Ji et al. Journal of Inequalities and Applications (2017)2017:86 DOI 10.1186/s13660-017-1357-4 RESEARCH Open Access New applications of the existence of solutions for equilibrium equations with Neumann type boundary condition Zhaoqi Ji1,TaoLiu2,HongTian3 and Tanriver Ülker4* *Correspondence:
[email protected] Abstract 4Departamento de Matemática, Universidad Austral, Paraguay 1950, Using the existence of solutions for equilibrium equations with a Neumann type Rosario, S2000FZF, Argentina boundary condition as developed by Shi and Liao (J. Inequal. Appl. 2015:363, 2015), Full list of author information is we obtain the Riesz integral representation for continuous linear maps associated available at the end of the article with additive set-valued maps with values in the set of all closed bounded convex non-empty subsets of any Banach space, which are generalizations of integral representations for harmonic functions proved by Leng, Xu and Zhao (Comput. Math. Appl. 66:1-18, 2013). We also deduce the Riesz integral representation for set-valued maps, for the vector-valued maps of Diestel-Uhl and for the scalar-valued maps of Dunford-Schwartz. Keywords: Neumann type boundary condition;ARTICLE set-valued measures; integral representation; topology 1 Introduction The Riesz-Markov-Kakutani representation theorem states that, for every positive func- tional L on the space Cc(T) of continuous compact supported functional on a locally com- pact Hausdorff space T, there exists a unique Borel regular measure μ on T such that L(f )= fdμ for all f ∈ Cc(T). Riesz’s original form [] was proved in for the unit in- terval (T = [; ]).