Predation on the Black-Throated Sparrow Amphispiza Bilineata

Total Page:16

File Type:pdf, Size:1020Kb

Predation on the Black-Throated Sparrow Amphispiza Bilineata Herpetology Notes, volume 13: 401-403 (2020) (published online on 26 May 2020) Predation on the black-throated sparrow Amphispiza bilineata (Cassin, 1850) and scavenging behaviour on the western banded gecko Coleonyx variegatus (Baird, 1858) by the glossy snake Arizona elegans Kennicott, 1859 Miguel A. Martínez1 and Manuel de Luna1,* The glossy snake Arizona elegans Kennicott, 1859 is Robles et al., 1999a), no specific species have been a nocturnal North American colubrid found from central identified as a prey item until this paper, in which we California to southwestern Nebraska in the United States present evidence of predation on the black-throated and south through Baja California, Aguascalientes, San sparrow Amphispiza bilineata (Cassin, 1850). Luis Potosí and Sinaloa in Mexico (Dixon and Fleet, On 20 September 2017, at around 23:00 h, an 1976). Several species have been identified as prey adult specimen of Arizona elegans was found in the items of this snake (Rodríguez-Robles et al., 1999a) municipality of Hipólito (25.7780 N, -101.4017 W, including the mole Scalopus aquaticus (Linnaeus, 1758) 1195 m a.s.l.), state of Coahuila, Mexico. The snake (Eulipotyphla: Talpidae), the rodents Peromyscus sp. had caught and was in the process of killing and then (Rodentia: Cricetidae), Chaetodipus formosus (Merriam, consuming a small bird (Fig. 1); this act lasted close to 1889), Dipodomys merriami Mearns, 1890, Dipodomys 30 minutes. After completely swallowing its prey, the ordii Woodhouse, 1853, Dipodomys sp., Perognathus snake crawled away to a safe spot under a group of inornatus Merriam, 1889, Perognathus (sensu lato) sp. nearby dead Agave lechuguilla plants. (Rodentia: Heteromyidae), the snake Phyllorhynchus The prey was identified as a black-throated sparrow decurtatus (Cope, 1868) (Squamata: Colubridae) and Amphispiza bilineata (Passeriformes: Passerellidae), the lizards Dipsosaurus dorsalis (Baird and Girard, a sparrow which is sympatric with Arizona elegans 1852) (Squamata: Iguanidae), Callisaurus draconoides throughout its range (Johnson et al., 2002). This Blainville, 1835, Phrynosoma cornutum (Harlan, 1825), sparrow is typically seen lingering and nesting in Phrynosoma coronatum (Blainville, 1835), Phrynosoma hernandesi Girard, 1858, Sceloporus cautus Smith, 1938 (Lazcano et al., 2011), Sceloporus magister Hallowell, 1854, Sceloporus sp., Uta stansburiana Baird and Girard, 1852 (Squamata: Phrynosomatidae), Aspidoscelis marmoratus (Baird and Girard, 1852) (Castañeda-Gaytan et al., 2005), Aspidoscelis tigris (Baird and Girard, 1852), Aspidoscelis sp. (Teiidae) and Xantusia vigilis Baird, 1859 (Squamata: Xantusiidae). While Arizona elegans does feed on birds (Rodríguez- 1 Universidad Autónoma de Nuevo León, Manuel L. Barragán Avenue, Ciudad Universitaria, San Nicolás de los Garza, Figure 1. Glossy snake Arizona elegans starting to consume Nuevo León, 66455, México. the black-throated sparrow Amphispiza bilineata. Municipality * Corresponding author. E-mail: [email protected] of Hipólito, Coahuila, Mexico. Photo by first author. 402 Miguel A. Martínez & Manuel de Luna Masticophis flagellum Shaw, 1802 (Klauber, 1945), Phyllorhynchus decurtatus which only eats the tails (Gardner and Mendelson, 2003), Salvadora hexalepis (Cope, 1866) (Parker, 1972) (Squamata: Colubridae), Hypsiglena sp. (Squamata: Dipsadidae) (Rodríguez- Robles et al., 1999b), Crotalus atrox Baird and Girard, 1853 (Parker, 1972) and Crotalus cerastes Hallowell, 1854 (Squamata: Viperidae) (Funk, 1965) and the lizard Callisaurus draconoides (Squamata: Phrynosomatidae) (Parker, 1972). Coleonyx variegatus could be a prey item of other sympatric colubrids, dipsadids and vipers, as well as large carnivorous arthropods (Parker, 1972). Figure 2. Glossy snake Arizona elegans feeding on the run over remains of a western banded gecko Coleonyx variegatus. Acknowledgments. We are very thankful to John Sullivan of Borrego Springs, San Diego county, California, United States. Wild Herps (www.wildherps.com) who allowed us to use both Photo by John Sullivan, used with permission. his photo and information in order to publish the scavenging part of this note. References bushes and shrubs lower than 50 cm in height (Kozma Castañeda-Gaytan, G., García-de la Peña, C., Lazcano, D. and Mathews, 1997), which likely make it vulnerable to (2005): Arizona elegans arenicola (Texas Glossy Snake) Diet. attacks from foraging snakes, especially at night when Herpetological Review 36(1): 67. Dittmer, D.E., Leavitt, D.J., Ryberg, W.A., Fitzgerald, L.A. (2012): the sparrow is resting. Arizona elegans elegans (Kansas Glossy Snake) Diet and There is a single record of scavenging behaviour of feeding behavior. Herpetological Review 43(1): 143. Arizona elegans (Dittmer et al., 2012). Herein we present Dixon, J.R., Fleet, R.R. (1976): Arizona, A. elegans. Catalogue of a second case; this time on the remains of a western American Amphibians and Reptiles 179: 1–. banded gecko Coleonyx variegatus (Baird, 1858). This Funk, R.S. (1965): Food of Crotalus cerastes laterorepens in Yuma record also represents the first time Coleonyx variegatus County, Arizona. Herpetologica 21: 15–17.– Gardner, S.A., Mendelson III, J.R. (2003): Diet of the leaf-nosed is identified as a prey item of Arizona elegans. snakes, Phyllorhynchus (Squamata: Colubridae): Squamate-egg On 21 April 2009, at around 21:56 h, a juvenile Arizona specialists. The Southwestern Naturalist 48(4): 550–56. elegans was sighted on a road in Borrego Springs Hadley, N.F., Williams, S.C. (1968): Surface activities of some (33.2564 N, -116.3877 W, 208 m a.s.l.), San Diego North American scorpions in relation to feeding. Ecology 49: County, California, United States. The snake had begun 726–34. consuming, head first, a lizard which clearly had been Johnson, M.J., VanRiper, C., Pearson, K.M. (2002): Black-throated Sparrow (Amphispiza bilineata) In: The Birds of North America run over by a vehicle (Fig. 2). The act was witnessed (Poole, A. F., Gill, F. B. Editors) version 2.0 Cornell Lab of only for around five minutes in order to not scare the Ornithology, Ithaca, New York, USA. https://doi.org/10.2173/ snake from its prey, which it had stopped swallowing bna.637 while in human presence. Klauber, L.M. (1945): The geckos of the genus Coleonyx with The prey was identified as a western banded gecko descriptions of new subspecies. Transactions of the San Diego Coleonyx variegatus (Squamata: Eublepharidae), a Society of Natural History 10: 133–216. Kozma, J.M., Mathews, N.E. (1997): Breeding bird communities lizard which is sympatric with Arizona elegans through and nest plant selection in Chihuahuan Desert habitats in south the north-western part of its range. This lizard is active central New Mexico. Wilson Bulletin 109: 424–436. at night; which coincides with the foraging habits of Lazcano, D., Chávez-Cisneros, J.A., Banda-Leal, J. (2011): Arizona Arizona elegans. Therefore, it is likely that the gecko is elegans elegans (Kansas Glossy Snake) Diet. Herpetological a prey item wherever they both occur. Review 42(4): 610. This record expands the knowledge on the predator- Parker, W.S. (1972): Aspects of the ecology of a Sonoran Desert population of the western banded gecko, Coleonyx variegatus prey interaction involving Coleonyx variegatus. Other (Sauria, Eublepharinae). The American Midland Naturalist predators of this lizard are known and include the 88(1): 209–224.– scorpion Hadrurus arizonensis Ewig, 1928 (Scorpiones: Rodríguez-Robles, J.A., Bell, C.J., Greene, H.W. (1999a): Food Caraboctonidae) (Hadley and Williams, 1968), the snakes habits of the glossy snake, Arizona elegans, with comparisons to Predation and scavenging behaviour of the glossy snake Arizona elegans 403 the diet of sympatric long-nosed snakes, Rhinocheilus lecontei. Journal of Herpetology 33(1): 87–92.– Rodríguez-Robles, J.A., Mulcahy, D.G., Greene, H.W. (1999b): Feeding ecology of the desert nightsnake Hypsiglena torquata (Colubridae) Copeia 1999: 93–100.– Accepted by Graham Walters.
Recommended publications
  • Herpetological Information Service No
    Type Descriptions and Type Publications OF HoBART M. Smith, 1933 through June 1999 Ernest A. Liner Houma, Louisiana smithsonian herpetological information service no. 127 2000 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. Introduction Hobart M. Smith is one of herpetology's most prolific autiiors. As of 30 June 1999, he authored or co-authored 1367 publications covering a range of scholarly and popular papers dealing with such diverse subjects as taxonomy, life history, geographical distribution, checklists, nomenclatural problems, bibliographies, herpetological coins, anatomy, comparative anatomy textbooks, pet books, book reviews, abstracts, encyclopedia entries, prefaces and forwords as well as updating volumes being repnnted. The checklists of the herpetofauna of Mexico authored with Dr. Edward H. Taylor are legendary as is the Synopsis of the Herpetofalhva of Mexico coauthored with his late wife, Rozella B.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Exploring at Night! in Honor of National Pollinator Week, Over 100 People Visited Ash Meadows for a Nocturnal Adventure This June
    Ash Meadows National Wildlife Refuge CurrentsSummer 2012 Editors: Alyson Mack [email protected] 702-515-5496 Cyndi Souza [email protected] 775-372-5435 Exploring at Night! In honor of National Pollinator Week, over 100 people visited Ash Meadows for a nocturnal adventure this June. Everyone enjoyed some “bat fruit salad” while they waited for the event to begin. The salad is made with fruits pollinated and seed dispersed by bats: peaches, mangoes, dates, figs, and cashews. Upcoming Events: To start things off, Refuge biologist Cristi Baldino gave a fun and informative presentation on Art-in-Nature Day! bat basics. Kids learned about what bats are, how they hunt using echolocation, what to do if you Sunday, October 14, encounter a bat – and a myriad of other cool facts about bats! The group then hiked down the 10am-3pm boardwalk to search for some bats in the wild! Calling all artists! Join other local artists and display Participants learned how to use ANABAT detectors to pick up the sounds that bats make. Just your Ash Meadows inspired like birds, each bat makes a unique “call” that scientists can use to tell them apart. Using a special artwork. Ash Meadows is lush and computer program, GBI Resource Specialist Sam Skalak showed everyone how to analyze the green right now - early morning and evening bat sound waves, or sonograms, to determine their species and behavior. are great times to capture that perfect photo! Multi-Media displays are welcome, including Cristi Baldino and Death Valley N.P. biologist Linda Manning set up a bat mist netting station..
    [Show full text]
  • 13 Index of Common Names
    Index of Common Names BITING/STINGING/VENOMOUS PESTS Bees ………………………………………………………… 6 Honey bee…………………………………………………6 Africanized bees……………………………………….. 7 Bumblebee…………………………………………………….9 Carpenter bee……………………………………………….9 Digger bee………………………………………………………11 Leaf cutter bee………………………………………………….12 Sweat bee………………………………………………………..13 Wasps…………………………………………………………….14 Tarantula hawk…………………………………………………14 Yellowjacket……………………………………………………….15 Aerial yellowjacket ……………………………………………….15,16 Common yellowjacket ……………………………………………….15 German yellowjacket……………………………………………….15 Western yellowjacket……………………………………………….15 Paper wasp………………………………………………. 18 Brown paper wasp……………………………………………….18 Common paper wasp ……………………………………………….18 European paper wasp……………………………………………….18 Navajo paper wasp……………………………………………….18,19 Yellow paper wasp……………………………………………….18,19 Western paper wasp……………………………………………….18 Mud dauber………………………………………………. 20 Black and blue mud dauber……………………………..………………….20 Black and yellow mud dauber……………………………………………….20 Organ pipe mud dauber……………………………………………….20,21 Velvet ant……………………………………………………21 Scorpions………………………………………………………23 Arizona bark scorpion……………………………………………….23 Giant hairy scorpion ……………………………………………….24 Striped-tail scorpion……………………………………………….25 Yellow ground scorpion……………………………………………….25 Spiders…………………………………………………………..26 Cellar spider……………………………………………….2 6 Recluse spider……………………………………………….27 Tarantula…………………………………………………. 28 Widow spider……………………………………………….29 Scorpion/spider look-alikes……………………………………………….30 Pseudoscorpion……………………………………………….30 Solifugid/wind
    [Show full text]
  • Species Selection Process
    FINAL Appendix J to S Volume 3, Book 2 JULY 2008 COYOTE SPRINGS INVESTMENT PLANNED DEVELOPMENT PROJECT FINAL VOLUME 3 Coyote Springs Investment Planned Development Project Appendix J to S July 2008 Prepared EIS for: LEAD AGENCY U.S. Fish and Wildlife Service Reno, NV COOPERATING AGENCIES U.S. Army Corps of Engineers St. George, UT U.S. Bureau of Land Management Ely, NV Prepared MSHCP for: Coyote Springs Investment LLC 6600 North Wingfield Parkway Sparks, NV 89496 Prepared by: ENTRIX, Inc. 2300 Clayton Road, Suite 200 Concord, CA 94520 Huffman-Broadway Group 828 Mission Avenue San Rafael, CA 94901 Resource Concepts, Inc. 340 North Minnesota Street Carson City, NV 89703 PROJECT NO. 3132201 COYOTE SPRINGS INVESTMENT PLANNED DEVELOPMENT PROJECT Appendix J to S ENTRIX, Inc. Huffman-Broadway Group Resource Concepts, Inc. 2300 Clayton Road, Suite 200 828 Mission Avenue 340 North Minnesota Street Concord, CA 94520 San Rafael, CA 94901 Carson City, NV 89703 Phone 925.935.9920 Fax 925.935.5368 Phone 415.925.2000 Fax 415.925.2006 Phone 775.883.1600 Fax 775.883.1656 LIST OF APPENDICES Appendix J Mitigation Plan, The Coyote Springs Development Project, Lincoln County, Nevada Appendix K Summary of Nevada Water Law and its Administration Appendix L Alternate Sites and Scenarios Appendix M Section 106 and Tribal Consultation Documents Appendix N Fiscal Impact Analysis Appendix O Executive Summary of Master Traffic Study for Clark County Development Appendix P Applicant for Clean Water Act Section 404 Permit Application, Coyote Springs Project, Lincoln County, Nevada Appendix Q Response to Comments on the Draft EIS Appendix R Agreement for Settlement of all Claims to Groundwater in the Coyote Spring Basin Appendix S Species Selection Process JULY 2008 FINAL i APPENDIX S Species Selection Process Table of Contents Appendix S: Species Selection Process ........................................................................................................
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Body-Size Effect on Egg Size in Eublepharid Geckos (Squamata
    Blackwell Publishing LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 20062006 884 527532 Original Article EGG-SIZE ALLOMETRY IN EUBLEPHARID GECKOS L. KRATOCHVÍL and D. FRYNTA Biological Journal of the Linnean Society, 2006, 88, 527–532. With 2 figures Body-size effect on egg size in eublepharid geckos (Squamata: Eublepharidae), lizards with invariant clutch size: negative allometry for egg size in ectotherms is not universal LUKÁT KRATOCHVÍL1* and DANIEL FRYNTA2 1Department of Ecology, Charles University, Vinidná 7, CZ-128 44 Praha 2, the Czech Republic 2Department of Zoology, Charles University, Vinidná 7, CZ-128 44 Praha 2, the Czech Republic Received 1 February 2005; accepted for publication 5 December 2005 Within a single clutch, smaller species of ectotherms generally lay a smaller number of relatively larger eggs than do larger species. Many hypotheses explaining both the interspecific negative allometry in egg size and egg size– number trade-off postulate the existence of an upper limit to the egg size of larger species. Specifically, in lizards, large eggs of large species could have too long a duration of incubation, or they could be too large to pass through the pelvic opening, which is presumably constrained mechanically in larger species. Alternatively, negative allometry could be a result of limits affecting eggs of smaller species. Under the latter concept, hatchling size in smaller species may be close to the lower limit imposed by ecological interactions or physiological processes, and therefore smaller species have to invest in relatively larger offspring. Contrary to these lower limit hypotheses, explanations based on the existence of an upper limit always predict negative egg-size allometry even in animals with invariant clutch size, in which naturally there is no egg size–number trade-off.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Characterization of Arm Autotomy in the Octopus, Abdopus Aculeatus (D’Orbigny, 1834)
    Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roy L. Caldwell, Chair Professor David Lindberg Professor Damian Elias Fall 2013 ABSTRACT Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Autotomy is the shedding of a body part as a means of secondary defense against a predator that has already made contact with the organism. This defense mechanism has been widely studied in a few model taxa, specifically lizards, a few groups of arthropods, and some echinoderms. All of these model organisms have a hard endo- or exo-skeleton surrounding the autotomized body part. There are several animals that are capable of autotomizing a limb but do not exhibit the same biological trends that these model organisms have in common. As a result, the mechanisms that underlie autotomy in the hard-bodied animals may not apply for soft bodied organisms. A behavioral ecology approach was used to study arm autotomy in the octopus, Abdopus aculeatus. Investigations concentrated on understanding the mechanistic underpinnings and adaptive value of autotomy in this soft-bodied animal. A. aculeatus was observed in the field on Mactan Island, Philippines in the dry and wet seasons, and compared with populations previously studied in Indonesia.
    [Show full text]
  • A Test with Sympatric Lizard Species
    Heredity (2016) 116, 92–98 & 2016 Macmillan Publishers Limited All rights reserved 0018-067X/16 www.nature.com/hdy ORIGINAL ARTICLE Does population size affect genetic diversity? A test with sympatric lizard species MTJ Hague1,2 and EJ Routman1 Genetic diversity is a fundamental requirement for evolution and adaptation. Nonetheless, the forces that maintain patterns of genetic variation in wild populations are not completely understood. Neutral theory posits that genetic diversity will increase with a larger effective population size and the decreasing effects of drift. However, the lack of compelling evidence for a relationship between genetic diversity and population size in comparative studies has generated some skepticism over the degree that neutral sequence evolution drives overall patterns of diversity. The goal of this study was to measure genetic diversity among sympatric populations of related lizard species that differ in population size and other ecological factors. By sampling related species from a single geographic location, we aimed to reduce nuisance variance in genetic diversity owing to species differences, for example, in mutation rates or historical biogeography. We compared populations of zebra-tailed lizards and western banded geckos, which are abundant and short-lived, to chuckwallas and desert iguanas, which are less common and long-lived. We assessed population genetic diversity at three protein-coding loci for each species. Our results were consistent with the predictions of neutral theory, as the abundant species almost always had higher levels of haplotype diversity than the less common species. Higher population genetic diversity in the abundant species is likely due to a combination of demographic factors, including larger local population sizes (and presumably effective population sizes), faster generation times and high rates of gene flow with other populations.
    [Show full text]
  • A Taxonomic Study of the Genus Hypsiglena
    Great Basin Naturalist Volume 5 Number 3 – Number 4 Article 1 12-29-1944 A taxonomic study of the genus Hypsiglena Wilmer W. Tanner Provo High School Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Tanner, Wilmer W. (1944) "A taxonomic study of the genus Hypsiglena," Great Basin Naturalist: Vol. 5 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol5/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. ., .The Great Basin Naturalist 7>^^ of Comai;^^ Published by the A«'*^ Zootomy 'U\ I^KH.MMMKNT OF ZoOI.OC.Y AND ExTOMOI.OCV UtInrT i.99»fl46*) J BiMCHAM Young UxiVEKsny. Pkovo, Utah v.,-- / B K A Hj* Volume V DECEMBER 29, 1944 Nos. 3 & 4 )\( I A TA.\( ).\JK- STL'I)\' OV TH1^ GENUS 1 IN' 'Sl( ilJ-.XA WII.MI-'.K W. TANNKRi I'r.jvo Higli ScIkxiI. Provo, Utah IXTKODUe'lION In ihc Course ol my studies of Utah specimens of the genus Hypsiglena it became apparent that 1 could better understand this genus if a large series of specimens were secured for study. Accord- ingl_\- 1 set out tcj bring together by loan as many specimens as possible. As a result over 4(XJ specimens have been assembled and studied. This C(nil(l not have been accomplished without the aid of many workers and insiiiutions who ha\e so graciously allowed me to stutly their specimens.
    [Show full text]
  • Global Patterns of Body Size Evolution in Squamate Reptiles Are Not Driven by Climate
    This is a repository copy of Global patterns of body size evolution in squamate reptiles are not driven by climate. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/158006/ Version: Accepted Version Article: Slavenko, A. orcid.org/0000-0002-3265-7715, Feldman, A., Allison, A. et al. (17 more authors) (2019) Global patterns of body size evolution in squamate reptiles are not driven by climate. Global Ecology and Biogeography, 28 (4). pp. 471-483. ISSN 1466-822X https://doi.org/10.1111/geb.12868 This is the peer reviewed version of the following article: Slavenko, A, Feldman, A, Allison, A, et al. Global patterns of body size evolution in squamate reptiles are not driven by climate. Global Ecol Biogeogr. 2019; 28: 471– 483, which has been published in final form at https://doi.org/10.1111/geb.12868. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request.
    [Show full text]