Education and Employment of Women in Science, Technology and the Digital Economy, Including AI and Its Influence on Gender Equality

Total Page:16

File Type:pdf, Size:1020Kb

Education and Employment of Women in Science, Technology and the Digital Economy, Including AI and Its Influence on Gender Equality STUDY Requested by the FEMM committee Education and employment of women in science, technology and the digital economy, including AI and its influence on gender equality Policy Department for Citizens’ Rights and Constitutional Affairs Directorate-General for Internal Policies PE 651.042- April 2020 EN Education and employment of women in science, technology and the digital economy, including AI and its influence on gender equality Abstract This study, commissioned by the European Parliament’s Policy Department for Citizens’ Rights and Constitutional Affairs at the request of the FEMM Committee, provides evidence that there is still gender bias and inequality in STEM (Science, Technology, Engineering, Mathematics) fields and the digital sector (e.g., digital technologies, Computer Science, Information Technology, Information and Communication Technology, Artificial Intelligence, cybersecurity). This document, prepared at the request of the FEMM Committee (Policy Department for Citizens’ Rights and Constitutional Affairs, Directorate-General for Internal Policies), is intended to provide an up-to-date literature review on the current status of women’s education and employment in STEM fields and the digital sector. In so doing, the corresponding trajectories are examined, from the primary education level up to the employment level, in an attempt to identify obstacles and bottlenecks that prevent gender parity. Finally, suggestions for future research, initiatives and policies that would improve women’s participation in these areas are made. This document was requested by the European Parliament's Committee on Citizens' Rights and Constitutional Affairs. AUTHORS Prof. Dr. Zacharias C. Zacharia, Research in Science and Technology Education Group, Department of Educational Sciences, University of Cyprus Dr. Tasos Hovardas, Research in Science and Technology Education Group, University of Cyprus Dr. Nikoletta Xenofontos, Research in Science and Technology Education Group, University of Cyprus Ms Ivoni Pavlou, Research in Science and Technology Education Group, University of Cyprus Ms Maria Irakleous, Research in Science and Technology Education Group, University of Cyprus ADMINISTRATOR RESPONSIBLE Martina SCHONARD EDITORIAL ASSISTANT Sandrina MARCUZZO LINGUISTIC VERSIONS EN ABOUT THE EDITOR Policy departments provide in-house and external expertise to support EP committees and other parliamentary bodies in shaping legislation and exercising democratic scrutiny over EU internal policies. To contact the Policy Department or to subscribe for updates, please write to: Policy Department for Citizens’ Rights and Constitutional Affairs European Parliament B-1047 Brussels Email: [email protected] Manuscript completed in April 2020 © European Union, 2020 This document is available on the internet at: http://www.europarl.europa.eu/supporting-analyses DISCLAIMER AND COPYRIGHT The opinions expressed in this document are the sole responsibility of the authors and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the European Parliament is given prior notice and sent a copy. © Cover image used under licence from Shutterstock.com Education and employment of women in science, technology and the digital economy, including AI and its influence on gender equality CONTENTS LIST OF ABBREVIATIONS 6 LIST OF TABLES 7 EXECUTIVE SUMMARY 8 GENERAL INFORMATION 11 1.1. Introduction 11 1.2. Methods 11 SUMMARY OF KEY FINDINGS 13 PRIMARY EDUCATION 15 3.1. Inconsistency between girls’ attitudes and ability and their career beliefs 15 3.2. Opportunities for initiating and sustaining girls’ interest 15 3.3. Barriers presented by social and academic environments 16 SECONDARY EDUCATION 17 4.1. Achievement and attitudes 17 4.2. Time window for choice of subjects and differential preferences of females and males 18 4.3. Initial interest 19 4.4. Social interaction 20 4.4.1. Student-teacher interaction 20 4.4.2. Student-student interaction 20 4.4.3. Student-parent interaction 22 4.4.4. Adverse effects of support provided by teachers and parents 22 4.5. Socio-cultural aspects 22 4.6. Policy reforms focusing on secondary education 23 HIGHER EDUCATION 25 5.1. Choice of subjects 25 5.1.1. Female percentages lag behind male figures across all levels of tertiary education 25 5.1.2. The special case of Computer Science 25 5.1.3. Female preference for doctoral studies 26 5.2. Gender stereotypes and gender bias 26 5.2.1. Females tend to undervalue their own capacities 26 5.2.2. Responsibilisation and contradictory incentive structures for female academics and researchers 28 5.2.3. The gender productivity gap 28 5.3. Social interaction 29 PE 651.042 3 IPOL | Policy Department for Citizens’ Rights and Constitutional Affairs 5.3.1. The dominance and implications of cisgender male heterosexuality in higher education institutes 29 5.3.2. Student-instructor interaction 30 5.3.3. Student-student interaction 31 5.4. Gender and grants in academia 32 EMPLOYMENT 34 6.1. Figures and trends for female employment 34 6.1.1. The European context 34 6.1.2. The special case of Computer Science 34 6.2. Women face disproportionally more obstacles in their careers than men 34 6.3. Women in upper-level positions and gender salary gaps 35 6.4. How far gender discrimination can penetrate: Unintended gender differences in the delivery of social media ads for careers 36 6.5. Differential gender responses to gender bias in employment 37 6.6. Gender diversity propels performance 37 6.7. Institutions established to close the gender gap 38 EXAMPLES OF GENDER BIAS AND INEQUALITIES FROM THE DIGITAL SECTOR: THE CASES OF ARTIFICIAL INTELLIGENCE AND CYBERSECURITY 42 7.1. The case of Artificial Intelligence 42 7.1.1. Gender representation in AI 43 7.1.2. How does gender bias appear in AI and what causes this bias 44 AI gender is stereotyped 44 Underlying gender bias in AI 44 Gendered issues in the AI workplace 45 7.1.3. Overcoming gender bias in AI 45 7.2. The case of cybersecurity 46 7.2.1. Why fewer females select cybersecurity for employment 47 Social/institutional barriers 47 Personal barriers 48 7.2.2. Overcoming the barriers to attracting more females to cybersecurity 48 MAIN DISCUSSION POINTS 51 8.1. Biological, individual, and socio-cultural determinants of the gender gap 51 8.2. No magic wand to fix the gender gap 52 8.2.1. Interventions targeting individual participants may backfire 52 8.2.2. Interventions need to be delivered within real-world contexts 52 8.2.3. Different STEM fields may need to be treated differently 53 4 PE 651.042 Education and employment of women in science, technology and the digital economy, including AI and its influence on gender equality 8.3. Problematize the “leaky pipeline” metaphor 53 8.4. Create enabling environments in education and workplace 54 8.5. Problematize the role of schools 54 8.6. Multi-level approach needed to address the gender gap 55 POLICY RECOMMENDATIONS 56 9.1. Stakeholder interaction at the EU level (macro-level) 56 9.2. Select and analyse cohort data anchored in real-world contexts (macro-level) 56 9.3. Create and sustain enabling education and work environments (meso-level) 57 9.4. Concentrate on positive feedback loops and bottlenecks (meso-level) 57 9.5. Problematize reference material and pedagogical approaches (micro-level) 59 9.6. Problematize peer interactions (micro-level) 60 9.7. Participatory scenario development and assessment for operationalizing stakeholder joint action in combating gender inequality in STEM, ICT, and CS (including AI and cybersecurity) 60 REFERENCES 63 REFERENCE LIST 1 – REFERENCES USED IN THE REVIEW 63 REFERENCE LIST 2 – REFERENCES USED IN THE REVIEW FOR THE CHAPTER TITLED: “EXAMPLES OF GENDER BIAS AND INEQUALITIES FROM THE DIGITAL SECTOR: THE CASES OF ARTIFICIAL INTELLIGENCE AND CYBERSECURITY” 75 REFERENCE LIST 3 – ADDITIONAL REFERENCES USED IN THE CHAPTERS “MAIN DISCUSSION POINTS” AND “POLICY RECOMMENDATIONS” 79 ANNEX 80 PE 651.042 5 IPOL | Policy Department for Citizens’ Rights and Constitutional Affairs LIST OF ABBREVIATIONS AI Artificial Intelligence CS Computer Science ERAC European Research Area and Innovation Committee GDP Gross Domestic Product ICT Information and Communication Technology IT Information Technology SWG Standing Working Group STEM Science, Technology, Engineering, and Mathematics SWOT Strengths, Weaknesses, Opportunities, And Threats 6 PE 651.042 Education and employment of women in science, technology and the digital economy, including AI and its influence on gender equality LIST OF TABLES Table 1: Institutions/initiatives aiming to address the gender gap in STEM in the USA 39 Table 2: Institutions/initiatives aiming to address the gender gap in STEM in Europe 40 Table 3: Positive feedback loops/bottleneck effects for female interest or representation 58 Table 4: Recommendations for future research on gender inequality and discrimination in STEM, ICT, and CS 58 Table 5: Draft scenarios developed for joint stakeholder action to promote gender equality in STEM, ICT, and CS: Focus schools in secondary education 62 PE 651.042 7 IPOL | Policy Department for Citizens’ Rights and Constitutional Affairs EXECUTIVE SUMMARY Gender parity is vital to the prosperity of the EU, because it has been found to affect GDP, levels of employment, and productivity. STEM fields and the digital sector (e.g., digital technologies, CS, IT, ICT, AI, cybersecurity) are among the employment domains where gender bias prevails. Hence, addressing these inequalities is of high importance, especially when considered within the frame of the EU’s principles and values. This document has been prepared at the request of the FEMM Committee (Policy Department for Citizens’ Rights and Constitutional Affairs, Directorate-General for Internal Policies). Major areas of concern for the Committee include the evidence of persisting biases and inequalities in STEM fields and the digital sector, in spite of the fact that these biases and inequalities were identified several decades ago and efforts have been made to address them over the years.
Recommended publications
  • Female Underrepresentation in STEM Erin Cygan Augustana College, Rock Island Illinois
    Augustana College Augustana Digital Commons Mary Wollstonecraft rW iting Award Prizewinners 2018 Female Underrepresentation in STEM Erin Cygan Augustana College, Rock Island Illinois Follow this and additional works at: https://digitalcommons.augustana.edu/wollstonecraftaward Part of the Women's Studies Commons Augustana Digital Commons Citation Cygan, Erin. "Female Underrepresentation in STEM" (2018). Mary Wollstonecraft rW iting Award. https://digitalcommons.augustana.edu/wollstonecraftaward/28 This Student Paper is brought to you for free and open access by the Prizewinners at Augustana Digital Commons. It has been accepted for inclusion in Mary Wollstonecraft rW iting Award by an authorized administrator of Augustana Digital Commons. For more information, please contact [email protected]. Female Underrepresentation in STEM Erin Cygan FYI-103-34 Rethinking the ‘F Word’: Feminisms for the 21st Century Jennifer Heacock-Renaud Spring 2017 Long Analytical Essay 1 Blue is for boys, pink is for girls. Legos are for boys, dolls are for girls. Science kits are for boys, Easy Bake Ovens are for girls. Computer science and engineering are for boys, the humanities and caregiving are for girls. Ad infinitum. While oftentimes overlooked, society has the tendency to enforce and naturalize restrictive binaries for children, most often in relation to gender identity. These binaries cultivate an acceptance of gender stereotypes and promote a bias that carries over into adulthood. The nature of this gendered oppression weighs heavily on young girls’ opportunities and career aspirations. When girls are discouraged from or otherwise unaware of their potential future in a diverse array of jobs, their talents and abilities are suppressed. The objective of this paper is to examine the lack of women pursuing and practicing science, technology, engineering, and mathematics (STEM) relative to the number of men active in these fields.
    [Show full text]
  • Solving the Equation
    SOLVING THE EQUATION The Variables for Women’s Success in Engineering and Computing EXECUTIVE SUMMARY To download a free copy of the full report, Solving the Equation: The Variables for Women’s Success in Engineering and Computing, go to www.aauw.org/what-we-do/research. More than ever before in history, girls are studying and excelling in science and mathematics. Yet the dramatic increase in girls’ educational achieve- ments in scientific and mathematical subjects has not been matched by similar increases in the representation of women working as engineers and computing professionals. Women made up just 26 percent of computing professionals in 2013, a substantially smaller portion than 25 years ago and about the same percentage as in 1960. In engineering, women are even less well represented, making up just 12 percent of working engineers in 2013. The representation of women in engineering and computing occupations matters. Diversity in the workforce contributes to creativity, productivity, and innovation. Women’s experiences—along with men’s experiences— should inform and guide the direction of engineering and technical innova- tion. We simply can’t afford to ignore the perspectives of half the population in future engineering and technical designs. Advocates have long extolled the importance of advancing girls and women in science, technology, engineering, and mathematics (STEM). WOMEN IN SELECTED STEM OCCUPATIONS, 1960–2013 60 53% 50 46% 44% 42% 39% 40 35% 35% 34% 33% 32% 28% 30 26% 27% 26% 30% 27% 20% 26% 20 20% Percentage of women of Percentage 12% 11% 11% 12% 9% 10 8% 5% 1% 2% 0 1960 1970 1980 1990 2000 2010 2013 Engineers Chemists and Computer and mathematical Biological scientists material scientists occupations Sources: AAUW analysis of data from U.S.
    [Show full text]
  • Reaching the Full Potential of STEM for Women and the U.S. Economy
    Reaching the Full Potential of STEM for Women and the U.S. Economy 12 1 Reaching the Full Potential of STEM for Women and the U.S. Economy Reaching the Full Potential of STEM for Women and the U.S. Economy 3 Reaching the Full Potential of STEM for Women and the U.S. Economy Somewhere in America there is a tech executive looking for a skilled programmer. Somewhere else there is a young girl on a computer tablet learning to code. It’s about time these two got acquainted. Across the country, companies are looking to hire people with skills in science, technol- ogy, engineering, and mathematics. But there remains a shortage of talented women in these fields, and this poses a threat to our competitiveness as a nation. That’s why I am pleased to present the Center for Women in Business’ new report Reaching the Full Potential of STEM for Women and the U.S. Economy, The argument for more women in STEM careers is simple. Projections show that Amer- ica will need to fill 6.6 million STEM jobs over the next 10 years. Although women are becoming more educated than ever before—making up half of all workers with postsec- ondary degrees—they compose just 25% of workers in STEM fields. How can companies find enough STEM workers if half our population is directed toward other professions? How can our nation compete if we are not luring the brightest minds into STEM fields? Bringing more women into the STEM workforce is not just about gender equity.
    [Show full text]
  • International Best Practice Report on Teaching Stem
    ENGIE DELIVERABLE 1.4 ENGIE DELIVERABLE 1.4 INTERNATIONAL BEST PRACTICE REPORT ON TEACHING STEM Summary This report presents the results of the review aimed at identifying best practices and success stories relative to STEM teaching in Europe and worldwide, in the framework of WP1 “Programming”, tasks 1.3 and 1.4 Authors Silvia Giuliani PhD, Institute of Marine Sciences, National Research Council of Italy i ENGIE DELIVERABLE 1.4 Title: D 1.4 International best practice report on teaching STEM Lead beneficiary: National Research Council of Italy (CNR) Other beneficiaries: UNIM, LTU, UNIZG-RGNF, EFG, LPRC Due date: 31/08/2020 Delivery date: 20/08/2020 DOI: Recommended citation: Silvia Giuliani, The EIT ENGIE project: Deliverable 1.4 – International best practice report on teaching STEM i ENGIE DELIVERABLE 1.4 Table of contents Introduction …………………………………………………………………….……. 1 1. Theoretical concepts that underlie best practices for STEM teaching ...……………………………………………..…….….………..……... 3 1.1. Affective Domain and Individual Interest ………………….…………….……… 4 1.2. Communicating geosciences at the Solomon Islands …………………..…. 5 1.3. Research Partnership Consensus Statement ………………….………………. 6 1.4. Constructivist approach to Science education ……………….…….………... 7 1.5. Geoethics ……………………………………………………………….….………..…….….. 8 1.6. The protégé effect ……………………………………………………………………….… 9 1.7. Geoscience in the Anthropocene ….……………………………………………….. 10 1.8. Inquiry and Tenets of Multicultural Education …………………….…………. 11 1.9. Environmental Education ………………………………………….………..…………. 12 1.10. Gender Gap in Science interdisciplinary project ..…………………………… 13 1.11. SAGA – STI GOL .……………………………….……………………………………………. 14 1.12. Integrated STEM education …………………………………………………….……… 15 1.13. Inquiry-based STEM education ………………………………………………………. 16 2. Programs and projects for schools and the general public .… 17 2.1. UCAR SOARS ………………………………………………………..………………………… 18 2.2. The Texas Earth and Space Science Revolution ………………….…………… 19 2.3.
    [Show full text]
  • Women in Academic Science: a Changing Landscape 541236Research-Article2014
    PSIXXX10.1177/1529100614541236Ceci et al.Women in Academic Science: A Changing Landscape 541236research-article2014 Psychological Science in the Public Interest Women in Academic Science: A Changing 2014, Vol. 15(3) 75 –141 © The Author(s) 2014 Reprints and permissions: Landscape sagepub.com/journalsPermissions.nav DOI: 10.1177/1529100614541236 pspi.sagepub.com Stephen J. Ceci1, Donna K. Ginther2, Shulamit Kahn3, and Wendy M. Williams1 1Department of Human Development, Cornell University; 2Department of Economics, University of Kansas; and 3School of Management, Boston University Summary Much has been written in the past two decades about women in academic science careers, but this literature is contradictory. Many analyses have revealed a level playing field, with men and women faring equally, whereas other analyses have suggested numerous areas in which the playing field is not level. The only widely-agreed-upon conclusion is that women are underrepresented in college majors, graduate school programs, and the professoriate in those fields that are the most mathematically intensive, such as geoscience, engineering, economics, mathematics/ computer science, and the physical sciences. In other scientific fields (psychology, life science, social science), women are found in much higher percentages. In this monograph, we undertake extensive life-course analyses comparing the trajectories of women and men in math-intensive fields with those of their counterparts in non-math-intensive fields in which women are close to parity with or even exceed the number of men. We begin by examining early-childhood differences in spatial processing and follow this through quantitative performance in middle childhood and adolescence, including high school coursework. We then focus on the transition of the sexes from high school to college major, then to graduate school, and, finally, to careers in academic science.
    [Show full text]
  • Mentoring Women: Identifying, Developing, and Retaining STEM Stars
    Mentoring Women: Identifying, Developing, and Retaining STEM Stars A Thesis Submitted to the Faculty of Drexel University By Alexandra Chiara Viscosi in partial fulfillment of the requirements for the degree of Doctor of Education August 2016 Running Head: Mentoring Women © Copyright 2016 Alexandra C. Viscosi. All Rights Reserved. ii Running Head: Mentoring Women iii Running Head: Mentoring Women Dedication I dedicate this dissertation to my parents, Yvonne Torres Viscosi and Pasquale Viscosi. iv Running Head: Mentoring Women Acknowledgements First of all, I would like to thank my committee for guiding me through this process. To Kristy Kelly, my doctoral advisor, who endured many emails and panicked calls over the course of this process, I am forever grateful for your patience and guidance. I truly appreciate all of the positive feedback and believing in my work when I was hesitant. I hope we can continue to work together in the future. In addition, Michael Ober who went above and beyond by not only being on my committee but being a dear friend. Thank you for listening to countless hours of stories about my classes, my stresses, and supporting me through this roller coaster of a dissertation process. Not only did you offer to write me a recommendation letter to get into this program, you immediately volunteered to be a part of my committee from the very beginning. I cannot thank you enough for all you have done and how much it has meant to me. Next, I would like to give my gratitude to my co-workers and friends who helped me through the process, participated whenever they could and were supportive shoulders when I needed it.
    [Show full text]
  • (STEM) Within Higher Education: a Regional Case Study
    Understanding why women are under-represented in Science, Technology, Engineering and Mathematics (STEM) within Higher Education: a regional case study Michael Christiea*, Maureen O’Neilla, Kerry Ruttera, Graham Younga, Angeline Medlanda aUniversidade de Sunshine Coast, Queensland, Austrália *[email protected] Abstract Participation rates of women in Science, Technology, Engineering and Mathematics (STEM) is comparatively low and their attrition rates high. An obvious solution is to attract more women to study such subjects. In 2016 the authors undertook research to find out why so few women enrolled in STEM subjects and investigate ways of increasing their recruitment and retention in this area. The informants in our study were enrolled in a tertiary preparation course as well as nursing and education programs. A critique of the literature was used to develop a survey that informed focus group and interview schedules which were used in collecting data. Our study found that many of the factors that hindered women from applying for STEM courses twenty years ago still apply today and recommends actions that can help increase recruitment of women into STEM and assist their retention and graduation in those areas of tertiary education. Keywords Diversity in STEM. Sustainability in STEM. Gender Balance. How to cite this article: Christie, M., O’Neill, M., Rutter, K., Young, G., & Medland, A. (2017). Understanding why women are under-represented in Science, Technology, Engineering and Mathematics (STEM) within Higher Education: a regional case study. Production, 27(spe), e20162205. http://dx.doi.org/10.1590/0103-6513.220516 1. Introduction Twenty years ago Hanson (1996) argued that although female students have demonstrated interest and aptitude in Science, Technology, Engineering and Mathematics (STEM), they were under represented in STEM subjects at both secondary and tertiary levels of education.
    [Show full text]
  • Girls and Women in STEM: a Review of Interventions and Lifespan Developmental Considerations for Increasing Girls’ and Women’S Participation in STEM
    Girls and Women in STEM: A Review of Interventions and Lifespan Developmental Considerations for Increasing Girls’ and Women’s Participation in STEM Kaite Yang, Ph.D. Katherine G. Awad, Marissa M. Gramaglia, Ryan J. Kelly, Sabrina E. Kopec, Nicholas J. Luzio, Katrina T. Neptune, Morgan J. Pfau, Jenna L. Purviance Stockton University This report was prepared for the U.S. Department of State, Office of Science and Technology Cooperation, Bureau of Oceans and International Environmental and Scientific Affairs “Who Run the World? Girls (& Women) in STEM” Diplomacy Lab project. Correspondence concerning this report can be directed to Dr. Kaite Yang, Department of Psychology, Stockton University, 101 Vera King Farris Drive, Galloway, NJ, 082015, USA, [email protected]. Research assistants for this project: Nicole Foresta, Megan Donath, students of PSYC 2201 Adolescence (William Arnold, Adilia Balderas-Perez, Aydan Barr, Randi Berry, Kyndall Brooks, Liam Camey, Emily Carbone, Andrew Castle, Kallie DeRose, Taylor Dungan, Kierre Fenderson, Shannon Frankenfield, Katherine Gomez, Margaret Jinks, Yei Kargbo, Brianna Lally, Thuy Lam, Julian Londono, Caroline McCoy, Deanna Molinaro, Brett Morrice, Adam Munsick, Bethany Nemsdale, Madison Noordeloos, Yesenia Pacheco, Sabrina Parin, Jackson Pritchett, Chantal Ramirez, Samantha Rodriguez, Andrea Tammaro, Macie Wareham, Maryn Westfall) stockton.edu 2 Girls and Women in STEM Table of Contents Girls and Women in STEM: A Review of Interventions and Lifespan Developmental Considerations for Increasing
    [Show full text]
  • Science Fiction Exhibits As STEM Gateways Samantha Robie a Thesis
    Science Fiction Exhibits as STEM Gateways Samantha Robie A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts University of Washington 2014 Committee: Kris Morrissey Adam Eisenberg LeiLani Nishime Program Authorized to Offer Degree: Museology ©Copyright 2014 Samantha Robie University of Washington Abstract Science Fiction Exhibits as STEM Gateways Samantha Robie Chair of the Supervisory Committee: Kris Morrissey, Director Museology Women continue to hold less than a quarter of all STEM jobs in the United States, prompting many museums to develop programs and exhibits with the express goal of interesting young girls in scientific fields. At the same time, a number of recent museum exhibits have harnessed the popularity of pop culture and science fiction in order to interest general audiences in STEM subject matter, as well as using the exhibits as springboards to expand or shift mission goals and focus. Because science fiction appears to be successful at raising interest in STEM fields, it may be an effective way to garner the interest of young girls in STEM in particular. This research seeks to describe the ways in which museums are currently using science fiction exhibits to interest young girls in STEM fields and careers. Research focused on four institutions across the country hosting three separate exhibits, and included staff interviews and content analysis of exhibit descriptions, promotional materials, a summative evaluation and supplementary exhibit productions. In some ways, science fiction exhibits do serve young girls, primarily through the inclusion of female role models, staff awareness, and prototype testing to ensure interactives are attractive to girls as well as to boys.
    [Show full text]
  • Influences on Female College Graduates' Persistence in STEM
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 The Process of Choosing Science, Technology, Engineering, and Mathematics Careers by Undergraduate Women: A Narrative Life History Analysis Roxanne M. (Roxanne Marie) Hughes Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF EDUCATION THE PROCESS OF CHOOSING SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS CAREERS BY UNDERGRADUATE WOMEN: A NARRATIVE LIFE HISTORY ANALYSIS By ROXANNE M. HUGHES A Dissertation submitted to the Department of Educational Leadership and Policy Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Degree Awarded: Fall Semester, 2010 The members of the committee approve the dissertation of Roxanne M. Hughes defended on October 4, 2010. ________________________________________(signature) Stacey Rutledge Professor Directing Dissertation ________________________________________(signature) Sherry Southerland University Representative ________________________________________(signature) Robert Schwartz Committee Member ________________________________________(signature) Sande Milton Committee Member Approved: ______________________________ Patrice Iatarola, Chair, Department of Educational Leadership and Policy Studies The Graduate School has verified and approved the above-named committee members. ii I dedicate this to all people who defy the odds, overcome the struggles of stereotypes, and persevere in their dreams, especially the three WSTEM faculty affiliates who spoke with me about their career paths. iii ACKNOWLEDGMENTS This dissertation would not have been possible without the work of Dr. Stacey Rutledge. I cannot thank her enough for taking me on as a student two years ago, despite having never worked with me. I am so grateful for her support and guidance throughout this process.
    [Show full text]
  • Women in STEM: Strategies and Recommendations for Academic Women and Institutional Leaders
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2019 Women in STEM: Strategies and Recommendations for Academic Women and Institutional Leaders Sarah Jensen University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Educational Assessment, Evaluation, and Research Commons, Gender Equity in Education Commons, Higher Education and Teaching Commons, and the Women's Studies Commons Citation Jensen, S. (2019). Women in STEM: Strategies and Recommendations for Academic Women and Institutional Leaders. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3473 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Women in STEM: Strategies and Recommendations for Academic Women and Institutional Leaders A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Education in Higher Education by Sarah Jensen Webster University Bachelor of Arts in Business Administration, 1997 Webster University Master of Business Administration, 2003 December 2019 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. _____________________________________ John W. Murry, Jr., Ed. D. Dissertation Director _____________________________________ Ketevan Mamiseishvili, Ph.D. Committee Member _____________________________________ Michael T. Miller, Ed. D. Committee Member Abstract Women still comprise a small number of full professors in STEM disciplines in research universities, which have historically been male dominated. The National Science Foundation (NSF) has recognized the challenge of getting more women to enter the professoriate, earn tenure, and advance to full professor.
    [Show full text]
  • Understanding the Acculturation of Women in Science the Interplay of Episteme, Techne, & Phronesis in Retaining Females in Undergraduate Science
    Understanding the Acculturation of Women in Science The Interplay of Episteme, Techne, & Phronesis in Retaining Females in Undergraduate Science A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements of the Degree of Doctor of Philosophy by Michele Ann Whitecraft January 2013 © 2013 Michele Ann Whitecraft Understanding the Acculturation of Women in Science: The Interplay of Episteme, Techne & Phronesis in Retaining Females in Undergraduate Science Michele Ann Whitecraft, PhD Cornell University, 2013 Abstract Democracy is a fundamental ideal of our nation. Persistent gender imbalances throughout society indicate strongly, however, that our reality falls short of the ideal. Our institutional decisions, though arguably based on majority rule, do not ensure fairness because the decision- making discussions exclude categories of people and important modes of discourse or ways knowing. One such imbalance lies in the fields of science, technology, engineering and math (STEM) where women comprise only 13% of professors in the top 100 US universities. The challenge at present, then, is to find out why women leave the sciences in order to know what internal and external coercive forces affect their decisions. This dissertation employs Flyvbjerg’s interpretation of Aristotle’s three intellectual virtues episteme, techne, and phronesis. to help elucidate the attrition of women in computer science, physics and engineering. Each chapter represents each virtue and demonstrates the importance of integrating multiple ways of knowing. From an Aristotelian point of view, phronesis is the most important intellectual virtue that may ensure the ethical employment of science (episteme) and technology (techne). In the spirit of Flyvbjerg’s research, I provide concrete examples through detailed narratives of the ways in which personality, power and values work together in choosing/leaving a major.
    [Show full text]