Increased Songbird Nest Depredation Due to Aleppo Pine

Total Page:16

File Type:pdf, Size:1020Kb

Increased Songbird Nest Depredation Due to Aleppo Pine Ben‑David et al. BMC Ecol (2019) 19:52 https://doi.org/10.1186/s12898‑019‑0270‑8 BMC Ecology RESEARCH ARTICLE Open Access Increased songbird nest depredation due to Aleppo pine (Pinus halepensis) encroachment in Mediterranean shrubland Asaf Ben‑David1,2† , Hila Shamon2,3*†, Ido Izhaki4, Ronny Efronny1, Roi Maor1,5 and Tamar Dayan1,2 Abstract Background: In recent decades, a decrease of passerine densities was documented in Mediterranean shrublands. At the same time, a widespread encroachment of Aleppo pines (Pinus halepensis) to Mediterranean shrubland occurred. Such changes in vegetation structure may afect passerine predator assemblage and densities, and in turn impact passerine densities. Depredation during the nesting season is an important factor to infuence passerine population size. Understanding the efects of changes in vegetation structure (pine encroachment) on passerine nesting success is the main objective of this study. We do so by assessing the efects of Aleppo pine encroachment on Sardinian war‑ bler (Sylvia melanocephala) nest depredation in Mediterranean shrublands. We examined direct and indirect predation pressures through a gradients of pine density, using four methods: (1) placing dummy nests; (2) acoustic monitoring of mobbing events; (3) direct observations on nest predation using cameras; and (4) observation of Eurasian jay (Gar- rulus glandarius) behaviour as indirect evidence of predation risk. Results: We found that Aleppo pine encroachment to Mediterranean shrublands increased nest predation by Eura‑ sian jays. Nest predation was highest in mixed shrubland and pines. These areas are suitable for warblers but had high occurrence rate of Eurasian jays. Conclusions: Encroaching pines directly increase activity of Eurasian jays in shrubland habitats, which reduced the nesting success of Sardinian warblers. These fndings are supported by multiple methodologies, illustrating diferent predation pressures along a gradient of pine densities in natural shrublands. Management of Aleppo pine seedlings and removal of unwanted trees in natural shrubland might mitigate arrival and expansion of predators and decrease the predation pressure on passerine nests. Keywords: Nest predation, Acoustic monitoring, Pine encroachment, Sylvia melanocephala, Garrulus glandarius Background for the majority of biological invasions worldwide and Alteration of natural habitat due to anthropogenic activi- have tremendously impacted ecosystems [3]. Plant inva- ties is the leading cause of biodiversity loss in terrestrial sion changes habitat cover and structure, creating bot- habitats [1]. Globalization has promoted alien species tom-up cascading events with adverse efects on native invasion to many parts of the world, thus threatening species [4]. Encroachment is a form of biological inva- human livelihood and biodiversity [2]. Plants constitute sion, whereby native species spread to habitats from which they were historically absent. In some cases, encroachment of native species to non- *Correspondence: [email protected] native habitats are a consequence of human actions † Asaf Ben David and Hila Shamon—frst authorship or managements. For example, native conifer species 3 Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA encroachment to grassland, savannas and shrublands are Full list of author information is available at the end of the article a well-documented phenomenon across the globe [5]. In © The Author(s) 2019. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Ben‑David et al. BMC Ecol (2019) 19:52 Page 2 of 12 north America it is mainly attributed to lack of fre events [32, 33], as well as for nest predators; edges allow nest due to human intervention, allowing conifers to expand predators to forage in habitats other than their primary and establish in low vegetation habitats [6–8]. Conifer natural habitat (i.e., forest species forage in shrubland on encroachment changes both biotic and abiotic conditions forest edge). Increased nest predation is highly associ- in soils, native vegetation composition, diversity and den- ated to edges of fragmented habitats [34], and is higher in sities of primary and secondary consumers [9–11]. clear edges like forest to agriculture. Aleppo pine (Pinus halepensis), is a widespread spe- Tere are several main predators of songbird nests in cies in Mediterranean forests [12], but in the Mediterra- forested areas and shrublands. Small mammals (e.g. mice, nean region of Israel, native populations inhabit relatively rats) were found to be signifcant nest predators in forest small and restricted areas on Mt. Carmel and the Judean habitats due to lower parental activity around the nest mountains [13]. Aleppo pines were planted in the early in such habitats [35], as predatory bird species are more twentieth century across Israel on over 100,000 ha, and associated with forest edges [36]. We hypothesized that account for half of the planted forests in the state. Since avian predators will take advantage of spreading pines to then, a widespread encroachment of Aleppo pines into natural shrublands in our study area. natural habitats has been observed across Israel [14], Lahti [37] suggested that nest predation probability can mostly into Mediterranean shrublands [15]. Whether be determined by specifc predator behavior [37]. Mem- Aleppo pine is now an invasive- or encroaching species in bers of the Corvidae family are known for their learning this region is still debated [14, 16, 17]; we take a conserv- abilities and adaptive and opportunistic skills; therefore, ative approach and consider it encroaching, following these species are known to take advantage of forest edges Osem et al. [15]. Planted Aleppo pines produce seeds for to prey in low vegetation habitats [38, 39]. Long term approximately 30 years in the Mediterranean landscapes monitoring through biennial bird surveys (by sound in Israel [15], and therefore, their impact on the foral and and vision along fxed transects) has been ongoing since faunal structure is expected to continue. Hence, under- 1985 [18]. Tese surveys of the study area have shown an standing the cascading efects of such changes is signif- increase in Eurasian jay density and have led to our cur- cant for understanding changes in the Mediterranean rent study. Pine encroachment to natural habitats may ecosystem of Israel. increase edge efects thus promoting increased presence Birds are considered sensitive to habitat change due of avian predators, such as jays in the study area. Con- to their specifc adaptations to vegetation types, heights current with an increase of jay density, long term surveys and densities [18, 19], and therefore they can be used as show a decrease in songbird nests. Here, we investigate indicators of ecosystem intactness. Changes in vegeta- nest predation pressure rates over a gradient of pine den- tion structure may afect species’ ability to seek shelter sities with diferent vegetation composition and height. or cover from threats such as predators [20]. We stud- Specifcally, we address the following questions: (1) is ied the efects of pine encroachment in natural habitats there a correlation between songbird open nest predation on the presence of the Eurasian jay (Garrulus glandarius and (a) pine density, (b) vegetation structure (c) predator atricapillus), a common songbird nest predator [21, 22], community assemblage; (2) is there a correlation between and the indirect efect of pine encroachment on Sardin- nest predation pressure and presence and activity of jays. ian warbler (Sylvia melanocephala) nest predation. We hypothesized that avian predators such as the Eurasian Results jay may use pines as observation points to detect nests Egg predation in artifcial nests and that consequently pine encroachment will increase Over half of the 123 artifcial nests (quail (Coturnix predation pressure. coturnix) and plaster eggs were pooled) were predated on Te breeding season is a critical phase in the annual life (65 nests, 52.8%). Te probability of nest predation was cycle of birds, with important consequences to popula- not equal among the four habitat types. Greatest preda- tion growth and survival [23–26]. Nest predation rates tion (19.5%) was recorded in the mixed shrubland and usually vary between 44% and 86% depending on habi- low-density pines and the lowest (7.3%) in dense pine tat type and species [27]; vegetation structure (i.e., micro plantations (Fig. 1). habitat) is a signifcant factor that may afect nest preda- tion [28–30]. Nest predator identifcation Pine encroachment to Mediterranean shrublands may Based on the 48 plaster eggs that we placed in artifcial have a similar efect to that of forest edges; edge efect is nests, we were able to identify four predator taxa accord- an ecological change that afects the community struc- ing to marks left on 18 plaster eggs, (Fig. 2). Te main ture in the boundaries of the habitat [31]. Forest edges predator group was medium size mammals (n = 8), fol- can change resource availability for insectivorous birds lowed by rodents (n = 7), birds (n = 2) and reptiles (n = 1) Ben‑David et al. BMC Ecol (2019) 19:52 Page 3 of 12 Fig.
Recommended publications
  • 5.4. Changes in the Bird Communities of Sierra Nevada Zamora ,R.1 and Barea-Azcón, J.M.2 1 Andalusian Institute for Earth System Research
    5.4. Changes in the bird communities of Sierra Nevada Zamora ,R.1 and Barea-Azcón, J.M.2 1 Andalusian Institute for Earth System Research. University of Granada 2 Environment and Water Agency of Andalusia Abstract The changes in the composition and abundance of passerine communities were studied along an elevational gradient, comparing the results found by censuses made in three different habitats (oak forest, high-mountain juniper scrublands, and high-mountain summits) at the beginning of the 1980s and at present. The results indicate that in the last 30 years, notable changes have taken place in the composition and, especially, in the abundance of the passerine communities. Significant declines in populations were appreciated in many of the species that were dominant in the 1980s, particularly in oak forests and in high-mountain juniper scrublands. The magnitude of the changes diminishes with elevation, and therefore the ecosystem that has changed the most was the oak woodland and those that changed the least were the ecosystems of the high-summits. The bird communities in Sierra Nevada showed a strong spatio-temporal dynamic that appears to be accentuated by global change. Aims and methodology The censuses of reproductive birds compiled censuses were made along linear transects with [13 - 17]. The current censuses were undertaken at the beginning of the 1980s and at present a fixed bandwidth of 50 m, 25 m on each side of within the framework of the Sierra Nevada (2008-2012) were compared. The sites studied the observer. The sampling effort was similar in Global Change Observatory from 2008 to 2012, were the same in both periods: an oak forest both periods.
    [Show full text]
  • To Download the Creamer's Field Student Activity Book
    Creamer's Field Student Activity Book Creamer's Field Migratory Waterfowl Refuge Fairbanks, Alaska Page 2 Alaska Songbird Institute Table of Contents Introduction Waterfowl (Geese & Ducks) Welcome to the new Creamer's Field Greater White-fronted Goose...........4 Student Activity Book! This book Canada Goose...................................5 includes a coloring guide to many Mallard.............................................6 of the common birds you can see at Northern Pintail................................7 Creamer's Field. It also includes some Birds of Prey (Raptors) pages to use in school and at home. Bald Eagle........................................8 Peregrine Falcon...............................9 We hope that you will remember to Cranes bring it with you every time you visit Sandhill Crane.................................10 Creamer's Field and to share what you Flycatchers have learned with others! Alder Flycatcher...............................11 Chickadees If you have feedback or questions, Black-capped Chickadee..................12 please contact the Alaska Songbird Kinglets Institute. This book and other Ruby-crowned Kinglet.....................13 educational materials are available Thrushes on our website at: Swainson’s Thrush...........................14 http://aksongbird.org. American Robin...............................15 Warblers This book was provided for you by Orange-crowned Warbler.................16 the Alaska Songbird Institute with support from Yellow-rumped Warbler...................17 the Alaska Department
    [Show full text]
  • Individual Repeatability, Species Differences, and The
    Supplementary Materials: Individual repeatability, species differences, and the influence of socio-ecological factors on neophobia in 10 corvid species SUPPLEMENTARY MATERIALS 2 Figure S1 . Latency to touch familiar food in each round, across all conditions and species. Round 3 differs from round 1 and 2, while round 1 and 2 do not differ from each other. Points represent individuals, lines represent median. SUPPLEMENTARY MATERIALS 3 Figure S2 . Site effect on latency to touch familiar food in azure-winged magpie, carrion crow and pinyon jay. SUPPLEMENTARY MATERIALS 4 Table S1 Pairwise comparisons of latency data between species Estimate Standard error z p-value Blue jay - Azure-winged magpie 0.491 0.209 2.351 0.019 Carrion crow - Azure-winged magpie -0.496 0.177 -2.811 0.005 Clark’s nutcracker - Azure-winged magpie 0.518 0.203 2.558 0.011 Common raven - Azure-winged magpie -0.437 0.183 -2.392 0.017 Eurasian jay - Azure-winged magpie 0.284 0.166 1.710 0.087 ’Alal¯a- Azure-winged magpie 0.416 0.144 2.891 0.004 Large-billed crow - Azure-winged magpie 0.668 0.189 3.540 0.000 New Caledonian crow - Azure-winged magpie -0.316 0.209 -1.513 0.130 Pinyon jay - Azure-winged magpie 0.118 0.170 0.693 0.488 Carrion crow - Blue jay -0.988 0.199 -4.959 0.000 Clark’s nutcracker - Blue jay 0.027 0.223 0.122 0.903 Common raven - Blue jay -0.929 0.205 -4.537 0.000 Eurasian jay - Blue jay -0.207 0.190 -1.091 0.275 ’Alal¯a- Blue jay -0.076 0.171 -0.443 0.658 Large-billed crow - Blue jay 0.177 0.210 0.843 0.399 New Caledonian crow - Blue jay -0.808 0.228 -3.536
    [Show full text]
  • Weight and Size Variation in the Gray Catbird
    WEIGHT AND SIZE VARIATION IN THE GRAY CATBIRD BY GILBERT S. RAYNOR INTRODUCTION Weights of wild birds fluctuate becauseof various activity patterns governed by either internal or external stimuli. Important short time- scaleactivities include locomotion,feeding, and defecation;those on a longer time-scaleinclude migration, reproduction, and molt. Stimuli controllingthese activitiesinclude day length, temperature, hunger, fright, and many others, someoperating directly and others indirectly. Weight changesin living birds provide cluesto other aspectsof their biology,to environmentalstresses, and to the longer-periodactivities in which the speciesor individualis engaged. Becauseof the many variablesdetermining the instantaneousweight of a bird and the limited number of times a wild bird can be captured and weighed(particularly without inadvertently influencing the weight), usefulinformation on cyclicalor systematicchanges can best be obtained from statisticalanalyses of large numbersof weightstaken throughout the duration of the cycleof interest.This paper presentsan analysisof weightvariation in the Gray Catbird (Dumetellacarolinensis) and relates thesevariations to time of day and year, activitypatterns, age, and sex. In contrastto weight, linear measurementsof individual birds are relativelyconstant after full growth is attained.Some change takes place in wing and tail length by wear betweenmolts but this is typicallyslow and gradual (Blake, 1971). Thus, sizeof the Catbird is documentedby age and sex but related only to season. Many authorshave reported bird weightsand several(Baldwin and Kendeigh, 1938; Becker and Stack, 1944; Wiseman, 1975) have ana- lyzedtheir data by age, sex,time of day or season.Most data were taken from living birds but somefrom tower kills (Graber and Graber, 1962; Tordoff and Mengel, 1956). Causesof weight changesand their signif- icance have been discussedpreviously (Nice, 1938; Blake, 1956).
    [Show full text]
  • New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages During the Oligocene
    GBE New Zealand Passerines Help Clarify the Diversification of Major Songbird Lineages during the Oligocene Gillian C. Gibb1,*,y, Ryan England2,4,y, Gerrit Hartig2,5, Patricia A. (Trish) McLenachan2, Briar L. Taylor Smith1, Bennet J. McComish2,6, Alan Cooper3, and David Penny2 1Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand 2Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand 3Australian Centre for Ancient DNA, School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia 4Present address: Forensic Business Group, Institute of Environmental Science and Research (ESR Ltd.), Mt Albert Science Centre, Auckland, New Zealand 5Present address: Starlims Germany GmbH An Abbott Company, Witten, Germany 6Present address: School of Physical Sciences, University of Tasmania, Hobart, Australia *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: October 7, 2015 Data deposition: This project has been deposited at GenBank under the accession numbers KC545397-KC545409, KT894672. Abstract Passerines are the largest avian order, and the 6,000 species comprise more than half of all extant bird species. This successful radiation probably had its origin in the Australasian region, but dating this origin has been difficult due to a scarce fossil record and poor biogeographic assumptions. Many of New Zealand’s endemic passerines fall within the deeper branches of the passerine radiation, and a well resolved phylogeny for the modern New Zealand element in the deeper branches of the oscine lineage will help us understand both oscine and passerine biogeography. To this end we present complete mitochondrial genomes representing all families of New Zealand passerines in a phylogenetic framework of over 100 passerine species.
    [Show full text]
  • Songbird Use of Native and Invasive Fruit in the Northeastern USA
    Wildlife Society Bulletin 44(3):570–578; 2020; DOI: 10.1002/wsb.1113 Original Article Songbird Use of Native and Invasive Fruit in the Northeastern USA MICHELLE A. LABBÉ, Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA DAVID I. KING,1 U.S. Department of Agriculture Forest Service Northern Research Station, University of Massachusetts, Amherst, MA 01003, USA ABSTRACT Fruit is consumed by songbirds, yet whether or not it comprises an important component of habitat quality depends on the extent to which it is used by birds. In addition, there is evidence fruits of exotic invasive species may be nutritionally inferior to fruits of native species, so the influence of plant invasion on bird body condition is of interest to managers. Birds that consume invasive fruits may also serve as seed vectors, and consumption of fruits of invasive species may exacerbate invasion. Thus, the extent to which songbirds consume fruits of native versus invasive plant species, influence of plant invasion on bird body condition, and extent to which birds exhibit foraging behaviors that elevate their potential to act as dispersers of invasive species have important implications for habitat management. To understand bird use of native and invasive fruits and the potential role of birds in dispersing invasive plants, we observed bird foraging, measured body condition indices of birds captured in mist nets, measured available fruits of native and invasive plants, and calculated indices of seed dispersal for bird species based on fruit handling and consumption, within 16 shrubland sites in western Massachusetts, USA. Our findings indicate that birds use fruit extensively (57% of foraging events), use varied among species, and frugivorous species at our sites generally chose the fruit of native species, especially Prunus, over fruits of invasive species.
    [Show full text]
  • Bird-Friendly Building Guide
    Bird-Friendly Building Design Vassar’s Bridge for Laboratory Sciences, shown here under construction in October 2015. The building is scheduled to open in January 2016. Cover rendering and photos courtesy of Ennead Architects Cover rendering and photo this page: The new Bridge for Laboratory Sciences building at Vassar College, designed by Richard Olcott/Ennead Architects, redefines the identity of the sciences on the College’s historic campus and provides technologically advanced facilities for students, faculty, and researchers. Fundamental to the building’s design is its seamless integration with the natural landscape, scale, and campus aesthetic of the College. In this natural wooded setting, the need for strategies to reduce bird collisions with the building was apparent. In response, the building was designed to comply with LEED Pilot Credit 55: Bird Collision Deterrence. Ennead managing partner Guy Maxwell is a nationally recognized champion of bird-friendly design and has led Ennead’s innovative approach to make the building’s glazing safer for birds, employing patterned glass, screens and sunshades, and Ornilux glass, a specialty glass product that uses a UV coating visible to birds but not humans. By framing and showcasing views of the landscape, the building celebrates and connects students with the surrounding environment, while the overall development of the precinct repurposes an Exterior glass detail Glass detail, showing frit pattern underutilized sector of campus. Table of Contents Executive Summary ...........................................................4
    [Show full text]
  • Passerines: Perching Birds
    3.9 Orders 9: Passerines – perching birds - Atlas of Birds uncorrected proofs 3.9 Atlas of Birds - Uncorrected proofs Copyrighted Material Passerines: Perching Birds he Passeriformes is by far the largest order of birds, comprising close to 6,000 P Size of order Cardinal virtues Insect-eating voyager Multi-purpose passerine Tspecies. Known loosely as “perching birds”, its members differ from other Number of species in order The Northern or Common Cardinal (Cardinalis cardinalis) The Common Redstart (Phoenicurus phoenicurus) was The Common Magpie (Pica pica) belongs to the crow family orders in various fine anatomical details, and are themselves divided into suborders. Percentage of total bird species belongs to the cardinal family (Cardinalidae) of passerines. once thought to be a member of the thrush family (Corvidae), which includes many of the larger passerines. In simple terms, however, and with a few exceptions, passerines can be described Like the various tanagers, grosbeaks and other members (Turdidae), but is now known to belong to the Old World Like many crows, it is a generalist, with a robust bill adapted of this diverse group, it has a thick, strong bill adapted to flycatchers (Muscicapidae). Its narrow bill is adapted to to feeding on anything from small animals to eggs, carrion, as small birds that sing. feeding on seeds and fruit. Males, from whose vivid red eating insects, and like many insect-eaters that breed in insects, and grain. Crows are among the most intelligent of The word passerine derives from the Latin passer, for sparrow, and indeed a sparrow plumage the family is named, are much more colourful northern Europe and Asia, this species migrates to Sub- birds, and this species is the only non-mammal ever to have is a typical passerine.
    [Show full text]
  • Habitat Use and Population Dynamics of the Azure-Winged Magpie, Cyanopica Cyanus, and Their Response to Fire in Northern Mongolia
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Habitat Use and Population Dynamics of the Azure-Winged Magpie, Cyanopica cyanus, and their Response to Fire in Northern Mongolia A thesis submitted in partial fulfilment of the requirements for the Degree of Master of International Nature Conservation (M.I.N.C) at Lincoln University by Haojin Tan Lincoln University, New Zealand/ Georg-August University, Germany 2011 The Azure-winged Magpie Cyanopica cyanus in Khonin Nuga, Northern Mongolia. Photo by Kerry- Jayne Wilson (2010) ii Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Master of International Nature Conservation Abstract Habitat Use and Population Dynamics of the Azure-winged Magpie, Cyanopica cyanus, and their Response to Fire in Northern Mongolia by Haojin Tan Fires are natural distubances in many ecosystems, but humans have altered fire regimes throughout the world. The effect of fire on organisms, particularly birds, depend on the extent and regime of the fire and the species’ ecology. The Azure-winged Magpie, Cyanopica cyanus is a cooperative breeder, and occurs in a disjunct distribution across much of Asia and in Iberia (Portugal and Spain).
    [Show full text]
  • The Division of the Major Songbird Radiation Into Passerida and 'Core
    TheBlackwell Publishing Ltd division of the major songbird radiation into Passerida and ‘core Corvoidea’ (Aves: Passeriformes) — the species tree vs. gene trees MARTIN IRESTEDT & JAN I. OHLSON Submitted: 19 July 2007 Irestedt, M. & Ohlson, J. I. (2008). The division of the major songbird radiation into Passerida Accepted: 26 November 2007 and ‘core Corvoidea’ (Aves: Passeriformes) — the species tree vs. gene trees. — Zoologica doi:10.1111/j.1463-6409.2007.00321.x Scripta, 37, 305–313. The knowledge of evolutionary relationships among oscine songbirds has been largely improved in recent years by molecular phylogenetic studies. However, current knowledge is still largely based on sequence data from a limited number of loci. In this study, we re-evaluate relationships among basal lineages within the ‘core Corvoidea’ and Passerida radiations, by adding additional loci to previously published data. The trees obtained from the individual genes suggest incongruent topologies. Especially the positions of Callaeatidae (wattlebirds), Cnemophilidae (satinbirds) and Melanocharitidae (longbills and berrypeckers) vary among the trees, but RAG-1 is the only gene that unambiguously suggested a ‘core Corvoidea’ affinity for these taxa. Analyses of various combined data sets show that the phylogenetic positions for Callaeatidae, Cnemophilidae and Melanocharitidae largely depend on which genes that have been combined. As the RAG-1 gene has contributed to a majority of the phylogenetic information in previous studies, it has deeply influenced previous molecular affinities of these taxa. Based on the current data, we found a reasonable support for a Passerida affinity of Callaeatidae and Cnemophilidae, contrary to previous molecular studies. The position of Melanocharitidae is more unstable but a basal position among Passerida is congruent with a deletion observed in the glyceraldehyde-3-phosphodehydrogenase (GAPDH) loci.
    [Show full text]
  • Niche Analysis and Conservation of Bird Species Using Urban Core Areas
    sustainability Article Niche Analysis and Conservation of Bird Species Using Urban Core Areas Vasilios Liordos 1,* , Jukka Jokimäki 2 , Marja-Liisa Kaisanlahti-Jokimäki 2, Evangelos Valsamidis 1 and Vasileios J. Kontsiotis 1 1 Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, Greece; [email protected] (E.V.); [email protected] (V.J.K.) 2 Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland; jukka.jokimaki@ulapland.fi (J.J.); marja-liisa.kaisanlahti@ulapland.fi (M.-L.K.-J.) * Correspondence: [email protected] Abstract: Knowing the ecological requirements of bird species is essential for their successful con- servation. We studied the niche characteristics of birds in managed small-sized green spaces in the urban core areas of southern (Kavala, Greece) and northern Europe (Rovaniemi, Finland), during the breeding season, based on a set of 16 environmental variables and using Outlying Mean Index, a multivariate ordination technique. Overall, 26 bird species in Kavala and 15 in Rovaniemi were recorded in more than 5% of the green spaces and were used in detailed analyses. In both areas, bird species occupied different niches of varying marginality and breadth, indicating varying responses to urban environmental conditions. Birds showed high specialization in niche position, with 12 species in Kavala (46.2%) and six species in Rovaniemi (40.0%) having marginal niches. Niche breadth was narrower in Rovaniemi than in Kavala. Species in both communities were more strongly associated either with large green spaces located further away from the city center and having a high vegetation cover (urban adapters; e.g., Common Chaffinch (Fringilla coelebs), European Greenfinch (Chloris Citation: Liordos, V.; Jokimäki, J.; chloris Cyanistes caeruleus Kaisanlahti-Jokimäki, M.-L.; ), Eurasian Blue Tit ( )) or with green spaces located closer to the city center Valsamidis, E.; Kontsiotis, V.J.
    [Show full text]
  • Federal Register/Vol. 85, No. 74/Thursday, April 16, 2020/Notices
    21262 Federal Register / Vol. 85, No. 74 / Thursday, April 16, 2020 / Notices acquisition were not included in the 5275 Leesburg Pike, Falls Church, VA Comment (1): We received one calculation for TDC, the TDC limit would not 22041–3803; (703) 358–2376. comment from the Western Energy have exceeded amongst other items. SUPPLEMENTARY INFORMATION: Alliance, which requested that we Contact: Robert E. Mulderig, Deputy include European starling (Sturnus Assistant Secretary, Office of Public Housing What is the purpose of this notice? vulgaris) and house sparrow (Passer Investments, Office of Public and Indian Housing, Department of Housing and Urban The purpose of this notice is to domesticus) on the list of bird species Development, 451 Seventh Street SW, Room provide the public an updated list of not protected by the MBTA. 4130, Washington, DC 20410, telephone (202) ‘‘all nonnative, human-introduced bird Response: The draft list of nonnative, 402–4780. species to which the Migratory Bird human-introduced species was [FR Doc. 2020–08052 Filed 4–15–20; 8:45 am]‘ Treaty Act (16 U.S.C. 703 et seq.) does restricted to species belonging to biological families of migratory birds BILLING CODE 4210–67–P not apply,’’ as described in the MBTRA of 2004 (Division E, Title I, Sec. 143 of covered under any of the migratory bird the Consolidated Appropriations Act, treaties with Great Britain (for Canada), Mexico, Russia, or Japan. We excluded DEPARTMENT OF THE INTERIOR 2005; Pub. L. 108–447). The MBTRA states that ‘‘[a]s necessary, the Secretary species not occurring in biological Fish and Wildlife Service may update and publish the list of families included in the treaties from species exempted from protection of the the draft list.
    [Show full text]