Groundjwater Recharge Hydrology

Total Page:16

File Type:pdf, Size:1020Kb

Groundjwater Recharge Hydrology / 10855 i> ^'.| y f f 971 GROUNDJWATER RECHARGE HYDROLOGY \:. ARS 41-161 December 1970 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE PREFACE This publication presents in rather general terms the current thinking on artificial ground-water re charge-what is its place in the hydrology of a basin-where can it be effective-how can it best be accomplished—what is physically required to maximize its economic value-how can its effects best be predicted? Artificial recharge means replenishment of the ground-water storage through works provided primarily for that purpose. The source for artificial recharge is surface water in excess of current needs for which there is no surface storage available. The engineer is concerned with problems of water control, distribution, water conditioning, and physical works required to make recharge successful. The soil scientist and geologist are interested in the control and prediction of where and when recharged waters reach the water table and their movement within it. The economist, resource manager, or attorney will be concerned in general with the control and administration of large-scale artificial-recharge projects within a ground-water basin. Even a single landholder can realize significant benefits from artificial recharge through simple procedures of water control. Therefore, it is hoped that this pubHcation can define operational artificial recharge for this broad group of interested individuals and at least introduce the technical problems that may be encountered. 325557 ACKNOWLEDGMENTS This publication contains considerable information and data developed at the Agricultural Research Service field station at Fresno, Calif., where laboratory and field studies of ground-water recharge have been carried on for a number of years. It is published under a cooperative agreement with the California Department of Water Resources. The State has provided substantial financial support to the ground-water research project of the Agricultural Research Service station, as well as technical advice and reviews of the project. Special acknowledgment is due to Helen J. Peters, Ground-Water Engineer; Raymond C. Richter, Supervising Engineering Geologist; and Albert J. Dolcini, Principal Engineer, Water Resources. CONTENTS Page Glossary of terms v Chapter I. Introduction: Ground-water recharge in the hydrologie cycle 1 The ground-water reservoir 1 Auditing ground-water storage 2 Inputs 2 Outputs 2 Storage 2 Artificial recharge in basin water management 2 Chapter II. The geology of ground-water basins: Relation of geology to ground-water recharge 4 Alluvial deposits 5 Eolian deposits 8 Glacial deposits 8 Fractured and porous rock systems 8 The ground-water reservoir 8 The base of the ground-water reservoir 8 Economical pumping lift and prevention of intrusion 9 Lateral Umits of ground-water storage 9 Upper Umit of storage reservoir 9 Artesian aquifer storage 10 Storage in consolidated rocks, Umestones, and volcanics 10 Geophysical methods ^0 Exploratory wells 10 Down-hole resistivity and potential logging 10 Seismic surveys 12 Gravity-meter survey 12 Magnetic surveys • • 12 Questions for the geologist 12 Chapter III. The surface and ground-water hydrology of artificial recharge: Definition of hydrology 1^ Trends in water development 14 Surface storage ^^ Surface-water conveyance 1^ Ground-water storage 1^ Ground-water flow ^^ Recharging ^0 Transfer of water to the water table 22 Questions for the hydrologist ^^ ii Page Chapter IV. Recharge through surface soils: Water intake rates 24 Effect of particle size and distribution 24 Effect of pore size distribution 25 Effect of soil structure and aggregation 25 Effect of chemical constituents 25 Effect of clogging and particle realinement 27 Effect of compaction and cultivation 28 Location of recharge site 28 Soil stratification 28 Soil profile exploration 28 Existing perched water tables 29 Field measurement of soil intake rates 29 Methods of assessing recharge rate: Pilot recharge areas 30 Infiltrometers 30 Soil cores 31 Site selection vs. engineering design 31 Questions for the soil scientist 31 Chapter V. The apphcation of ground-water flow theory to artificial recharge: Need for theoretical analysis 33 Definitions 33 Heat flow vs. ground-water flow 33 Ground-water mounds resuhing from recharge 34 Specific capacity 40 Aquifer tests 43 Questions for the hydrologist 43 Chapter VI. Methods for artificial recharge 44 Basins 44 Ditches or furrows 46 Flooding 47 Natural stream channels 47 Pits and shafts 48 Injection wells 49 Chapter VII. Water quality 51 Physical characteristics affecting water quahty 51 Chemical constituents affecting water quality: Dominant cations 51 Dominant anions 52 Other cations 52 Other anions 52 Biological factors affecting water quality 52 Water microbiology 52 Soil microbiology 53 Salt balance and ground-water recharge 53 Questions for the chemist 54 iii Page Chapter VIII. Benefits from artificial recharge: The problem ^^ Benefits ^^ Relief of overdraft ^^ Use of ground-water basin as reservoir and distribution system ^' Costs Experience and data of Los Angeles Flood Control District ^^ Facilities Operational problems Literature cited iv GLOSSARY OF TERMS 1. AQUICLUDE—A geologic formation so impervious surface area of the aquifer per unit change in the that, for ail practical purposes, it completely component of head normal to that surface. The obstructs the flow of ground-water (although it may volume of water (measured outside the aquifer) thus be saturated with water itself), and completely released or stored, divided by the product of the confines other strata with which it alternates in head change and the area of aquifer surface over deposition. A shale or very impervious tight clay is which it is effective, correctly determines the an example. storage coefficient of the aquifer. For an ideal or artesian or confined aquifer, regardless of its atti- An areally extensive body of saturated but relatively tude, the water released from or taken into storage, impermeable material that functions as an upper or in response to a change in head, is attributed solely lower aquifer boundary and does not yield appreci- to compressibiUty of the aquifer material and of the able quantities of water to wells or to adjacent water. Although rigid Umits cannot be established, aquifers. the storage coefficients of artesian aquifers may range from about 0.00001 to 0.001. In nonartesian 2. AQUIFER—A permeable geologic formation that or unconfined aquifers, the storage coefficient is stores and transmits water. equal to the specific yield of the material. 3. AQUIFER SYSTEM-A heterogeneous body of 7. CONFINED AQUIFER (or ARTESIAN AQUI- interrelated permeable and poorly permeable mate- FER)-Theoretically an aquifer in which the water rial that functions regionally as a water-yielding is separated from the atmosphere by impermeable hydraulic unit. It comprises two or more inter- material. Because of its orientation in the verfical connected aquifers separated by laterally discon- plane and overburden pressures, a well that pene- tinuous aquitards that locally impede ground-water trates it can have a static water level above the movement but do not greatly affect the overall bottom of the upper confining bed. In reahty hydraulic continuity of the system. confined aquifers are open to the atmosphere or other unconfined aquifers and it is here that they 4. AQUIFUGE—A rock that contains no intercon- receive their recharge. Changes in head in pumping nected openings and, therefore, neither absorbs nor wells result from changes in pressure within the transmits water. A massive hard granite is an aquifer rather than storage changes. Confined aqui- example. fers exhibit only minor changes in storage and so act as conduits from zones of recharge to those of 5. AQUITARD—A rather impervious and semiconfin- discharge. ing geologic formation that transmits water very slowly in comparison to the aquifer. Over a large 8. GROUND-WATER RESERVOIR-An aquifer or area of contact, however, it may permit the passage aquifer system in which ground-water is stored. The of large amounts of water between adjacent aquifers water may have entered the aquifer by artificial or that it separates from each other. Clay lenses natural means. interbedded with sands, if thin enough, may form 9. GROUND-WATER STORAGE CAPACITY-The aquitards. reservoir space contained in a given volume of or deposits. Under optimum conditions of use, the A body of saturated material of relatively low usable ground-water storage capacity volume of permeabihty that impedes ground-water movement water that can be alternately extracted and replaced and does not yield freely to wells, but which may in the deposit, within specified economic limi- transmit appreciable water to or from adjacent tations. aquifers and, where thick enough, may function as an important ground-water storage unit. 10. HYDRAULIC CONDUCTIVITY-The proportion- ahty constant (K) between the volumetric flow (Q) 6. COEFFICIENT OF STORAGE, also DRAINABLE through a unit cross-sectional area (A = 1) and the OR FILLABLE VOlE^The volume of water an loss in hydraulic head (Ah) per unit length (L) of aquifer releases from or takes into storage per unit aquifer. 11. PERCHED GROUND-WATER-Ground water sup- expressed as the ratio of the volume of water that a ported by a zone of material of low permeability formation, after being saturated, will yield by and located above an underlying main body of gravity to its own volume. The ratio
Recommended publications
  • Basic Elements of Ground-Water Hydrology with Reference to Conditions in North Carolina by Ralph C Heath
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Basic Elements of Ground-Water Hydrology With Reference to Conditions in North Carolina By Ralph C Heath U.S. Geological Survey Water-Resources Investigations Open-File Report 80-44 Prepared in cooperation with the North Carolina Department of Natural^ Resources and Community Development Raleigh, North Carolina 1980 United States Department of the Interior CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. W. Menard, Director For Additional Information Write to: Copies of this report may be purchased from: GEOLOGICAL SURVEY U.S. GEOLOGICAL SURVEY Open-File Services Section Post Office Box 2857 Branch of Distribution Box 25425, Federal Center Raleigh, North Carolina 27602 Denver, Colorado 80225 Preface Ground water is one of North Carolina's This report was prepared as an aid to most valuable natural resources. It is the developing a better understanding of the primary source-of water supplies in rural areas ground-water resources of the State. It and is also widely used by industries and consists of 46 essays grouped into five parts. municipalities, especially in the Coastal Plain. The topics covered by these essays range from However, its use is not increasing in proportion the most basic aspects of ground-water to the growth of the State's population and hydrology to the identification and correction economy. Instead, the present emphasis in of problems that affect the operation of supply water-supply development is on large regional wells. The essays were designed both for self systems based on reservoirs on large streams. study and for use in workshops on ground- The value of ground water as a resource not water hydrology and on the development and only depends on its widespread occurrence operation of ground-water supplies.
    [Show full text]
  • Development of Rainfall-Runoff Model Using Tank Model: Problems and Challenges in Province of Aceh, Indonesia
    Aceh International Journal of Science and Technology, 2 (1): 26-36 April 2013 ISSN: 2088-9860 REVIEW Development of Rainfall-runoff Model Using Tank Model: Problems and Challenges in Province of Aceh, Indonesia Hairul Basri Faculty of Agriculture, Syiah Kuala University, Banda Aceh 23111, Indonesia Corresponding author: Email: [email protected] Abtstract - Rainfall-runoff model using tank model founded by Sugawara has been widely used in Asia. Many researchers use the tank model to predict water availability and flooding in a watershed. This paper describes the concept of rainfall-runoff model using tank model, discuss the problems and challenges in using of the model, especially in Province of Aceh, Indonesia and how to improve the outcome of simulation of tank model. Many factors affect the rainfall-runoff phenomena of a wide range of watershed include: soil types, land use types, rainfall, morphometry, geology and geomorphology, caused the tank model usefull only for concerning watershed. It is necessary to adjust some parameters of tank model for other watershed by recalibrating the parameters of the model. Rainfall runoff model using the tank model for a watershed scale is more reasonable focused on each sub-watershed by considering soil types, land use types and rainfall of the concerning watershed. Land use data can be enhanced by using landsat imagery or aerial photographs to support the validation the existing of land use type. Long term of observed discharges and rainfall data should be increased by set up the AWLR (Automatic Water Level Recorder) and rainfall stations for each of sub-watersheds. The reasonable tank model can be resulted not only by calibrating the parameters, but also by considering the observed and simulated infiltration for each soil and land use types of the concerning watershed.
    [Show full text]
  • Hydrological Controls on Salinity Exposure and the Effects on Plants in Lowland Polders
    Hydrological controls on salinity exposure and the effects on plants in lowland polders Sija F. Stofberg Thesis committee Promotors Prof. Dr S.E.A.T.M. van der Zee Personal chair Ecohydrology Wageningen University & Research Prof. Dr J.P.M. Witte Extraordinary Professor, Faculty of Earth and Life Sciences, Department of Ecological Science VU Amsterdam and Principal Scientist at KWR Nieuwegein Other members Prof. Dr A.H. Weerts, Wageningen University & Research Dr G. van Wirdum Dr K.T. Rebel, Utrecht University Dr R.P. Bartholomeus, KWR Water, Nieuwegein This research was conducted under the auspices of the Research School for Socio- Economic and Natural Sciences of the Environment (SENSE) Hydrological controls on salinity exposure and the effects on plants in lowland polders Sija F. Stofberg Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 07 June 2017 at 4 p.m. in the Aula. Sija F. Stofberg Hydrological controls on salinity exposure and the effects on plants in lowland polders, 172 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2017) With references, with summary in English ISBN: 978-94-6343-187-3 DOI: 10.18174/413397 Table of contents Chapter 1 General introduction .......................................................................................... 7 Chapter 2 Fresh water lens persistence and root zone salinization hazard under temperate climate ............................................................................................ 17 Chapter 3 Effects of root mat buoyancy and heterogeneity on floating fen hydrology ..
    [Show full text]
  • Saltmod Estimation of Root-Zone Salinity Varadarajan and Purandara
    79 Original scientific paper Received: October 04, 2017 Accepted: December 14, 2017 DOI: 10.2478/rmzmag-2018-0008 SaltMod estimation of root-zone salinity Varadarajan and Purandara Application of SaltMod to estimate root-zone salinity in a command area Uporaba modela SaltMod za oceno slanosti koreninske cone na namakalnih površinah Varadarajan, N.*, Purandara, B.K. National Institute of Hydrology, Visvesvarayanagar, Belgaum 590019, Karnataka, India * [email protected] Abstract Povzetek Waterlogging and salinity are the common features - associated with many of the irrigation commands of - Poplavljanje in slanost tal sta običajna pojava v mno surface water projects. This study aims to estimate the vljanju slanosti v koreninski coni na levem in desnem gih namakalnih projektih. V študiji poročamo o ugota root zone salinity of the left and right bank canal com- mands of Ghataprabha irrigation command, Karnataka, - obrežju kanala namakalnega območja Ghataprabhaza India. The hydro-salinity model SaltMod was applied delom SaltMod so uporabili na izbranih kmetijskih v Karnataki, v Indiji. Postopek določanja slanosti z mo to selected agriculture plots at Gokak, Mudhol, Bili- parcelah v okrajih Gokak, Mudhol, Biligi in Bagalkot gi and Bagalkot taluks for the prediction of root-zone - salinity and leaching efficiency. The model simulated vodnjavanja tal. V raziskavi so modelirali slanost v tal- za oceno slanosti koreninske cone in učinkovitosti od the soil-profile salinity for 20 years with and without nem profilu v razdobju 20 let ob prisotnosti podpovr- subsurface drainage. The salinity level shows a decline šinskega odvodnjavanja in brez njega. Slanost upada with an increase of leaching efficiency. The leaching efficiency of 0.2 shows the best match with the actu- vzporedno z naraščanjem učinkovitosti odvodnjavanja.
    [Show full text]
  • 12(1)Download
    Volume 12 No. 1 ISSN 0022–457X January-March 2013 Contents Land capability classification in relation to soil properties representing bio-sequences in foothills of North India 3 – V. K. Upadhayaya, R.D. Gupta and Sanjay Arora Innovative design and layout of Staggered Contour Trenches (SCTs) leads to higher survival of 10 plantation and reclamation of wastelands – R.R. Babu and Purnima Mishra Prioritization of sub-watersheds for erosion risk assessment - integrated approach of geomorphological 17 and rainfall erosivity indices – Rahul Kawle, S. Sudhishri and J. K. Singh Assessment of runoff potential in the National Capital Region of Delhi 23 – Manisha E Mane, S Chandra, B R Yadav, D K Singh, A Sarangi and R N Sahoo Soil information system for assessment and monitoring of crop insurance and economic compensation 31 to small and marginal farming communities – a conceptual framework – S.N. Das Rainfall trend analysis: A case study of Pune district in western Maharashtra region 35 – Jyoti P Patil, A. Sarangi, D. K. Singh, D. Chakraborty, M. S. Rao and S. Dahiya Assessment of underground water quality in Kathurah Block of Sonipat district in Haryana 44 – Pardeep, Ramesh Sharma, Sanjay Kumar, S.K. Sharma and B. Rath Levenberg - Marquardt algorithm based ANN approach to rainfall - runoff modelling 48 – Jitendra Sinha, R K Sahu, Avinash Agarwal, A. R. Senthil Kumar and B L Sinha Study of soil water dynamics under bioline and inline drip laterals using groundwater and wastewater 55 – Deepak Singh, Neelam Patel, T.B.S. Rajput, Lata and Cini Varghese Integrated use of organic manures and inorganic fertilizer on the productivity of wheat-soybean cropping 59 system in the vertisols of central India – U.K.
    [Show full text]
  • Irrigation Influence on Catchment Hydrology Modelling with Advanced Hydroinformatic Tools
    Research Journal of Agricultural Science, 48 (1), 2016 IRRIGATION INFLUENCE ON CATCHMENT HYDROLOGY MODELLING WITH ADVANCED HYDROINFORMATIC TOOLS Erika BEILICCI, R. BEILICCI Politechnica University Timisoara, Department of Hydrotechnical Engineering George Enescu str. 1/A, Timisoara, [email protected] Abstract: Agriculture is a significant user of water resources in Europe, accounting for around 30 per cent of total water use. Because water is essential to plant growth, irrigation is essentially to overcome deficiencies in rainfall for growing crops. Irrigation is a basic determinant of agriculture because its inadequacies are the most powerful constraints on the increase of agricultural production. Irrigation was recognized for its protective role of insurance against the vagaries of rainfall and drought. But the irrigation, besides the positive effects, has a significant environmental impact. The environmental impacts of irrigation are variable and not well-documented; some environmental impacts can be very severe. The main types of environmental impact arising from irrigation appear to be: water pollution from nutrients and pesticides; damage to habitats and aquifer exhaustion by abstraction of irrigation water; intensive forms of irrigated agriculture displacing formerly high value semi-natural ecosystems; gains to biodiversity and landscape from certain traditional or ‘leaky’ irrigation systems in some localized areas; increased erosion of cultivated soils on slopes; salinization, or contamination of water by minerals, of groundwater sources; both negative and positive effects of large scale water transfers, associated with irrigation projects. Minor irrigation schemes within a catchment will normally have negligible influence on the catchment hydrology, unless transfer of water over catchment boundaries is involved. Large irrigation schemes may significantly affect the runoff and the groundwater recharge through local increases in evapotranspiration and infiltration as well as through operational and field losses.
    [Show full text]
  • (SHUD): Numerical Modeling of Watershed Hydrology with The
    https://doi.org/10.5194/gmd-2019-354 Preprint. Discussion started: 14 January 2020 c Author(s) 2020. CC BY 4.0 License. Solver for Hydrologic Unstructured Domain (SHUD): Numerical modeling of watershed hydrology with the finite volume method Lele Shu1, Paul Ullrich1, and Christopher Duffy2 1Department of Land, Air, and Water Resources, University of California, Davis, Davis, California 95616, USA 2Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA Correspondence: Lele Shu ([email protected]) Abstract. Hydrological modeling is an essential strategy for understanding natural flows, particularly where observations are lacking in either space or time, or where topographic roughness leads to a disconnect in the characteristic timescales of overland and groundwater flow. Consequently, significant opportunities remain for the development of extensible modeling systems that operate robustly across regions. Towards the development of such a robust hydrological modeling system, this 5 paper introduces the Solver for Hydrological Unstructured Domain (SHUD), an integrated multi-process, multi-scale, multi- timestep hydrological model, in which hydrological processes are fully coupled using the Finite Volume Method. The SHUD integrates overland flow, snow accumulation/melting, evapotranspiration, subsurface and groundwater flow, and river routing, while realistically capturing the physical processes in a watershed. The SHUD incorporates one-dimension unsaturated flow, two-dimension groundwater flow, and river channels connected with hillslopes via overland flow and baseflow. 10 This paper introduces the design of SHUD, from the conceptual and mathematical description of hydrological processes in a watershed to computational structures. To demonstrate and validate the model performance, we employ three hydrolog- ical experiments: the V-Catchment experiment, Vauclin’s experiment, and a study of the Cache Creek Watershed in northern California, USA.
    [Show full text]
  • Session Materials
    Online | 4–8 May 2020 HS8.3.5/SSS6.11 Irrigation, soil hydrology and groundwater management for resilient arid and semi-arid agroecosystems Displays: Wednesday, 06 May 2020, 08:30–10:15 (GMT+2:00) Conveners & chairpersons: Marco PeliECS, Gabriel Rau, Giulio CastelliECS, Mark Cuthbert Online | 4–8 May 2020 ● In arid and semi-arid areas, the interaction between surface water management, irrigation practices, soil hydrologic dynamics and groundwater is key for sustainable water management, food production and for the resilience of agroecosystems. ● Their importance goes beyond the sole technological aspects, often being connected with some traditional techniques, part of local cultural heritage, to be faced with an (at least) interdisciplinary approach which involves also humanities. ● On the other hand, improper land and water management in those areas may contribute heavily to soil degradation and groundwater exploitation. Online | 4–8 May 2020 This session presents contributions dealing with ● soil hydrological behaviour; ● fluxes between surface and groundwater; ● the interaction between irrigation, soil hydrology and groundwater; ● the design and management of water harvesting and irrigation systems, including oases; ● the maintenance and improvement of traditional irrigation techniques; ● the design of precision irrigation techniques; ● local communities interaction with water resources; in arid and water-scarce environments Online | 4–8 May 2020 Display chat plan ● After the introduction, there will be 5 to 7 minutes of dedicated chat time per display; ● In the time dedicated to each display, authors are supposed to answer the questions coming from the audience as well as from the conveners; ● People interested in the work should check the materials uploaded before the session; ● An open discussion of around 30 minutes will close the chat.
    [Show full text]
  • Basic Concepts of Groundwater Hydrology
    PUBLICATION 8083 FWQP REFERENCE SHEET 11.1 Reference: Basic Concepts of Groundwater Hydrology THOMAS HARTER is UC Cooperative Extension Hydrogeology Specialist, University of California, Davis, and Kearney Agricultural Center. UNIVERSITY OF Life depends on water. Our entire living world—plants, animals, and humans—is CALIFORNIA unthinkable without abundant water. Human cultures and societies have rallied around water resources for tens of thousands of years—for drinking, for food produc- Division of Agriculture tion, for transportation, and for recreation, as well as for inspiration. and Natural Resources http://anrcatalog.ucdavis.edu Worldwide, more than a third of all water used by humans comes from ground water. In rural areas the percentage is even higher: more than half of all drinking In partnership with water worldwide is supplied from ground water. In California, rural areas’ dependence on ground water is even greater. California has 8,700 public water supply systems. Of these, 7,800 rely on ground water, drawing from more than 15,000 wells. In addition, there are tens of thousands of privately owned wells used for domestic water supply within the state. Although sufficient aquifers for this sort of use underlie much of California (Figure 1), the large metro- politan areas in Southern California and the San Francisco Bay Area rely primarily on http://www.nrcs.usda.gov surface water for their drinking water supplies. Overall, ground water supplies one- third of the water used in California in a typical year, in drought years as much as Farm Water one-half. Quality Planning WHAT IS GROUND WATER? A Water Quality and Technical Assistance Program Despite our heavy reliance on ground water, its nature remains a mystery to many for California Agriculture people.
    [Show full text]
  • Spatial Modelling and Prediction of Soil Salinization Using Saltmod in a Gis Environment
    SPATIAL MODELLING AND PREDICTION OF SOIL SALINIZATION USING SALTMOD IN A GIS ENVIRONMENT M. MADYAKA February, 2008 SPATIAL MODELLING AND PREDICTION OF SOIL SALINIZATION USING SALTMOD IN A GIS ENVIRONMENT Spatial Modelling and Prediction of Soil Salinization Using SaltMod in a GIS Environment by Mthuthuzeli Madyaka Thesis submitted to the International Institute for Geo-information Science and Earth Observation in partial fulfilment of the requirements for the degree of Master of Science in Geo-information Science and Earth Observation, Specialisation: (Natural Resource Management – Soil Information Systems for Sustainable Land Management: NRM-SISLM) Thesis Assessment Board Prof. Dr. V.G.Jetten: Chairperson Prof. Dr.Ir. A. Veldkamp: External Examiner B. (Bas) Wesselman: Internal Examiner Dr. A. (Abbas) Farshad: First Supervisor Dr. D.B. (Dhruba) Pikha Shrestha: Second Supervisor INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION ENSCHEDE, THE NETHERLANDS Disclaimer This document describes work undertaken as part of a programme of study at the International Institute for Geo-information Science and Earth Observation. All views and opinions expressed therein remain the sole responsibility of the author, and do not necessarily represent those of the institute. Abstract One of the problems commonly associated with agricultural development in semi-arid and arid lands is accumulation of soluble salts in the plant root-zone of the soil profile. The salt accumulation usually reaches toxic levels that impose growth stress to crops leading to low yields or even complete crop failure. This research utilizes integrated approach of remote sensing, modelling and geographic information systems (GIS) to monitor and track down salinization in the Nung Suang district of Nakhon Ratchasima province in Thailand.
    [Show full text]
  • Preliminary Hydrology and Drainage Basin Calculations
    PRELIMINARY HYDROLOGY AND DRAINAGE BASIN CALCULATIONS for Grading & Improvements at Independent Energy Solutions, Inc. (IES) /San Diego Gas & Electric (SDG&E) Solar Energy Project – Ramona 1049 Creelman Lane, Ramona, CA 92065 PREPARED FOR: Independent Energy Solutions, Inc. 1090 Joshua Way Vista, CA 92081 PREPARED BY: BergerABAM# A13.0324 January 2014 Revised May 2015 TABLE OF CONTENTS Declaration of Responsible Charge TAB A: Preliminary Hydrology and Drainage Basin Calculations 1.0 General Project Information 2.0 Design Criteria 3.0 Hydrology Calculations 4.0 Conclusions TAB B: Vicinity Map TAB C: Hydrology Calculations Project Spreadsheets and Data TAB D: FEMA/FIRM Map Floodplain Management Plan – County of San Diego, California TAB E: 100-year, 6-hour Isopluvial Map 100-year 24-hour Isopluvial Map Soil Hydrologic Groups Map TAB F: Exhibit A - Existing Drainage Conditions Exhibit B - Proposed Drainage Conditions TAB A DDDeclarationDeclaration of Responsible Charge I, hereby declare that I am the engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in section 6703 of the business and professions code, and that the design is consistent with current standards. I understand that the check of project drawings and specifications by the County of San Diego is confined to a review only and does not relieve me, as engineer of work, of my responsibilities for project design. William Ryan Lund R.C.E 36812 Date 3 1.0 General Project Information A.A.A. Project Site Information Project Name: IES/SDG&E Solar Energy Project - Ramona Hydrology Area: 32.50 Acres Area of Construction: 18.3 Acres Project Address: 1049 Creelman Lane, Ramona, CA 92065 Latitude/Longitude: 33.019414, -116.860253 Expected Duration of the project: 120 days Flood Plain Status: The FEMA Panel 06073C1140G was not printed per FEMA website.
    [Show full text]
  • Hydrologic Evaluation of Salinity Control and Reclamation Projects in the Indus Plain, Pakistan a Summary
    Hydrologic Evaluation of Salinity Control and Reclamation Projects in the Indus Plain, Pakistan A Summary GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1608-Q Prepared in cooperation with the West Pakistan Water and Powt > Dei'elofunent Authority under the auspices of the United States Agency for International Development Hydrologic Evaluation of Salinity Control and Reclamation Projects in the Indus Plain, Pakistan A Summary By M. ]. MUNDORFF, P. H. CARRIGAN, JR., T. D. STEELE, and A. D. RANDALL CONTRIBUTIONS TO THE HYDROLOGY OF ASIA AND OCEANIA GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1608-Q Prepared in cooperation with the West Pakistan Water and Power Development Authority under the auspices of the United States Agency for International Development UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Main entry under title: Hydrologic evaluation of salinity control and reclamation projects in the Indus Plain, Pakistan. (Contributions to the hydrology of Asia and Oceania) (Geological Survey water-supply paper; 1608-Q) Bibliography: p. Includes index. Supt. of Docs, no.: I 19.13:1608-Q 1., Reclamation of land Pakistan Indus Valley. 2. Salinity Pakistan Indus Valley. 3. Irrigation Pakistan Indus Valley. 4. Hydrology Pakistan Indus Valley. I. Mundorff, Maurice John, 1910- II. West Pakistan. Water and Power Development Authority. III. Series. IV. Series: United States. Geological Survey.
    [Show full text]