Reptiles and Amphibians Cibola National Wildlife Refuge

Total Page:16

File Type:pdf, Size:1020Kb

Reptiles and Amphibians Cibola National Wildlife Refuge U.S. Fish and Wildlife Service Reptiles and Amphibians Cibola National Wildlife Refuge Class Amphibia (Amphibians) Side-blotched Lizard Order Anura (Toads, frogs, and Uta stansburiana treefrogs) Long-tailed Brush Lizard Family Bufonidae Urosaurus graciosus (Toads) Tree Lizard Great Plains Toad Urosaurus omatus Bufo cognatus Desert Horned Lizard Red-Spotted Toad Phrynosoma platyrhinos Bufo punctatus Zebra-tailed Lizard Woodhouse’s toad Callisaurus draconoides Mohave Rattlesnake** B. woodhousii woodhousii Western Whiptail Crotalus scutulatus Couch Spadefoot Toad Cnemidophorus tigris Scaphiopus couchii **Known to be poisonous Order Squamata (Snakes) Family Ranidae Family Colubridae Order Testudines (Turtles and Bullfrog (Typical snakes) tortoises) Rana catesbeiana Western Blind Snake Family Trionychidae Leptotyphlops humilis (Softshell turtles) Class Reptilia (Reptiles) Coachwhip Spiny softshell turtles Order Crocodylia (Alligators, Masticophis flagellum Trionyx spiniferus caimans, lizards, and iguanian Western Patch-nosed Desert Tortoise lizards) Salvadora hexalepis Gopherus agassizii Lizards Glossy Snake Western Banded Gecko Arizona elegans It is unlawful to harass or disturb Coleonyx variegatus Banded Sand Snake any wildlife within the refuge. Desert Iguana Chilomeniscus cinctus Dipsosaurus dorsalis Gopher Snake February 2018 Chuckwalla Pituophis melanoleucus Sauromalus obesus Common Kingsnake Desert Collared Lizard Lampropeltis getulus Crotaphytus insularis Longnosed Snake Leopard Lizard Rhinocheilus lecontei Gambelia wislizenii Checkered Garter Desert Spiny Lizard Thamnophis marcianus Sceloporus magister Western Groundsnake Sonora semiannulata Western Shovel-nosed Top, Desert tortoise. Left, Side- Chionactis occipitalis blotched Lizard. Above, Mojave Night Snake rattlesnake / USFWS Photographs Hypsiglena torquata Western Diamondback** Crotalus atrax Sidewinder** Crotalus cerastes.
Recommended publications
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Iguanid and Varanid CAMP 1992.Pdf
    CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological
    [Show full text]
  • Effects of Habitat on Clutch Size of Ornate Tree Lizards, Urosaurus Ornatus
    Western North American Naturalist Volume 71 Number 2 Article 12 8-12-2011 Effects of habitat on clutch size of ornate tree lizards, Urosaurus ornatus Gregory Haenel Elon University, Elon, North Carolina, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Haenel, Gregory (2011) "Effects of habitat on clutch size of ornate tree lizards, Urosaurus ornatus," Western North American Naturalist: Vol. 71 : No. 2 , Article 12. Available at: https://scholarsarchive.byu.edu/wnan/vol71/iss2/12 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 71(2), © 2011, pp. 247–256 EFFECTS OF HABITAT ON CLUTCH SIZE OF ORNATE TREE LIZARDS, UROSAURUS ORNATUS Gregory Haenel1 ABSTRACT.—Clutch size is an important determinant of female reproductive success in reptiles. Although female body size explains much variation in clutch size, other important factors include differences in food availability, predation risk, morphology, and demography. Ornate tree lizards, Urosaurus ornatus, display extensive variation in life history traits, including clutch size. Tree lizards primarily use 2 distinct habitat types—trees and rock surfaces—which influence both the performance and morphology of this species and may affect life history traits such as clutch size. As food availability, micro- climate, and, potentially, predator escape probabilities differ between these 2 habitats, I predicted that tree- and rock- dwelling lizards would allocate resources toward clutch size differently.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • A Test with Sympatric Lizard Species
    Heredity (2016) 116, 92–98 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Does population size affect genetic diversity? A test with sympatric lizard species MTJ Hague1,2 and EJ Routman1 Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations.
    [Show full text]
  • Biodiversity of Amphibians and Reptiles at the Camp Cady Wildlife
    Ascending and descending limbs of hydrograph Pulse flow ascending-descending limbs of hydrograph Low Peak Restora- Low Peak Pulse Low release release tion release release restoration Shape release mag- Shape mag- release Shape mag- Date and Shape mag- release de- mag- Date and Water nitude ascend- nitude (hector descend- nitude duration flow Total Low ascend- nitude (hector scend- nitude duration flow to Total Year Year Flow (m3/s) ing (m3/s) m) ing (m3/s) to base-flow days (m3/s) ing (m3/s) m) ing (m3/s) base-flow days 25 Apr-22 1995 na Pre-ROD 14 R 131 na G 27 28 May 1996 na Pre-ROD 9 R 144 na G, 1B 14 10 May-9 Jun 31 1997 na Pre-ROD 10 R 62 na G, 3B 13 2 May-2 Jul 62 1998 na Pre-ROD 47 R 192 na G 13 24 May-27 Jul 65 1999 na Pre-ROD 15 G 71 na G 13 8 May-18 Jul 72 2000 na Pre-ROD 9 R 66 na G 13 8 May-27 Jul 81 2002 normal Pre-ROD 9 R 171 59,540 G 13 27 Apr-25 Jun 28 2003 wet Pulse 9 R 74 55,272 G, 2B 12 29 Apr-22 Jul 85 13 R 51 4,194 G 12 23 Aug-18 Sep 27 2004 wet Pulse 9 R 176 80,300 G, 4B 12 4 May-22 Jul 80 16 R 48 4,465 G 14 21 Aug-14 Sep 25 2005 wet ROD 8 R, 2 B 197 79,880 G, 1B 13 27 Apr-22 Jul 87 2006 extra wet ROD 8 G, 5B 286 99,900 G, 2B 13 16 Apr-22 Jul 98 2007 dry ROD 8 R 135 55,963 G 13 25 Apr-25 Jun 62 2008 dry ROD 9 R, 1B 183 80,016 G, 3B 20 22 Apr-15 Jul 85 2009 dry ROD 8 R 125 54,952 G, 4B 12 24 Apr-6 Jul 74 2010 wet ROD 9 R 194 81,003 G, 3B 12 22 Apr-2 Aug 102 2011 wet ROD 7 R, 2B 329 89,033 G, 2B 13 26 Apr-1 Aug 98 2012 normal Pulse 9 R, 2B 172 79,819 G, 4B 13 4 Apr-26 Jul 114 13 R, 1B 39 4,811 R, 1B 13 12 Aug-20 Sep
    [Show full text]
  • Index to Scientific Names of Amphibians and Reptiles for Volume 33 (1998)
    Bull. Chicago Herp. Soc. 33(12):271-273, 1998 Index to Scientific Names of Amphibians and Reptiles for Volume 33 (1998) January 1-24 April 73-96 July 141-160 October 205-224 February 25-48 May 97-112 August 161-180 November 225-252 March 49-72 June 113-140 September 181-204 December 253-276 Abronia 20 slevini 19 fowleri 191-193 neotesselatus 75, 76, 79-82 Acanthodactylus steindachneri 19 Caiman neotesselatus × sexlineatus 82 bedriagai 182, 184 Apalone 91 crocodilus crocodilus 109, 177 septemvittatus 77 boskianus 185 mutica 148 yacare 177 sexlineatus 6-8, 75-81, 83, 144, dumerili exiguus 182, 185 spinifera 144-146, 239, 241 Callisaurus draconoides 52 146 erythrurus lineomaculatus 185 spinifera 40 Calloselasma rhodostoma 220 tesselatus 12, 75-84 Acris crepitans 143, 144, 152, 239, Arthrosaura synaptolepis 41 Cerastes tesselatus × sexlineatus 79-80 240 Atractus 250 cerastes 187 tigris 77 Acrochordus arafurae 68 Batrachoseps 220 vipera 187 marmoratus 78 Adelphicos 250 nigriventris 109 Cerberus rynchops 109 vanzoi 268 Afroedura 93 wrighti 109 Chalcides Coleonyx 20 Agama impalearis 183 Bipes 1-5 mionecton 185 Colostethus 92 Agalychnis callidryas 212-214 biporus 1, 2 ocellatus atopoglossus 92 Agkistrodon 32 canaliculatus 2 ocellatus 185 lacrimosus 92 contortrix 259, 260 Bitis caudalis 248 tiligugu 185 tamacuarensis 41 mokasen 189, 190 Blanus 2 Chameleo Coluber piscivorus 250, 258, 259 cinereus 2, 3 africanus 184 algirus algirus 182, 186 leucostoma 100 tingitanus 183 chameleon chameleon 184 constrictor 9-10, 12, 148, 239, 241 Aipysurus laevis
    [Show full text]
  • Class: Amphibia Amphibians Order
    CLASS: AMPHIBIA AMPHIBIANS ANNIELLIDAE (Legless Lizards & Allies) CLASS: AMPHIBIA AMPHIBIANS Anniella (Legless Lizards) ORDER: ANURA FROGS AND TOADS ___Silvery Legless Lizard .......................... DS,RI,UR – uD ORDER: ANURA FROGS AND TOADS BUFONIDAE (True Toad Family) BUFONIDAE (True Toad Family) ___Southern Alligator Lizard ............................ RI,DE – fD Bufo (True Toads) Suborder: SERPENTES SNAKES Bufo (True Toads) ___California (Western) Toad.............. AQ,DS,RI,UR – cN ___California (Western) Toad ............. AQ,DS,RI,UR – cN ANNIELLIDAE (Legless Lizards & Allies) Anniella ___Red-spotted Toad ...................................... AQ,DS - cN BOIDAE (Boas & Pythons) ___Red-spotted Toad ...................................... AQ,DS - cN (Legless Lizards) Charina (Rosy & Rubber Boas) ___Silvery Legless Lizard .......................... DS,RI,UR – uD HYLIDAE (Chorus Frog and Treefrog Family) ___Rosy Boa ............................................ DS,CH,RO – fN HYLIDAE (Chorus Frog and Treefrog Family) Pseudacris (Chorus Frogs) Pseudacris (Chorus Frogs) Suborder: SERPENTES SNAKES ___California Chorus Frog ............ AQ,DS,RI,DE,RO – cN COLUBRIDAE (Colubrid Snakes) ___California Chorus Frog ............ AQ,DS,RI,DE,RO – cN ___Pacific Chorus Frog ....................... AQ,DS,RI,DE – cN Arizona (Glossy Snakes) ___Pacific Chorus Frog ........................AQ,DS,RI,DE – cN BOIDAE (Boas & Pythons) ___Glossy Snake ........................................... DS,SA – cN Charina (Rosy & Rubber Boas) RANIDAE (True Frog Family)
    [Show full text]
  • Sprint Performance of Phrynosomatid Lizards, Measured on a High-Speed Treadmill, Correlates with Hindlimb Length
    J. Zool., Lond. (1999) 248, 255±265 # 1999 The Zoological Society of London Printed in the United Kingdom Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length Kevin E. Bonine and Theodore Garland, Jr Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706-1381, U.S.A. (Accepted 19 September 1998) Abstract We measured sprint performance of phrynosomatid lizards and selected outgroups (n = 27 species). Maximal sprint running speeds were obtained with a new measurement technique, a high-speed treadmill (H.S.T.). Animals were measured at their approximate ®eld-active body temperatures once on both of 2 consecutive days. Within species, individual variation in speed measurements was consistent between trial days and repeatabilities were similar to values reported previously for photocell-timed racetrack measure- ments. Multiple regression with phylogenetically independent contrasts indicates that interspeci®c variation in maximal speed is positively correlated with hindlimb span, but not signi®cantly related to either body mass or body temperature. Among the three phrynosomatid subclades, sand lizards (Uma, Callisaurus, Cophosaurus, Holbrookia) have the highest sprint speeds and longest hindlimbs, horned lizards (Phryno- soma) exhibit the lowest speeds and shortest limbs, and the Sceloporus group (including Uta and Urosaurus) is intermediate in both speed and hindlimb span. Key words: comparative method, lizard, locomotion, morphometrics, phrynosomatidae, sprint speed INTRODUCTION Fig. 1; Montanucci, 1987; de Queiroz, 1992; Wiens & Reeder, 1997) that exhibit large variation in locomotor Evolutionary physiologists and functional morpholo- morphology and performance, behaviour, and ecology gists emphasize the importance of direct measurements (Stebbins, 1985; Conant & Collins, 1991; Garland, 1994; of whole-animal performance (Arnold, 1983; Garland & Miles, 1994a).
    [Show full text]
  • Proceedings of the United States National Museum
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued i^?fv vl vJ^^S ^V '^^ SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 95 Washington : 1945 No. 3185 SUMMARY OF THE COLLECTIONS OF AMPHIBIANS MADE IN MEXICO UNDER THE WALTER RATHBONE BACON TRAVELING SCHOLARSHIP By Edward H. Taylor and Hobart M. Smith INTRODUCTION By tenure of the Walter Rathbone Bacon Traveling Scholarship from 1938 to 1940, the junior author was enabled to continue field studies that had been under way several years on the herpetofauna of Mexico. Aided by his wife, he accumulated a collection of reptiles and amphibians the study of which still continues. A brief summary of the snakes and crocodiles has appeared previously (Smith, 1943). With the aid of the senior author a summary of the amphibians has been completed and forms the basis of the present paper. The liz- ards are being studied as time permits, and a summary of them is contemplated. No survey of the turtles is envisioned. The itin- erary and list of localities visited by the collectors will accompany a later report. The amphibians comprise 10,370 specimens, or about half the total number of herpetological specimens obtained. They represent 27 genera and 146 forms. Thirty-three of the species were undescribed at the time of collecting; the specimens of them secured have formed the basis at least in part for their subsequent descriptions. Eleven of the 33 are represented only by paratypes, while 22 are represented by holotypes. Of the latter, eight are described in the present paper, while all others were described by Taylor (1940c, 1941b, d, e, 1942a-d, 1943a, b) or Smith (1939).
    [Show full text]
  • Notice Warning Concerning Copyright Restrictions P.O
    Publisher of Journal of Herpetology, Herpetological Review, Herpetological Circulars, Catalogue of American Amphibians and Reptiles, and three series of books, Facsimile Reprints in Herpetology, Contributions to Herpetology, and Herpetological Conservation Officers and Editors for 2015-2016 President AARON BAUER Department of Biology Villanova University Villanova, PA 19085, USA President-Elect RICK SHINE School of Biological Sciences University of Sydney Sydney, AUSTRALIA Secretary MARION PREEST Keck Science Department The Claremont Colleges Claremont, CA 91711, USA Treasurer ANN PATERSON Department of Natural Science Williams Baptist College Walnut Ridge, AR 72476, USA Publications Secretary BRECK BARTHOLOMEW Notice warning concerning copyright restrictions P.O. Box 58517 Salt Lake City, UT 84158, USA Immediate Past-President ROBERT ALDRIDGE Saint Louis University St Louis, MO 63013, USA Directors (Class and Category) ROBIN ANDREWS (2018 R) Virginia Polytechnic and State University, USA FRANK BURBRINK (2016 R) College of Staten Island, USA ALISON CREE (2016 Non-US) University of Otago, NEW ZEALAND TONY GAMBLE (2018 Mem. at-Large) University of Minnesota, USA LISA HAZARD (2016 R) Montclair State University, USA KIM LOVICH (2018 Cons) San Diego Zoo Global, USA EMILY TAYLOR (2018 R) California Polytechnic State University, USA GREGORY WATKINS-COLWELL (2016 R) Yale Peabody Mus. of Nat. Hist., USA Trustee GEORGE PISANI University of Kansas, USA Journal of Herpetology PAUL BARTELT, Co-Editor Waldorf College Forest City, IA 50436, USA TIFFANY
    [Show full text]