgelegt von Trinh, Thanh Trung geboren am 17.11.1980 in Ninh Binh, Vietnam Dekan: Prof. Dr. Klaus Fesser 1. Gutachter : Prof. Dr. Ivo Steinmetz 2. Gutachter : Prof. Dr. Leo Eberl Tag der Promotion: 12.09.2012 Contents Chapter 1 Background 4 Chapter 2 Clinical and microbiological features of melioidosis in 22 Northern Vietnam Chapter 3 Improved culture- based detection and quantification of 31 Burkholderia pseudomallei from soil Chapter 4 Highly sensitive detection and quantification of Burkholderia 38 pseudomallei in environmental soil samples using real-time PCR References 48 Declaration 57 Curriculum Vitae, Publications, Contributions to articles 58 Acknowledgements 61 Appendix 63 Chapter 1 Chapter 1 Background Trinh Thanh Trung 1. Introduction ........................................................................................................................ 5 1.1. Melioidosis ..................................................................................................................... 5 1.1.1. From origins to global distribution ......................................................................... 5 1.1.2. Clinical features of melioidosis .............................................................................. 6 1.1.3. Diagnosis and management of melioidosis ............................................................ 7 1.2. Characteristics of Burkholderia pseudomallei ............................................................... 9 1.2.1. Taxonomy of Burkholderia pseudomallei and closely related species .................. 9 1.2.2. Modes of acquisition and bioweapon potential .................................................... 11 1.2.3. Bacterial genome and its plasticity ....................................................................... 12 1.2.4. Bacterial genotype and population structure ........................................................ 15 1.3. B. pseudomallei in the environment ............................................................................. 17 1.3.1. Natural ecological niches and bacterial survival .................................................. 17 1.3.2. Methods for detection of B. pseudomallei from the environment ........................ 19 1.4. What do we know about melioidosis in Vietnam? ....................................................... 20 2. Aims of the study .............................................................................................................. 21 4 Chapter 1 1. Introduction 1.1. Melioidosis 1.1.1. From origins to global distribution Melioidosis, a term derived from the Greek “ melis ” (meaning donkey distemper) and “ eidos ” (meaning resemblance), is a serious infectious disease caused by a soil- dwelling Gram-negative bacterium Burkholderia pseudomallei (White, 2003; Cheng and Currie, 2005). A century ago, the first cases of the disease were described by the pathologist Alfred Whitmore in Myanmar (White, 2003). Several years later, a large number of human and animal melioidosis cases had been also detected Myanmar and Malaysia, respectively (Dance, 1991; White, 2003). During and after World War II, many sporadic cases of disease were recorded among the French and American soldiers who were stationed in Southeast Asia (Dance, 1991; Cheng and Currie, 2005). Subsequently, a large number of cases, including many epidemiologically linked clusters, were reported for indigenous populations in Thailand and Australia, where the first cases had been recognized in 1949 and 1956, respectively (Cheng and Currie, 2005). By the second half of the 20 th century, melioidosis had emerged as an important public health problem in certain areas of the tropics. In Ubon Ratchathani, Thailand, melioidosis accounts for up to 20% of community-acquired septicemic infection (Chaowagul et al., 1989) with an average annual incidence of 4.4 cases per 100,000 population. The mortality rate reaches approximately 40% in septic shock cases (Suputtamongkol et al., 1999). A study in Northern Australia also revealed a considerable percentage of melioidosis in community-acquired septicemic patients admitted to the Royal Darwin Hospital (Douglas et al., 2004). The average annual incidence of melioidosis in this region is 19.6 cases per 100,000 population and the overall mortality rate amounts to 16.2% among the infected cases (Currie et al., 2004). During the last 20 years, many attempts have been made to increase the awareness of melioidosis in routine diagnostic settings. Not only in Southeast Asia and Northern Australia, but also in different geographical areas of the world, many more cases of infection have been detected, resulting in the expansion of the global map of the disease (Figure 1-1). Sporadic and outbreak cases of melioidosis in Southern Taiwan as well as mainland China have been described (Yang, 2000; Shih et al. , 2009). Multiple cases have been reported from different regions of the Indian subcontinent (John et al., 1996). The occurrence of melioidosis patients as well as the presence of B. pseudomallei in the environment have been noted in Brazil (Rolim et al., 2005). 5 Chapter 1 Figure 1-1. Worldwide distribution of melioidosis (from Currie et al., 2008) 1.1.2. Clinical features of melioidosis Melioidosis has a wide variety of clinical presentations, ranging from an asymptomatic carrier state to a chronic debilitating localized infection or acute fulminant septicemia (White, 2003). Multiple organs or even only single sites of the body may be involved during the febrile episodes of infection (Leelarasamee, 2004). Therefore, clinical signs and symptoms at the onset of the disease vary, depending on the affected organs (White, 2003), leading to unpredictable clinical manifestations and resulting in the misdiagnosis of melioidosis as other infectious diseases, such as tuberculosis or typhoid fever in clinical settings (Stone, 2007; Vidyalakshmi et al. , 2008). In all of the hospitalized cases, septicemia is the most common presentation of melioidosis, and the most commonly affected organ is the lung (White, 2003). Skin and soft-tissue abscesses are also common sites and may be the source of systemic infection or the result of hematogenous spread (Cheng and Currie, 2005). In a few cases, melioidosis presents as uncomplicated localized infections of the skin, subcutaneous tissues, or eyes (White, 2003; Gal et al. , 2004). Additionally, abscess formation can occur in any internal organ, such as liver, spleen, lymph nodes, prostate, and skeletal muscles. In renal abscesses, melioidosis is often associated with genitourinary infection (White, 2003). Moreover, clinical presentations of endocarditis, peritonitis, osteomyelitis or septic arthritis, encephalitis or meningitis, and 6 Chapter 1 mycotic aneurysm have been recently seen in many melioidosis patients (Hsueh et al., 2001; Malczewski et al., 2005; Vidyalakshmi et al., 2008). A number of common risk factors for developing melioidosis have been defined. They include diabetes mellitus, chronic renal disease, chronic lung disease, excess alcohol uptake, and thalassemia (Suputtamongkol et al., 1999; Currie et al., 2004). Of thes, diabetes mellitus has the highest incidence rate for melioidosis; the estimated rate for meliodosis infection is 260.4 cases per 100,000 diabetic patients (Currie et al., 2004) and the underlying diabetes disease in melioidosis patients ranges from 37 to 64% (Malczewski et al., 2005). Moreover, other independent risk factors, such as malignant tumors and steroid therapy for immunosuppression, are also reported for melioidosis (Suputtamongkol et al. , 1999). Age above 45 years and occupation of farmer or construction worker – who are directly exposed to contaminated soil and water – are predisposing factors for developing melioidosis (Suputtamongkol et al., 1999; Currie et al., 2004). Recently, tsunami natural disaster in December 2004 has been associated with large numbers of detected cases, suggesting tsunamis as a new risk factor for melioidosis (Peacock, 2006). In different regions, the overall mortality rates of melioidosis are approximately 20 to 50%. Death occurs within 48 h after admission in most of the cases with disseminated bacteremia and septic shock (Simpson et al., 1999; Currie et al., 2000; Limmathurotsakul et al., 2006). Recurrent melioidosis has been reported in 13.1% of recovered patients. Of these, 75% develop the disease by relapse. The others manifest the disease by reinfection (Limmathurotsakul et al., 2006). Besides humans, melioidosis can affect a wide range of animals. Sporadic and outbreak cases have been reported in pets, such as dogs and cats, in farm animals, such as horses, mules and donkeys, goats, sheep, cattle, and buffalo, in zoo animals such as seals, dolphins, crocodiles, and also in human primates and non-human primates (Sprague and Neubauer, 2004). 1.1.3. Diagnosis and management of melioidosis Because of a wide range of clinical presentations, diagnostic confirmation of a melioidosis case has to depend heavily on clinical microbiological examination (Inglis et al., 2006). Although many antigen or antibody detection assays and molecular techniques have been developed for diagnosis of melioidosis, culture-based
Recommended publications
  • Accurate and Rapid Identification of the Burkholderia Pseudomallei Near-Neighbour, Burkholderia Ubonensis, Using Real-Time PCR
    Accurate and Rapid Identification of the Burkholderia pseudomallei Near-Neighbour, Burkholderia ubonensis, Using Real-Time PCR Erin P. Price1*, Derek S. Sarovich1, Jessica R. Webb1, Jennifer L. Ginther2, Mark Mayo1, James M. Cook2, Meagan L. Seymour2, Mirjam Kaestli1, Vanessa Theobald1, Carina M. Hall2, Joseph D. Busch2, Jeffrey T. Foster2, Paul Keim2, David M. Wagner2, Apichai Tuanyok2, Talima Pearson2, Bart J. Currie1 1 Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia, 2 Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America Abstract Burkholderia ubonensis is an environmental bacterium belonging to the Burkholderia cepacia complex (Bcc), a group of genetically related organisms that are associated with opportunistic but generally nonfatal infections in healthy individuals. In contrast, the near-neighbour species Burkholderia pseudomallei causes melioidosis, a disease that can be fatal in up to 95% of cases if left untreated. B. ubonensis is frequently misidentified as B. pseudomallei from soil samples using selective culturing on Ashdown’s medium, reflecting both the shared environmental niche and morphological similarities of these species. Additionally, B. ubonensis shows potential as an important biocontrol agent in B. pseudomallei-endemic regions as certain strains possess antagonistic properties towards B. pseudomallei. Current methods for characterising B. ubonensis are laborious, time-consuming and costly, and as such this bacterium remains poorly studied. The aim of our study was to develop a rapid and inexpensive real-time PCR-based assay specific for B. ubonensis. We demonstrate that a novel B. ubonensis-specific assay, Bu550, accurately differentiates B. ubonensis from B.
    [Show full text]
  • Burkholderia Cenocepacia
    DECODING THE REGULATORY MECHANISMS OF TWO QUORUM SENSING PROTEINS, CepR AND CepR2, OF Burkholderia cenocepacia A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Gina Therese Ryan August 2012 © 2012 Gina Therese Ryan ii DECODING THE REGULATORY MECHANISMS OF TWO QUORUM SENSING PROTEINS, CepR AND CepR2, OF Burkholderia cenocepacia Gina Therese Ryan, Ph. D. Cornell University 2012 Burkholderia cenocepacia is an opportunistic pathogen of humans that encodes two LuxR-type acylhomoserine (AHL) synthases and three LuxR-type AHL receptors. Of these, cepI and cepR are tightly linked and form a cognate synthase/receptor pair, as do cciI and cciR. In contrast, CepR2 is unlinked from the other four genes, and lacks a genetically linked cognate AHL synthase gene. In the first study, a CepR-binding site (cep box) was systematically altered to identify nucleotides essential for CepR activity in vivo and CepR binding in vitro. The consensus cep box determined from these experiments was used to screen the genome and identify CepR-regulated genes containing this site. Four new regulated promoters were found to be induced by OHL and required the cep box for induction and CepR binding. In the second study, the regulatory mechanism of CepR2 at two divergently transcribed genes predicted to direct the synthesis of secondary metabolites was investigated. These cepR2-linked genes were induced by OHL and required CepR2, indicating CepR2 acts as a repressor at these promoters and is antagonized by OHL. A lacZ reporter fused to the divergent promoters was used to confirm these hypotheses.
    [Show full text]
  • Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia Territorii GP3 from Mount Papandayan Soil
    J. Microbiol. Biotechnol. (2019), 29(6), 944–951 https://doi.org/10.4014/jmb.1812.12013 Research Article Review jmb Isolation, Cloning and Co-Expression of Lipase and Foldase Genes of Burkholderia territorii GP3 from Mount Papandayan Soil Ludwinardo Putra1, Griselda Herman Natadiputri2, Anja Meryandini1, and Antonius Suwanto1,2* 1Graduate School of Biotechnology, Bogor Agricultural University, Bogor 16680, Indonesia 2Biotechnology Research and Development, PT Wilmar Benih Indonesia, Bekasi 17530, Indonesia Received: December 8, 2018 Revised: May 1, 2019 Lipases are industrial enzymes that catalyze both triglyceride hydrolysis and ester synthesis. Accepted: May 1, 2019 The overexpression of lipase genes is considered one of the best approaches to increase the First published online enzymatic production for industrial applications. Subfamily I.2. lipases require a chaperone or May 14, 2019 foldase in order to become a fully-activated enzyme. The goal of this research was to isolate, *Corresponding author clone, and co-express genes that encode lipase and foldase from Burkholderia territorii GP3, a Phone: +62-812-9973-680; lipolytic bacterial isolate obtained from Mount Papandayan soil via growth on Soil Extract E-mail: [email protected] Rhodamine Agar. Genes that encode for lipase (lipBT) and foldase (lifBT) were successfully cloned from this isolate and co-expressed in the E. coli BL21 background. The highest expression was shown in E. coli BL21 (DE3) pLysS, using pET15b expression vector. LipBT was particulary unique as it showed highest activity with optimum temperature of 80°C at pH 11.0. The optimum substrate for enzyme activity was C10, which is highly stable in methanol solvent.
    [Show full text]
  • Iron Transport Strategies of the Genus Burkholderia
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Iron transport strategies of the genus Burkholderia Mathew, Anugraha Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-113412 Dissertation Published Version Originally published at: Mathew, Anugraha. Iron transport strategies of the genus Burkholderia. 2015, University of Zurich, Faculty of Science. Iron transport strategies of the genus Burkholderia Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anugraha Mathew aus Indien Promotionskomitee Prof. Dr. Leo Eberl (Vorsitz) Prof. Dr. Jakob Pernthaler Dr. Aurelien carlier Zürich, 2015 2 Table of Contents Summary .............................................................................................................. 7 Zusammenfassung ................................................................................................ 9 Abbreviations ..................................................................................................... 11 Chapter 1: Introduction ....................................................................................... 14 1.1.Role and properties of iron in bacteria ...................................................................... 14 1.2.Iron transport mechanisms in bacteria .....................................................................
    [Show full text]
  • Comisión De Investigaciones Científicas CIC PBA, Ministerio De Producción, Ciencia Y Tecnología De La Provincia De Buenos Aires
    “2014 – Año de Homenaje al Almirante Guillermo Brown, en el Bicentenario del Combate Naval de Montevideo” CARRERA DEL INVESTIGADOR CIENTÍFICO Y TECNOLÓGICO Informe Científico1 PERIODO 2: 2013-2015 1. DATOS PERSONALES APELLIDO: BOSCH NOMBRES: MARÍA ALEJANDRA NIEVES Dirección Particular: Calle: Localidad: City Bell CP: 1896 Dirección electrónica (donde desea recibir información, que no sea “Hotmail”): [email protected] 2. TEMA DE INVESTIGACION A) Caracterización molecular y fenotípica de organismos del complejo Burkholderia cepacia recuperados de infecciones pulmonares crónicas en pacientes con fibrosis quística. B) Empleo de métodos espectroscópicos vibracionales aplicados a la caracterización de sistemas biológicos. 3. DATOS RELATIVOS A INGRESO Y PROMOCIONES EN LA CARRERA INGRESO: Categoría: Investigador Adjunto sin Director Fecha: 06/04/2011 ACTUAL: Categoría: Investigador Adjunto sin Director desde fecha: 06/04/2011 4. INSTITUCION DONDE DESARROLLA LA TAREA Universidad y/o Centro: CINDEFI-CONICET-CCT La Plata, Facultad Ciencias Exactas Facultad: Ciencias Exactas, Universidad Nacional de La Plata Departamento: Química Cátedra: Biofilms microbianos / Ingeniería Bioquímica Otros: Área de Biotecnología Dirección: Calle: 50 Nº: 227 entre 115 y 116 Localidad: La Plata CP: 1900 Tel: 221 483 3794 Cargo que ocupa: Profesor Adjunto D. E. 5. DIRECTOR DE TRABAJOS. (En el caso que corresponda) 1 Art. 11; Inc. “e”; Ley 9688 (Carrera del Investigador Científico y Tecnológico). 2 El informe deberá referenciar a años calendarios completos. Ej.: en el año 2014 deberá informar sobre la actividad del período 1°-01-2012 al 31-12-2013, para las presentaciones bianuales. Formulario Informe Científico-Tecnológico 1 “2014 – Año de Homenaje al Almirante Guillermo Brown, en el Bicentenario del Combate Naval de Montevideo” Apellido y Nombres: Dirección Particular: Calle: Nº: Localidad: CP: Tel: Dirección electrónica: ....................................................
    [Show full text]
  • Volcanic Soils As Sources of Novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia Hiiakae Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 21 February 2017 doi: 10.3389/fmicb.2017.00207 Volcanic Soils as Sources of Novel CO-Oxidizing Paraburkholderia and Burkholderia: Paraburkholderia hiiakae sp. nov., Paraburkholderia metrosideri sp. nov., Paraburkholderia paradisi sp. nov., Edited by: Paraburkholderia peleae sp. nov., Svetlana N. Dedysh, Winogradsky Institute of Microbiology and Burkholderia alpina sp. nov. a (RAS), Russia Reviewed by: Member of the Burkholderia cepacia Dimitry Y. Sorokin, The Federal Research Centre Complex “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 1, 2 1 Russia Carolyn F. Weber and Gary M. King * Philippe Constant, 1 Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA, 2 College of Health Sciences, Des INRS-Institut Armand-Frappier, Moines University, Des Moines, IA, USA Canada Paulina Estrada De Los Santos, Instituto Politécnico Nacional, Mexico Previous studies showed that members of the Burkholderiales were important in *Correspondence: the succession of aerobic, molybdenum-dependent CO oxidizing-bacteria on volcanic Gary M. King [email protected] soils. During these studies, four isolates were obtained from Kilauea Volcano (Hawai‘i, USA); one strain was isolated from Pico de Orizaba (Mexico) during a separate Specialty section: study. Based on 16S rRNA gene sequence similarities, the Pico de Orizaba isolate This article was submitted to Terrestrial Microbiology, and the isolates from Kilauea Volcano were provisionally assigned to the genera a section of the journal Burkholderia and Paraburkholderia, respectively. Each of the isolates possessed a form Frontiers in Microbiology I coxL gene that encoded the catalytic subunit of carbon monoxide dehydrogenase Received: 09 December 2016 (CODH); none of the most closely related type strains possessed coxL or oxidized Accepted: 30 January 2017 Published: 21 February 2017 CO.
    [Show full text]
  • Targeting the Burkholderia Cepacia Complex
    viruses Review Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex Philip Lauman and Jonathan J. Dennis * Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-2529 Abstract: The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy. Keywords: Burkholderia cepacia complex (Bcc); bacteria; pathogenesis; antibiotic resistance; bacterio- phages; phages; phage therapy; phage therapy treatment strategies; Bcc phage therapy Citation: Lauman, P.; Dennis, J.J.
    [Show full text]
  • Broad-Spectrum Antimicrobial Activity by Burkholderia Cenocepacia Tatl-371, a Strain Isolated from the Tomato Rhizosphere
    RESEARCH ARTICLE Rojas-Rojas et al., Microbiology DOI 10.1099/mic.0.000675 Broad-spectrum antimicrobial activity by Burkholderia cenocepacia TAtl-371, a strain isolated from the tomato rhizosphere Fernando Uriel Rojas-Rojas,1 Anuar Salazar-Gómez,1 María Elena Vargas-Díaz,1 María Soledad Vasquez-Murrieta, 1 Ann M. Hirsch,2,3 Rene De Mot,4 Maarten G. K. Ghequire,4 J. Antonio Ibarra1,* and Paulina Estrada-de los Santos1,* Abstract The Burkholderia cepacia complex (Bcc) comprises a group of 24 species, many of which are opportunistic pathogens of immunocompromised patients and also are widely distributed in agricultural soils. Several Bcc strains synthesize strain- specific antagonistic compounds. In this study, the broad killing activity of B. cenocepacia TAtl-371, a Bcc strain isolated from the tomato rhizosphere, was characterized. This strain exhibits a remarkable antagonism against bacteria, yeast and fungi including other Bcc strains, multidrug-resistant human pathogens and plant pathogens. Genome analysis of strain TAtl-371 revealed several genes involved in the production of antagonistic compounds: siderophores, bacteriocins and hydrolytic enzymes. In pursuit of these activities, we observed growth inhibition of Candida glabrata and Paraburkholderia phenazinium that was dependent on the iron concentration in the medium, suggesting the involvement of siderophores. This strain also produces a previously described lectin-like bacteriocin (LlpA88) and here this was shown to inhibit only Bcc strains but no other bacteria. Moreover, a compound with an m/z 391.2845 with antagonistic activity against Tatumella terrea SHS 2008T was isolated from the TAtl-371 culture supernatant. This strain also contains a phage-tail-like bacteriocin (tailocin) and two chitinases, but the activity of these compounds was not detected.
    [Show full text]
  • Characterization of Antimicrobial-Producing Beneficial Bacteria Isolated from Huanglongbing Escape Citrus Trees
    fmicb-08-02415 December 5, 2017 Time: 16:45 # 1 ORIGINAL RESEARCH published: 07 December 2017 doi: 10.3389/fmicb.2017.02415 Characterization of Antimicrobial-Producing Beneficial Bacteria Isolated from Huanglongbing Escape Citrus Trees Nadia Riera1, Utpal Handique1, Yunzeng Zhang1, Megan M. Dewdney2 and Nian Wang1* 1 Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States, 2 Citrus Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States The microbiome associated with crop plants has a strong impact on their health and productivity. Candidatus Liberibacter asiaticus (Las), the bacterial pathogen responsible for Huanglongbing (HLB) disease, lives inside the phloem of citrus plants Edited by: Hua Lu, including the root system. It has been suggested that Las negatively affects citrus University of Maryland, Baltimore, microbiome. On the other hand, members of citrus microbiome also influence the United States interaction between Las and citrus. Here, we report the isolation and characterization Reviewed by: Huang Lili, of multiple putative beneficial bacteria from healthy citrus rhizosphere. Firstly, six Northwest A&F University, China bacterial strains showing antibacterial activity against two bacteria closely related to Zhengqing Fu, Las: Agrobacterium tumefaciens and Sinorhizobium meliloti were selected. Among University of South Carolina, United States them, Burkholderia metallica strain A53 and Burkholderia territorii strain A63 are *Correspondence: within the b-proteobacteria class, whereas Pseudomonas granadensis strain 100 and Nian Wang Pseudomonas geniculata strain 95 are within the g-proteobacteria class.
    [Show full text]
  • Molecular Characterisation and Plant-Growth Promotion
    MOLECULAR CHARACTERISATION AND PLANT-GROWTH PROMOTION POTENTIAL OF PHOSPHATE SOLUBILISING BACTERIA FROM ROOTS OF SELECTED CROPS AROUND MOROGORO MUNICIPALITY, TANZANIA STEPHEN, GERISON SADDICK A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN SOIL SCIENCE AND LAND MANAGEMENT OF SOKOINE UNIVERSITY OF AGRICULTURE. MOROGORO, TANZANIA. 2020 2 EXTENDED ABSTRACT Soil infertility is reported to be among the most limiting factors for crop production and yield. Despite being abundant in most soils, only a small proportion of phosphorus is readily available to plants due to its high reactivity with soil constituents and slow release from phosphate compounds. Phosphate solubilising bacteria (PSB) play an important role in phosphorus nutrition. These microbes can solubilise various insoluble phosphate compounds through different mechanisms including production of organic and inorganic acids, production of chelating substances and ammonium assimilation, thus enriching soluble phosphorus into soil solution for plant uptake. Use of phosphate solubilising bacteria in agriculture has been reported to increase crop yield in different crops including maize (Zea mays L.). Other than phosphate solubilisation, PSB can also solubilise micronutrients including zinc (Zn) and iron (Fe). PSB are also known to produce various plant growth promoting substances such as indole acetic acid (IAA) and siderophore, which are important for crop growth and development. This study therefore aimed at evaluating the plant growth promotion potential of phosphate solubilising microorganisms by, in addition to phosphate solubilisation, looking at their potential for zinc solubilisation, siderophore and IAA production and plant growth promotion in general. Purified colonies of bacteria from 19 native PSB isolated from selected field and garden crops grown around Morogoro municipality, Tanzania, were found to be strong phosphate solubilisers, hence were selected for further studies.
    [Show full text]
  • DISSERTAÇÃO Josineide Neri Monteiro.Pdf
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA BIOMÉDICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA BIOMÉDICA JOSINEIDE NERI MONTEIRO IDENTIFICAÇÃO DE BACTÉRIAS DO COMPLEXO Burkholderia cepacia ATRAVÉS DE UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS RECIFE 2017 JOSINEIDE NERI MONTEIRO IDENTIFICAÇÃO DE BACTÉRIAS DO COMPLEXO Burkholderia cepacia ATRAVÉS DE UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Biomédica (PPGEB), da Universidade Federal de Pernambuco (UFPE), como requisito parcial para a obtenção do título de Mestre em Engenharia Biomédica. Área de concentração: Computação Biomédica Linha de pesquisa: Inteligência Artificial e Sistemas Inteligentes ORIENTADOR: Ricardo Yara RECIFE 2017 Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198 M775i Monteiro, Josineide Neri. Identificação de bactérias do complexo Burkholderia cepacia através de utilização de ferramentas computacionais / Josineide Neri Monteiro. - 2017. 75 folhas, il., gráfs., tabs. Orientador: Prof. Dr. Ricardo Yara. Dissertação (Mestrado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Engenharia Biomédica, 2017. Inclui Referências e Apêndices. 1. Engenharia Biomédica. 2. Burkholderia. 3. Bioinformática. 4. Alinhamento genético. 5. Algoritmos genéticos. 6. Taxonomia. I. Yara, Ricardo. (Orientador). II. Título. UFPE 610.28 CDD (22. ed.) BCTG/2017-299 JOSINEIDE NERI MONTEIRO IDENTIFICAÇÃO DE BACTÉRIAS DO COMPLEXO Burkholderia Cepacia ATRAVÉS DE UTILIZAÇÃO DE FERRAMENTAS COMPUTACIONAIS Esta dissertação foi julgada adequada para a obtenção do título de Mestre em Engenharia Biomédica e aprovada em sua forma final pelo Orientador e pela Banca Examinadora. Orientador: ____________________________________ Prof. Dr. Ricardo Yara (Doutor pela Universidade de São Paulo – São Paulo , Brasil) Banca Examinadora: Prof. Dr. Ricardo Yara, UFPE Doutor pela Universidade de São Paulo – São Paulo, Brasil Prof.
    [Show full text]
  • Table S8. Species Identified by Random Forests Analysis of Shotgun Sequencing Data That Exhibit Significant Differences In
    Table S8. Species identified by random forests analysis of shotgun sequencing data that exhibit significant differences in their representation in the fecal microbiomes between each two groups of mice. (a) Species discriminating fecal microbiota of the Soil and Control mice. Mean importance of species identified by random forest are shown in the 5th column. Random forests assigns an importance score to each species by estimating the increase in error caused by removing that species from the set of predictors. In our analysis, we considered a species to be “highly predictive” if its importance score was at least 0.001. T-test was performed for the relative abundances of each species between the two groups of mice. P-values were at least 0.05 to be considered statistically significant. Microbiological Taxonomy Random Forests Mean of relative abundance P-Value Species Microbiological Function (T-Test) Classification Bacterial Order Importance Score Soil Control Rhodococcus sp. 2G Engineered strain Bacteria Corynebacteriales 0.002 5.73791E-05 1.9325E-05 9.3737E-06 Herminiimonas arsenitoxidans Engineered strain Bacteria Burkholderiales 0.002 0.005112829 7.1580E-05 1.3995E-05 Aspergillus ibericus Engineered strain Fungi 0.002 0.001061181 9.2368E-05 7.3057E-05 Dichomitus squalens Engineered strain Fungi 0.002 0.018887472 8.0887E-05 4.1254E-05 Acinetobacter sp. TTH0-4 Engineered strain Bacteria Pseudomonadales 0.001333333 0.025523638 2.2311E-05 8.2612E-06 Rhizobium tropici Engineered strain Bacteria Rhizobiales 0.001333333 0.02079554 7.0081E-05 4.2000E-05 Methylocystis bryophila Engineered strain Bacteria Rhizobiales 0.001333333 0.006513543 3.5401E-05 2.2044E-05 Alteromonas naphthalenivorans Engineered strain Bacteria Alteromonadales 0.001 0.000660472 2.0747E-05 4.6463E-05 Saccharomyces cerevisiae Engineered strain Fungi 0.001 0.002980726 3.9901E-05 7.3043E-05 Bacillus phage Belinda Antibiotic Phage 0.002 0.016409765 6.8789E-07 6.0681E-08 Streptomyces sp.
    [Show full text]