FOLIATIONS Introduction. the Study of Foliations on Manifolds Has a Long
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Codimension Zero Laminations Are Inverse Limits 3
CODIMENSION ZERO LAMINATIONS ARE INVERSE LIMITS ALVARO´ LOZANO ROJO Abstract. The aim of the paper is to investigate the relation between inverse limit of branched manifolds and codimension zero laminations. We give necessary and sufficient conditions for such an inverse limit to be a lamination. We also show that codimension zero laminations are inverse limits of branched manifolds. The inverse limit structure allows us to show that equicontinuous codimension zero laminations preserves a distance function on transver- sals. 1. Introduction Consider the circle S1 = { z ∈ C | |z| = 1 } and the cover of degree 2 of it 2 p2(z)= z . Define the inverse limit 1 1 2 S2 = lim(S ,p2)= (zk) ∈ k≥0 S zk = zk−1 . ←− Q This space has a natural foliated structure given by the flow Φt(zk) = 2πit/2k (e zk). The set X = { (zk) ∈ S2 | z0 = 1 } is a complete transversal for the flow homeomorphic to the Cantor set. This space is called solenoid. 1 This construction can be generalized replacing S and p2 by a sequence of compact p-manifolds and submersions between them. The spaces obtained this way are compact laminations with 0 dimensional transversals. This construction appears naturally in the study of dynamical systems. In [17, 18] R.F. Williams proves that an expanding attractor of a diffeomor- phism of a manifold is homeomorphic to the inverse limit f f f S ←− S ←− S ←−· · · where f is a surjective immersion of a branched manifold S on itself. A branched manifold is, roughly speaking, a CW-complex with tangent space arXiv:1204.6439v2 [math.DS] 20 Nov 2012 at each point. -
Orientability of Real Parts and Spin Structures
JP Jour. Geometry & Topology 7 (2007) 159-174 ORIENTABILITY OF REAL PARTS AND SPIN STRUCTURES SHUGUANG WANG Abstract. We establish the orientability and orientations of vector bundles that arise as the real parts of real structures by utilizing spin structures. 1. Introduction. Unlike complex algebraic varieties, real algebraic varieties are in general nonorientable, the simplest example being the real projective plane RP2. Even if they are orientable, there may not be canonical orientations. It has been an important problem to resolve the orientability and orientation issues in real algebraic geometry. In 1974, Rokhlin introduced the complex orientation for dividing real algebraic curves in RP2, which was then extended around 1982 by Viro to the so-called type-I real algebraic surfaces. A detailed historic count was presented in the lucid survey by Viro [10], where he also made some speculations on higher dimensional varieties. In this short note, we investigate the following more general situation. We take σ : X → X to be a smooth involution on a smooth manifold of an arbitrary dimension. (It is possible to consider involutions on topological manifolds with appropriate modifications.) Henceforth, we will assume that X is connected for certainty. In view of the motivation above, let us denote the fixed point set by XR, which in general is disconnected and will be assumed to be non-empty throughout the paper. Suppose E → X is a complex vector bundle and assume σ has an involutional lifting σE on E that is conjugate linear fiberwise. We call σE a real structure on E and its fixed point set ER a real part. -
Connections on Bundles Md
Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II. -
The Stable Homotopy of Complex Projective Space
THE STABLE HOMOTOPY OF COMPLEX PROJECTIVE SPACE By GRAEME SEGAL [Received 17 March 1972] 1. Introduction THE object of this note is to prove that the space BU is a direct factor of the space Q(CP°°) = Oto5eo(CP00) = HmQn/Sn(CPto). This is not very n surprising, as Toda [cf. (6) (2.1)] has shown that the homotopy groups of ^(CP00), i.e. the stable homotopy groups of CP00, split in the appro- priate way. But the method, which is Quillen's technique (7) of reducing to a problem about finite groups and then using the Brauer induction theorem, may be interesting. If X and Y are spaces, I shall write {X;7}*for where Y+ means Y together with a disjoint base-point, and [ ; ] means homotopy classes of maps with no conditions about base-points. For fixed Y, X i-> {X; Y}* is a representable cohomology theory. If Y is a topological abelian group the composition YxY ->Y induces and makes { ; Y}* into a multiplicative cohomology theory. In fact it is easy to see that {X; Y}° is then even a A-ring. Let P = CP00, and embed it in the space ZxBU which represents the functor K by P — IXBQCZXBU. This corresponds to the natural inclusion {line bundles} c {virtual vector bundles}. There is an induced map from the suspension-spectrum of P to the spectrum representing l£-theory, inducing a transformation of multiplicative cohomology theories T: { ; P}* -*• K*. PROPOSITION 1. For any space, X the ring-homomorphism T:{X;P}°-*K<>(X) is mirjective. COEOLLAKY. The space QP is (up to homotopy) the product of BU and a space with finite homotopy groups. -
Horizontal Holonomy and Foliated Manifolds Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen
Horizontal holonomy and foliated manifolds Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen To cite this version: Yacine Chitour, Erlend Grong, Frédéric Jean, Petri Kokkonen. Horizontal holonomy and foliated manifolds. Annales de l’Institut Fourier, Association des Annales de l’Institut Fourier, 2019, 69 (3), pp.1047-1086. 10.5802/aif.3265. hal-01268119 HAL Id: hal-01268119 https://hal-ensta-paris.archives-ouvertes.fr//hal-01268119 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HORIZONTAL HOLONOMY AND FOLIATED MANIFOLDS YACINE CHITOUR, ERLEND GRONG, FRED´ ERIC´ JEAN AND PETRI KOKKONEN Abstract. We introduce horizontal holonomy groups, which are groups de- fined using parallel transport only along curves tangent to a given subbundle D of the tangent bundle. We provide explicit means of computing these holo- nomy groups by deriving analogues of Ambrose-Singer's and Ozeki's theorems. We then give necessary and sufficient conditions in terms of the horizontal ho- lonomy groups for existence of solutions of two problems on foliated manifolds: determining when a foliation can be either (a) totally geodesic or (b) endowed with a principal bundle structure. -
Part III : the Differential
77 Part III : The differential 1 Submersions In this section we will introduce topological and PL submersions and we will prove that each closed submersion with compact fibres is a locally trivial fibra- tion. We will use Γ to stand for either Top or PL and we will suppose that we are in the category of Γ–manifolds without boundary. 1.1 A Γ–map p: Ek → Xl betweenΓ–manifoldsisaΓ–submersion if p is locally the projection Rk−→πl R l on the first l–coordinates. More precisely, p: E → X is a Γ–submersion if there exists a commutative diagram p / E / X O O φy φx Uy Ux ∩ ∩ πl / Rk / Rl k l where x = p(y), Uy and Ux are open sets in R and R respectively and ϕy , ϕx are charts around x and y respectively. It follows from the definition that, for each x ∈ X ,thefibre p−1(x)isaΓ– manifold. 1.2 The link between the notion of submersions and that of bundles is very straightforward. A Γ–map p: E → X is a trivial Γ–bundle if there exists a Γ– manifold Y and a Γ–isomorphism f : Y × X → E , such that pf = π2 ,where π2 is the projection on X . More generally, p: E → X is a locally trivial Γ–bundle if each point x ∈ X has an open neighbourhood restricted to which p is a trivial Γ–bundle. Even more generally, p: E → X is a Γ–submersion if each point y of E has an open neighbourhood A, such that p(A)isopeninXand the restriction A → p(A) is a trivial Γ–bundle. -
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu
Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu Notes for a topics in topology course, University of Notre Dame, Spring 2004, Spring 2013. Last revision: November 15, 2013 i The Atiyah-Singer Index Theorem This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera- tors on a compact manifold, namely those operators P with the property that dim ker P; dim coker P < 1. In general these integers are very difficult to compute without some very precise information about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that its determination can be carried out relying only on topological tools. You should compare this with the following elementary situation. m n Suppose we are given a linear operator A : C ! C . From this information alone we cannot compute the dimension of its kernel or of its cokernel. We can however compute their difference which, according to the rank-nullity theorem for n×m matrices must be dim ker A−dim coker A = m − n. Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator is determined by certain cohomology classes on the background manifold. These cohomology classes are in turn topological invariants of the vector bundles on which the differential operator acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that in order to understand the index problem for an arbitrary elliptic operator it suffices to understand the index problem for a very special class of first order elliptic operators, namely the Dirac type elliptic operators. -
LECTURE 6: FIBER BUNDLES in This Section We Will Introduce The
LECTURE 6: FIBER BUNDLES In this section we will introduce the interesting class of fibrations given by fiber bundles. Fiber bundles play an important role in many geometric contexts. For example, the Grassmaniann varieties and certain fiber bundles associated to Stiefel varieties are central in the classification of vector bundles over (nice) spaces. The fact that fiber bundles are examples of Serre fibrations follows from Theorem ?? which states that being a Serre fibration is a local property. 1. Fiber bundles and principal bundles Definition 6.1. A fiber bundle with fiber F is a map p: E ! X with the following property: every ∼ −1 point x 2 X has a neighborhood U ⊆ X for which there is a homeomorphism φU : U × F = p (U) such that the following diagram commutes in which π1 : U × F ! U is the projection on the first factor: φ U × F U / p−1(U) ∼= π1 p * U t Remark 6.2. The projection X × F ! X is an example of a fiber bundle: it is called the trivial bundle over X with fiber F . By definition, a fiber bundle is a map which is `locally' homeomorphic to a trivial bundle. The homeomorphism φU in the definition is a local trivialization of the bundle, or a trivialization over U. Let us begin with an interesting subclass. A fiber bundle whose fiber F is a discrete space is (by definition) a covering projection (with fiber F ). For example, the exponential map R ! S1 is a covering projection with fiber Z. Suppose X is a space which is path-connected and locally simply connected (in fact, the weaker condition of being semi-locally simply connected would be enough for the following construction). -
TRANSVERSE STRUCTURE of LIE FOLIATIONS 0. Introduction This
TRANSVERSE STRUCTURE OF LIE FOLIATIONS BLAS HERRERA, MIQUEL LLABRES´ AND A. REVENTOS´ Abstract. We study if two non isomorphic Lie algebras can appear as trans- verse algebras to the same Lie foliation. In particular we prove a quite sur- prising result: every Lie G-flow of codimension 3 on a compact manifold, with basic dimension 1, is transversely modeled on one, two or countable many Lie algebras. We also solve an open question stated in [GR91] about the realiza- tion of the three dimensional Lie algebras as transverse algebras to Lie flows on a compact manifold. 0. Introduction This paper deals with the problem of the realization of a given Lie algebra as transverse algebra to a Lie foliation on a compact manifold. Lie foliations have been studied by several authors (cf. [KAH86], [KAN91], [Fed71], [Mas], [Ton88]). The importance of this study was increased by the fact that they arise naturally in Molino’s classification of Riemannian foliations (cf. [Mol82]). To each Lie foliation are associated two Lie algebras, the Lie algebra G of the Lie group on which the foliation is modeled and the structural Lie algebra H. The latter algebra is the Lie algebra of the Lie foliation F restricted to the clousure of any one of its leaves. In particular, it is a subalgebra of G. We remark that although H is canonically associated to F, G is not. Thus two interesting problems are naturally posed: the realization problem and the change problem. The realization problem is to know which pairs of Lie algebras (G, H), with H subalgebra of G, can arise as transverse and structural Lie algebras, respectively, of a Lie foliation F on a compact manifold M. -
Foliations Transverse to Fibers of a Bundle
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 42, Number 2, February 1974 FOLIATIONS TRANSVERSE TO FIBERS OF A BUNDLE J. F. PLANTE Abstract. Consider a fiber bundle where the base space and total space are compact, connected, oriented smooth manifolds and the projection map is smooth. It is shown that if the fiber is null-homologous in the total space, then the existence of a foliation of the total space which is transverse to each fiber and such that each leaf has the same dimension as the base implies that the fundamental group of the base space has exponential growth. Introduction. Let (E, p, B) be a locally trivial fiber bundle where /»:£-*-/? is the projection, E and B are compact, connected, oriented smooth manifolds and p is a smooth map. (By smooth we mean C for some r^l and, henceforth, all maps are assumed smooth.) Let b denote the dimension of B and k denote the dimension of the fiber (thus, dim E= b+k). By a section of the fibration we mean a smooth map a:B-+E such that p o a=idB. It is well known that if a section exists then the fiber over any point in B represents a nontrivial element in Hk(E; Z) since the image of a section is a compact orientable manifold which has intersection number one with the fiber over any point in B. The notion of a section may be generalized as follows. Definition. A polysection of (E,p,B) is a covering projection tr:B-*B together with a map Ç:B-*E such that the following diagram commutes. -
Lecture Notes on Foliation Theory
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Department of Mathematics Seminar Lectures on Foliation Theory 1 : FALL 2008 Lecture 1 Basic requirements for this Seminar Series: Familiarity with the notion of differential manifold, submersion, vector bundles. 1 Some Examples Let us begin with some examples: m d m−d (1) Write R = R × R . As we know this is one of the several cartesian product m decomposition of R . Via the second projection, this can also be thought of as a ‘trivial m−d vector bundle’ of rank d over R . This also gives the trivial example of a codim. d- n d foliation of R , as a decomposition into d-dimensional leaves R × {y} as y varies over m−d R . (2) A little more generally, we may consider any two manifolds M, N and a submersion f : M → N. Here M can be written as a disjoint union of fibres of f each one is a submanifold of dimension equal to dim M − dim N = d. We say f is a submersion of M of codimension d. The manifold structure for the fibres comes from an atlas for M via the surjective form of implicit function theorem since dfp : TpM → Tf(p)N is surjective at every point of M. We would like to consider this description also as a codim d foliation. However, this is also too simple minded one and hence we would call them simple foliations. If the fibres of the submersion are connected as well, then we call it strictly simple. (3) Kronecker Foliation of a Torus Let us now consider something non trivial. -
3. Tensor Fields
3.1 The tangent bundle. So far we have considered vectors and tensors at a point. We now wish to consider fields of vectors and tensors. The union of all tangent spaces is called the tangent bundle and denoted TM: TM = ∪x∈M TxM . (3.1.1) The tangent bundle can be given a natural manifold structure derived from the manifold structure of M. Let π : TM → M be the natural projection that associates a vector v ∈ TxM to the point x that it is attached to. Let (UA, ΦA) be an atlas on M. We construct an atlas on TM as follows. The domain of a −1 chart is π (UA) = ∪x∈UA TxM, i.e. it consists of all vectors attached to points that belong to UA. The local coordinates of a vector v are (x1,...,xn, v1,...,vn) where (x1,...,xn) are the coordinates of x and v1,...,vn are the components of the vector with respect to the coordinate basis (as in (2.2.7)). One can easily check that a smooth coordinate trasformation on M induces a smooth coordinate transformation on TM (the transformation of the vector components is given by (2.3.10), so if M is of class Cr, TM is of class Cr−1). In a similar way one defines the cotangent bundle ∗ ∗ T M = ∪x∈M Tx M , (3.1.2) the tensor bundles s s TMr = ∪x∈M TxMr (3.1.3) and the bundle of p-forms p p Λ M = ∪x∈M Λx . (3.1.4) 3.2 Vector and tensor fields.