A Taxonomic Study of the Genus Hypsiglena
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Life History Account for Western Threadsnake
California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group WESTERN THREADSNAKE Rena humilis Family: LEPTOTYPHLOPIDAE Order: SQUAMATA Class: REPTILIA R045 Written by: R. Marlow Reviewed by: T. Papenfuss Edited by: R. Duke, J. Harris DISTRIBUTION, ABUNDANCE, AND SEASONALITY The western threadsnake (once known as the western blind snake) is widely distributed in southern California from the coast to the eastern border at elevations up to 1515 m (5000 ft). It seldom occurs in strictly sandy areas, alluvial flats or dry lakes. Little is known about abundance. A wide variety of habitats at lower elevations is occupied where conditions are suitable for burrowing, or hiding under surface objects and in crevices (Klauber 1940, Brattstrom 1953, Brattstrom and Schwenkmeyer 1951, Stebbins 1954, 1972). SPECIFIC HABITAT REQUIREMENTS Feeding: This snake eats ants, termites, their eggs, larvae and other soft-bodied insects (Stebbins 1954). Cover: This snake burrows, spending most of its time underground. It has also been taken under objects such as logs, rocks and among the roots of shrubs. They have also been taken under granite flakes (Stebbins 1954). Reproduction: No data. Water: The species seems to prefer moister habitats but is found in very arid environments, so permanent water is probably not required (Stebbins 1954). Pattern: This species prefers moist areas. In canyons, stony and sandy deserts, rocky slopes and boulder piles, and scrub. SPECIES LIFE HISTORY Activity Patterns: This snake appears on the surface at night but may be active underground at other times. Greatest seasonal activity occurs from April to August (Stebbins 1954). -
Historia Natural Y Cultural De La Región Del Golfo Dulce, Costa Rica
Natural and Cultural History of the Golfo Dulce Region, Costa Rica Historia natural y cultural de la región del Golfo Dulce, Costa Rica Anton WEISSENHOFER , Werner HUBER , Veronika MAYER , Susanne PAMPERL , Anton WEBER , Gerhard AUBRECHT (scientific editors) Impressum Katalog / Publication: Stapfia 88 , Zugleich Kataloge der Oberösterreichischen Landesmuseen N.S. 80 ISSN: 0252-192X ISBN: 978-3-85474-195-4 Erscheinungsdatum / Date of deliVerY: 9. Oktober 2008 Medieninhaber und Herausgeber / CopYright: Land Oberösterreich, Oberösterreichische Landesmuseen, Museumstr.14, A-4020 LinZ Direktion: Mag. Dr. Peter Assmann Leitung BiologieZentrum: Dr. Gerhard Aubrecht Url: http://WWW.biologieZentrum.at E-Mail: [email protected] In Kooperation mit dem Verein Zur Förderung der Tropenstation La Gamba (WWW.lagamba.at). Wissenschaftliche Redaktion / Scientific editors: Anton Weissenhofer, Werner Huber, Veronika MaYer, Susanne Pamperl, Anton Weber, Gerhard Aubrecht Redaktionsassistent / Assistant editor: FritZ Gusenleitner LaYout, Druckorganisation / LaYout, printing organisation: EVa Rührnößl Druck / Printing: Plöchl-Druck, Werndlstraße 2, 4240 Freistadt, Austria Bestellung / Ordering: http://WWW.biologieZentrum.at/biophp/de/stapfia.php oder / or [email protected] Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschütZt. Jede VerWertung außerhalb der en - gen GrenZen des UrheberrechtsgesetZes ist ohne Zustimmung des Medieninhabers unZulässig und strafbar. Das gilt insbesondere für VerVielfältigungen, ÜbersetZungen, MikroVerfilmungen soWie die Einspeicherung und Verarbeitung in elektronischen SYstemen. Für den Inhalt der Abhandlungen sind die Verfasser Verant - Wortlich. Schriftentausch erWünscht! All rights reserVed. No part of this publication maY be reproduced or transmitted in anY form or bY anY me - ans Without prior permission from the publisher. We are interested in an eXchange of publications. Umschlagfoto / CoVer: Blattschneiderameisen. Photo: AleXander Schneider. -
A Case of Envenomation by the False Fer-De-Lance Snake Leptodeira Annulata (Linnaeus, 1758) in the Department of La Guajira, Colombia
Biomédica ISSN: 0120-4157 Instituto Nacional de Salud A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia Angarita-Sierra, Teddy; Montañez-Méndez, Alejandro; Toro-Sánchez, Tatiana; Rodríguez-Vargas, Ariadna A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia Biomédica, vol. 40, no. 1, 2020 Instituto Nacional de Salud Available in: http://www.redalyc.org/articulo.oa?id=84362871004 DOI: 10.7705/biomedica.4773 PDF generated from XML JATS4R by Redalyc Project academic non-profit, developed under the open access initiative Case report A case of envenomation by the false fer-de-lance snake Leptodeira annulata (Linnaeus, 1758) in the department of La Guajira, Colombia Un caso de envenenamiento por mordedura de una serpiente falsa cabeza de lanza, Leptodeira annulata (Linnaeus, 1758), en el departamento de La Guajira, Colombia Teddy Angarita-Sierra 12* Universidad Manuela Beltrán, Colombia Alejandro Montañez-Méndez 2 Fundación de Investigación en Biodiversidad y Conservación, Colombia Tatiana Toro-Sánchez 2 Fundación de Investigación en Biodiversidad y Conservación, Colombia 3 Biomédica, vol. 40, no. 1, 2020 Ariadna Rodríguez-Vargas Universidad Nacional de Colombia, Colombia Instituto Nacional de Salud Received: 17 October 2018 Revised document received: 05 August 2019 Accepted: 09 August 2019 Abstract: Envenomations by colubrid snakes in Colombia are poorly known, DOI: 10.7705/biomedica.4773 consequently, the clinical relevance of these species in snakebite accidents has been historically underestimated. Herein, we report the first case of envenomation by CC BY opisthoglyphous snakes in Colombia occurred under fieldwork conditions at the municipality of Distracción, in the department of La Guajira. -
Edward Harrison Taylor: the Teacher by A
HERP QL 31 .T37 E37 EDWARD H. TAYLOR: RECOLLECTIONS OF AN HERPETOLOGIST NOTE: The map depicting part of the Philip- pine region, reproduced on the cover, was used by Edward H. Taylor in the course of field work in 1912-1913. Edward H. Taylor EDWARD H. TAYLOR: RECOLLECTIONS OF AN HERPETOLOGIST EDWARD H. TAYLOR Professor and Curator Emeritus Department of Systematics and Ecology and Museum of Natural History The University of Kansas Lawrence, Kansas 66045 A. BYRON LEONARD Professor Emeritus Department of Systematics and Ecology The University of Kansas Lawrence, Kansas 66045 HOBART M. SMITH Professor Department of Environmental, Population, and Organismic Biology University of Colorado Boulder, Colorado 80302 GEORGE R. PISANI Visiting Instructor Department of Biology The University of Kansas Lawrence, Kansas 66045 Monograph of THE Museum of Natural History, The University of Kansas Number 4 1975 University of Kansas Publications, Museum of Natural History Editor: Richard F. Johnston Monograph Series, Publication No. 4 pp. 1-160; 6 figures; 1 plate Published December 15, 1975 WW 1 6 1999 Museum of Natural History The University of Kansas Lawrence, Kansas 66045 U.S.A. Copyright 1975, Museum of Natural History The University of Kansas Printed by University of Kansas Printing Service Lawrence, Kansas PREFACE The charge to anyone doing a volume like this is complex and best met by artists, not scientists. Professor E. H. Taylor is now 86 years old and has been busy for all that time. How, short of a full biography, can we recreate in our minds the sense of and feeling for this energetic, creative, sometimes irascible man who has had an extraordinary career as naturalist, explorer, teacher, friend (especially of children), scientist, spy, consort of royalty and "father" of modern herpetology? This book senses the man only fractionally and certainly less than we expect for average his full persons. -
Predation Behaviour of Leptodeira Annulata Linnaeus, 1758 (Serpentes: Dipsadidae) on Physalaemus Cuvieri Fitzinger, 1826 (Anura, Leptodactylidae)
Herpetology Notes, volume 13: 457-459 (2020) (published online on 31 May 2020) Predation behaviour of Leptodeira annulata Linnaeus, 1758 (Serpentes: Dipsadidae) on Physalaemus cuvieri Fitzinger, 1826 (Anura, Leptodactylidae) William P. Costa1,* and Felipe S. de Andrade2 Snakes and anurans are important components of 2008); there is only one study that reported the predation natural trophic systems, often interacting as predator of a Physalaemus species by L. annulata (Santos- and prey (Camargo Filho et al., 2008; Bernardes and Silva et al., 2014). However, Borges et al. (2014) have Abe, 2010; Silva et al., 2010; Fonseca et al., 2012). found remains of a specimen of Physalaemus cuvieri Typically, snakes prey on anurans (Vitt, 1983; Toledo et Fitzinger, 1826 in the stomach contents of a L. annulata al., 2007; Bernardes and Abe, 2010; Silva et al., 2010; individual. The present study describes the behaviour Siqueira et al., 2012; Falkenberg et al., 2014; Oliveira et of L. annulata during the predation of Physalaemus al., 2017) although, occasionally, the roles are reversed, cuvieri Fitzinger, 1826. and anurans can also prey on snakes (Silva et al., 2007; The events reported here were recorded on 4 Camargo Filho et al., 2008; Fonseca et al., 2012). November 2016, in Palmeiras de Goiás, in the state of One prominent predator of anurans is the banded Goiás, Brazil (16°43’37.64” S, 49°48’16.18” W, 595 cat-eyed snake, Leptodeira annulata Linnaeus, 1758, m a.s.l.) between 20:29 h and 21:05 h. The frog was which exploits anurans at all stages of their life cycle, initially captured when the snake seized the frog by the including the eggs, tadpoles, and adults (Ávila and middle of its right thigh (Fig. -
The Reptiles of the Socotra Archipelago with Special Remarks on the Slender Blind Snakes (Leptotyphlopidae: Leptotyphlops)
M. Vences, J. Köhler, T. Ziegler, W. Böhme (eds): Herpetologia Bonnensis II. Proceedings of the 13th Congress of the Societas Europaea Herpetologica. pp. 125-128 (2006) The reptiles of the Socotra archipelago with special remarks on the slender blind snakes (Leptotyphlopidae: Leptotyphlops) Herbert Rösler1, Wolfgang Wranik2 Abstract. We provide a list of the reptiles of the Socotra archipelago with comments on the respective number of taxa and the percentage of endemicity. Special attention is layed on the Socotran species of Leptotyphlops, the morphological variability of which is addressed in some detail. Introduction diverse are the reptiles on the main island Socotra (26 The Socotra archipelago is part of the Republic of species and forms). Endemism is 65,4%. Six species Yemen and situated in the north-western part of the occur on Samha and four species on Darsa. Five Indian Ocean. It covers a land area of about 3800 km² of the recorded species on Samha from the genera and comprises the main island Socotra (3600 km²), Abd Haemodracon, Hemidactylus, Trachylepis, Mesalina al Kuri (162 km²), Samha (45 km²), Darsa (10 km²) and and Hemerophis are also known from Socotra. Endemic some guano-covered rocks (Jazirat Sabuniyah, Ka’l to Samha and Darsa is only a species of the genus Fir’awn). Pristurus. However, the knowledge on the reptiles of Though the data are based on fi fteen visits to the these two smaller islands is still incomplete, and in case archipelago between 1982 and 2005, two expeditions on of Darsa it is unknown, if the genus Hemidactylus is which the authors went together (3.11.1997-12.11.1997 present or not. -
Type Locality Restriction of <I>Hypsiglena Torquata</I> Gã¼nther
Great Basin Naturalist Volume 57 Number 1 Article 11 3-7-1997 Type locality restriction of Hypsiglena torquata Günther Wilmer W. Tanner Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Tanner, Wilmer W. (1997) "Type locality restriction of Hypsiglena torquata Günther," Great Basin Naturalist: Vol. 57 : No. 1 , Article 11. Available at: https://scholarsarchive.byu.edu/gbn/vol57/iss1/11 This Note is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Great Basin Naturalist 57(1), e 1997, pp. 79-82 TYPE LOCALITY RESTRICTION OF HYPSIGLENA TORQUATA GUNTHER Wilmer W Tannerl Key word.s: Hypsiglena lOrquata, Mexico, Nicaroguo.. Since the description ofHIJPsigl.ena torquata type when compared with specimens from by Giinther in 1860 and the designation of the Mazatlan, Sinaloa. He communicated his con type locality as Nicaragua, specimens have cern with Mr. J. C. Battersby at the British been collected only in central Mexico and Museum, who prOVided basic character infor north into the United States (Tanner 1946, mation for the type specimen. Dixon then con Dixon and Dean 1986). Just how far south in cluded that "the locality from which the type Mexico Hypsiglena may range is perhaps not specimen came is somewhat in doubt" and that yet known. Specimens have been taken in "until both co-types are examined and further Morelos, Guerrero, and Michoacan but not as collecting done, it would be unwise to change yet, to my knowledge, from the states of Mex the type locality, even though it appears to be ico, Puebla, Veracruz, Oaxaca, or Chiapas. -
Microhabitat and Prey Odor Selection in Hypsiglena Chlorophaea
Copeia 2009, No. 3, 475–482 Microhabitat and Prey Odor Selection in Hypsiglena chlorophaea Robert E. Weaver1 and Kenneth V. Kardong1 We studied the effects of various shelter and prey odor combinations on selection of microhabitat characters by the Desert Nightsnake, Hypsiglena chlorophaea, a dipsadine snake. We also examined the activity patterns of these snakes over a 23-h period. Three prey odors were tested, based on field work documenting natural prey in its diet: lizard, snake, mouse (plus water as control). In the first experiment, each odor was tested separately in various shelter and odor combinations. We found that snakes preferred shelter to no shelter quadrants, and most often selected a quadrant if it also had prey odor in the form of lizard or snake scent. However, snakes avoided all quadrants containing mouse (adult) odor. In the second experiment, all three odors plus water were presented simultaneously. We found that snakes showed a preference for lizard odor over the others, but again showed an aversion to mouse odor, even compared to water. The circadian rhythms in both experiments showed generally the same pattern, namely an initial peak in activity, falling off as they entered shelters, but then again increasing even more prominently from lights off until about midnight. Thereafter, activity tapered off so that several hours before lights on in the morning, snakes had generally taken up residence in a shelter. Prey preference correlates with field studies of dietary frequency of lizards, while activity exhibits strong endogenous nocturnal movement patterns. EVERAL factors may influence habitat preference and (Stebbins, 2003), with an abundance of lizards, on which circadian patterns of activity. -
Proceedings of the United States National Museum
PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued i^?fv vl vJ^^S ^V '^^ SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 95 Washington : 1945 No. 3185 SUMMARY OF THE COLLECTIONS OF AMPHIBIANS MADE IN MEXICO UNDER THE WALTER RATHBONE BACON TRAVELING SCHOLARSHIP By Edward H. Taylor and Hobart M. Smith INTRODUCTION By tenure of the Walter Rathbone Bacon Traveling Scholarship from 1938 to 1940, the junior author was enabled to continue field studies that had been under way several years on the herpetofauna of Mexico. Aided by his wife, he accumulated a collection of reptiles and amphibians the study of which still continues. A brief summary of the snakes and crocodiles has appeared previously (Smith, 1943). With the aid of the senior author a summary of the amphibians has been completed and forms the basis of the present paper. The liz- ards are being studied as time permits, and a summary of them is contemplated. No survey of the turtles is envisioned. The itin- erary and list of localities visited by the collectors will accompany a later report. The amphibians comprise 10,370 specimens, or about half the total number of herpetological specimens obtained. They represent 27 genera and 146 forms. Thirty-three of the species were undescribed at the time of collecting; the specimens of them secured have formed the basis at least in part for their subsequent descriptions. Eleven of the 33 are represented only by paratypes, while 22 are represented by holotypes. Of the latter, eight are described in the present paper, while all others were described by Taylor (1940c, 1941b, d, e, 1942a-d, 1943a, b) or Smith (1939). -
Rediscovery of an Endemic Vertebrate from the Remote Islas Revillagigedo in the Eastern Pacific Ocean: the Clario´N Nightsnake Lost and Found
Rediscovery of an Endemic Vertebrate from the Remote Islas Revillagigedo in the Eastern Pacific Ocean: The Clario´n Nightsnake Lost and Found Daniel G. Mulcahy1*, Juan E. Martı´nez-Go´ mez2, Gustavo Aguirre-Leo´ n2, Juan A. Cervantes-Pasqualli2, George R. Zug1 1 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, United States of America, 2 Instituto de Ecologı´a, Asociacio´n Civil, Red de Interacciones Multitro´ficas, Xalapa, Veracruz, Me´xico Abstract Vertebrates are currently going extinct at an alarming rate, largely because of habitat loss, global warming, infectious diseases, and human introductions. Island ecosystems are particularly vulnerable to invasive species and other ecological disturbances. Properly documenting historic and current species distributions is critical for quantifying extinction events. Museum specimens, field notes, and other archived materials from historical expeditions are essential for documenting recent changes in biodiversity. The Islas Revillagigedo are a remote group of four islands, 700–1100 km off the western coast of mainland Me´xico. The islands are home to many endemic plants and animals recognized at the specific- and subspecific-levels, several of which are currently threatened or have already gone extinct. Here, we recount the initial discovery of an endemic snake Hypsiglena ochrorhyncha unaocularus Tanner on Isla Clario´n, the later dismissal of its existence, its absence from decades of field surveys, our recent rediscovery, and recognition of it as a distinct species. We collected two novel complete mitochondrial (mt) DNA genomes and up to 2800 base-pairs of mtDNA from several other individuals, aligned these with previously published mt-genome data from samples throughout the range of Hypsiglena, and conducted phylogenetic analyses to infer the biogeographic origin and taxonomic status of this population. -
PDF Files Before Requesting Examination of Original Lication (Table 2)
often be ingested at night. A subsequent study on the acceptance of dead prey by snakes was undertaken by curator Edward George Boulenger in 1915 (Proc. Zool. POINTS OF VIEW Soc. London 1915:583–587). The situation at the London Zoo becomes clear when one refers to a quote by Mitchell in 1929: “My rule about no living prey being given except with special and direct authority is faithfully kept, and permission has to be given in only the rarest cases, these generally of very delicate or new- Herpetological Review, 2007, 38(3), 273–278. born snakes which are given new-born mice, creatures still blind and entirely un- © 2007 by Society for the Study of Amphibians and Reptiles conscious of their surroundings.” The Destabilization of North American Colubroid 7 Edward Horatio Girling, head keeper of the snake room in 1852 at the London Zoo, may have been the first zoo snakebite victim. After consuming alcohol in Snake Taxonomy prodigious quantities in the early morning with fellow workers at the Albert Public House on 29 October, he staggered back to the Zoo and announced that he was inspired to grab an Indian cobra a foot behind its head. It bit him on the nose. FRANK T. BURBRINK* Girling was taken to a nearby hospital where current remedies available at the time Biology Department, 2800 Victory Boulevard were tried: artificial respiration and galvanism; he died an hour later. Many re- College of Staten Island/City University of New York spondents to The Times newspaper articles suggested liberal quantities of gin and Staten Island, New York 10314, USA rum for treatment of snakebite but this had already been accomplished in Girling’s *Author for correspondence; e-mail: [email protected] case. -
Predation on the Black-Throated Sparrow Amphispiza Bilineata
Herpetology Notes, volume 13: 401-403 (2020) (published online on 26 May 2020) Predation on the black-throated sparrow Amphispiza bilineata (Cassin, 1850) and scavenging behaviour on the western banded gecko Coleonyx variegatus (Baird, 1858) by the glossy snake Arizona elegans Kennicott, 1859 Miguel A. Martínez1 and Manuel de Luna1,* The glossy snake Arizona elegans Kennicott, 1859 is Robles et al., 1999a), no specific species have been a nocturnal North American colubrid found from central identified as a prey item until this paper, in which we California to southwestern Nebraska in the United States present evidence of predation on the black-throated and south through Baja California, Aguascalientes, San sparrow Amphispiza bilineata (Cassin, 1850). Luis Potosí and Sinaloa in Mexico (Dixon and Fleet, On 20 September 2017, at around 23:00 h, an 1976). Several species have been identified as prey adult specimen of Arizona elegans was found in the items of this snake (Rodríguez-Robles et al., 1999a) municipality of Hipólito (25.7780 N, -101.4017 W, including the mole Scalopus aquaticus (Linnaeus, 1758) 1195 m a.s.l.), state of Coahuila, Mexico. The snake (Eulipotyphla: Talpidae), the rodents Peromyscus sp. had caught and was in the process of killing and then (Rodentia: Cricetidae), Chaetodipus formosus (Merriam, consuming a small bird (Fig. 1); this act lasted close to 1889), Dipodomys merriami Mearns, 1890, Dipodomys 30 minutes. After completely swallowing its prey, the ordii Woodhouse, 1853, Dipodomys sp., Perognathus snake crawled away to a safe spot under a group of inornatus Merriam, 1889, Perognathus (sensu lato) sp. nearby dead Agave lechuguilla plants.