Functions of Bounded Variation and Absolutely Continuous Functions

Total Page:16

File Type:pdf, Size:1020Kb

Functions of Bounded Variation and Absolutely Continuous Functions 209: Honors Analysis in Rn Functions of bounded variation and absolutely continuous functions 1 Nondecreasing functions Definition 1 A function f :[a, b] → R is nondecreasing if x ≤ y ⇒ f(x) ≤ f(y) holds for all x, y ∈ [a, b]. Proposition 1 If f is nondecreasing in [a, b] and x0 ∈ (a, b) then lim f(x) and lim f(x) x→x0, x<x0 x→x0, x>x0 exist. We denote them f(x0 − 0) and, respectively f(x0 + 0). Proof Exercise. Definition 2 The function f is sait to be continuous from the right at x0 ∈ (a, b) if f(x0 + 0) = f(x0). It is said to be continuous from the left if f(x0 − 0) = f(x0). A function is said to have a jump discontinuity at x0 if the limits f(x0 ± 0) exist and if |f(x0 + 0) − f(x0 − 0)| > 0. Let x1, x2 ... be a sequence in [a, b] and let hj > 0 be a sequence of positive P∞ numbers such that n=1 hn < ∞. The nondecreasing function X f(x) = hn xn<x is said to be the jump function associated to the sequences {xn}, {hn}. Proposition 2 Let f be nondecreasing on [a, b]. Then it is measurable and bounded and hence it is Lebesgue integrable. Proof Exercise. (Hint: the preimage of (−∞, α) is an interval.) 1 Proposition 3 Let f :[a, b] → R be nondecreasing. Then all the discon- tinuities of f are jump discontinuities. There are at most countably many such. Proof Exercise. (Hint: The range of the function is bounded, and the total length of the range is larger than the sum of the absolute values of the jumps, so for each fixed length, there are at most finitely many jumps larger than that length.) Exercise 1 A jump function associated to {xn}{hn} is continuous from the left and jumps hn = f(xn + 0) − f(xn − 0). Definition 3 Let x ∈ (a, b). We define the derivative numbers by f(y)−f(x) f(y)−f(x) (Dlf)(x) = lim infy<x y−x , (Dlf)(x) = lim supy<x y−x , f(y)−f(x) f(y)−f(x) (Drf)(x) = lim infy>x y−x , (Drf)(x) = lim supy>x y−x . When all the derivative numbers are equal then we say that the function is differentiable at x and denote the common value by f 0(x). Proposition 4 Let f be continuous in [a, b]. If one of the derivative numbers is greater or equal to zero everywhere in (a, b), then f is nondecreasing in [a, b] Proof. We consider Dr for instance. Assume first Dr > 0 on (a, b). If a ≤ x < y ≤ b is such that max[x,y] f is achieved at some w < y, then for z ∈ (w, y) we have f(z) − f(w) ≤ 0 z − w contradicting the assumption. Thus f must be nondecreasing. If Drf ≥ 0 we take f(x) + x and then let → 0. Theorem 1 Let f be nondecreasing on [a, b]. Then f 0 exists almost every- where (with respect to Lebesgue measure), f 0 is measurable, nonnegative, and Z b f 0(t)dt ≤ f(b) − f(a). a 2 Proof. Let Eαβ = {x ∈ [a, b] | Drf(x) ≤ α < β ≤ Drf(x)}. Let U be an open set in [a, b] such that Eαβ ⊂ U. Let F = {[x, x + h] | a ≤ x < x + h ≤ b, [x, x + h] ⊂ U, f(x + h) − f(x) ≤ αh} Then F is a fine cover of Eαβ and by Corollary 3 of Vitali’s theorem (or Corollary 4 of Besicovich’s thm), there exist [xj, xj + hj] = Ij ∈ F, disjoint, j = 1, 2,... so that λ(Eαβ \ ∪Ij) = 0 where λ is Lebesgue outer measure. Let S = Eαβ ∩ (∪Ij). Let I = {[x, x + h] | ∃j, [x, x + h] ⊂ Ij, f(x + h) − f(x) ≥ βh} Then I is a fine cover of S \ ∪{xj + hj}. Therefore, there exist disjoint [yk, yk + gk] = Jk ∈ I such that λ(S \ ∪Jk) = 0 Now P P β λ(Jk) ≤ (f(yk + gk) − f(yk)) P k k P ≤ j (f(xj + hj) − f(xj)) ≤ α j λ(Ij) ≤ αλ(U) We deduce that P λ(Eαβ) ≤ λ(S) ≤ k λ(Jk) α ≤ β λ(U) α Because U is arbitrary we deduce λ(Eαβ) ≤ β λ(Eαβ), so Eαβ is negligible. This implies that Drf = Drf almost everywhere. Similar arguments show that all four derivative numbers are equal almost everywhere. In order to prove the rest, condider the functions 1 g (x) = n f(x + ) − f(x) n n where we take the extension of f to the right by f(x) = f(b) for x ≥ b. Then 0 gn are nonnegative and gn → f almost everywhere in [a, b]. By Fatou’s lemma Z b Z b 0 f (t)dt ≤ lim inf gn(t)dt = f(b) − f(a) a n→∞ a 3 and this concludes the proof. There exist nondecreasing functions f such that f 0 = 0 almost every- where and f(b) − f(a) > 0. Simple step functions are examples of such functions. More interesting are Cantor functions, which are nondecreasing and continuous, with f(b) − f(a) > 0 and f 0(t) = 0 almost everywhere. We consider the interval I = [0, 1] and we construct first Cantor’s set. This is done inductively by removing the open middle third interval. We set R1 the open interval (1/3, 2/3), R2 = (1/9, 2/9) ∪ (1/3, 2/3) ∪ (7/9, 8/9), and so on. Rn ⊂ Rn+1 is a sequence of open sets. Their complements are denoted Cn. n −n Each Cn is closed, it is formed with 2 disjoint closed intervals of length 3 n each. The Lebesgue measure of Cn is therefore λ(Cn) = (2/3) . The intersec- tion C = ∩Cn is not empty because Cn+1 ⊂ Cn are non-empty compact sets. The set C is the Cantor “middle thirds” set; its Lebesgue measure is zero. Its complement R = ∪Rn has measure 1 and is open. Now we construct (many) continuous, nondecreasing functions f such that f 0(t) = 0 for all t ∈ R, and such that f(0) = 0, f(1) = 1. This is done inductively as follows. Start with f0(t) = t. We are going to describe suggestively Rn as “resting times” and we are going to implement consistent “travel plans” based on the preceding travel plan. So, for instance, we can decide that we are going to follow exactly the preceding travel plan for a third of the time, rest for a third of the time, and catch up in the last third. If we travel at constant speeds, this produces the function f1(t) = t for t ≤ 1/3, f1(t) = 1/3, for t ∈ R1, f1(t) = 2t − 1 on [2/3, 1]. Inductively, we find functions fn+1(t) ≤ fn(t) with fn(0) = 0, 0 fn(1) = 1, fn(t) piece-wise linear, fn continuous, nondecreasing, fn(t) = 0 for t ∈ Rn. Moreover fn+1(t) = fn(t) for t = Rn. The nonzero speeds of the n-th traveler are 1, 2,... 2n. The distance between successive travelers n+1 obeys supt∈[0,1] |fn+1(t) − fn(t)| ≤ (2/3) . Because these numbers form a convergent series, the sequence fn is Cauchy in C([0, 1]), which means that it is uniformly convergent to a function f. The function f is clearly non- decreasing, continuous (as uniform limit of continuous functions), f(0) = 0, f(1) = 1 and f 0(t) = 0 for t ∈ R because f is constant in each interval that comprises R. Other travel plans work as well, as long as we keep the rule that the resting time of the nth traveler is Rn, and that the next traveler always rests with his predecessor. For instance we may say that we want to keep the speeds of the travelers the same, when they are not resting. Starting from the same f0 we obtain then f1(t) = (3/2)t for t ≤ 1/3, f1(t) = 1/2 on R1 and f1(t) = (3/2)t − (1/2) for t ∈ [2/3, 1]. The n-th traveler has nonzero speed 4 n R t n (3/2) and is fn(t) = 0 gn(s)ds with gn = (3/2) 1Cn . The maximal distance 1 −n between succsessive travelers is now supt∈[0,1] |fn+1(t) − fn(t)| = 6 2 . The functions fn are nondecreasing, continuous, fn+1 = fn on Rn, fn(0) = 0, 0 fn(1) = 1, fn(t) = 0 for t ∈ Rn. We obtain a different Cantor function in the limit. (The rest places are different, although they rest at the same times). 2 BV We consider finite collections of closed intervals Ij = [lj, rj], included in a fixed interval [a, b], with j = 1,...N, a ≤ rj ≤ lj+1 < rj+1 ≤ b for 1 ≤ j ≤ N − 1. We use the notation I([a, b]) = {{I1,...IN } | N ∈ N} to represent the set of all such collections. A partition is an element P ∈ N I([a, b]) such that [a, b] = ∪j=1Ij. We denote by P([a, b]) the set of all partitions. We’ll write I, P when the interval [a, b] is clear from the context. Definition 4 A function f :[a, b] → R is said to be of bounded variation, f ∈ BV ([a, b]) if N b X Va (f) = sup |f(rj) − f(lj)| P ∈I([a,b]) j=1 b is finite.
Recommended publications
  • Vector Measures with Variation in a Banach Function Space
    VECTOR MEASURES WITH VARIATION IN A BANACH FUNCTION SPACE O. BLASCO Departamento de An´alisis Matem´atico, Universidad de Valencia, Doctor Moliner, 50 E-46100 Burjassot (Valencia), Spain E-mail:[email protected] PABLO GREGORI Departament de Matem`atiques, Universitat Jaume I de Castell´o, Campus Riu Sec E-12071 Castell´o de la Plana (Castell´o), Spain E-mail:[email protected] Let E be a Banach function space and X be an arbitrary Banach space. Denote by E(X) the K¨othe-Bochner function space defined as the set of measurable functions f :Ω→ X such that the nonnegative functions fX :Ω→ [0, ∞) are in the lattice E. The notion of E-variation of a measure —which allows to recover the p- variation (for E = Lp), Φ-variation (for E = LΦ) and the general notion introduced by Gresky and Uhl— is introduced. The space of measures of bounded E-variation VE (X) is then studied. It is shown, amongother thingsand with some restriction ∗ ∗ of absolute continuity of the norms, that (E(X)) = VE (X ), that VE (X) can be identified with space of cone absolutely summingoperators from E into X and that E(X)=VE (X) if and only if X has the RNP property. 1. Introduction The concept of variation in the frame of vector measures has been fruitful in several areas of the functional analysis, such as the description of the duality of vector-valued function spaces such as certain K¨othe-Bochner function spaces (Gretsky and Uhl10, Dinculeanu7), the reformulation of operator ideals such as the cone absolutely summing operators (Blasco4), and the Hardy spaces of harmonic function (Blasco2,3).
    [Show full text]
  • The Total Variation Flow∗
    THE TOTAL VARIATION FLOW∗ Fuensanta Andreu and Jos´eM. Maz´on† Abstract We summarize in this lectures some of our results about the Min- imizing Total Variation Flow, which have been mainly motivated by problems arising in Image Processing. First, we recall the role played by the Total Variation in Image Processing, in particular the varia- tional formulation of the restoration problem. Next we outline some of the tools we need: functions of bounded variation (Section 2), par- ing between measures and bounded functions (Section 3) and gradient flows in Hilbert spaces (Section 4). Section 5 is devoted to the Neu- mann problem for the Total variation Flow. Finally, in Section 6 we study the Cauchy problem for the Total Variation Flow. 1 The Total Variation Flow in Image Pro- cessing We suppose that our image (or data) ud is a function defined on a bounded and piecewise smooth open set D of IRN - typically a rectangle in IR2. Gen- erally, the degradation of the image occurs during image acquisition and can be modeled by a linear and translation invariant blur and additive noise. The equation relating u, the real image, to ud can be written as ud = Ku + n, (1) where K is a convolution operator with impulse response k, i.e., Ku = k ∗ u, and n is an additive white noise of standard deviation σ. In practice, the noise can be considered as Gaussian. ∗Notes from the course given in the Summer School “Calculus of Variations”, Roma, July 4-8, 2005 †Departamento de An´alisis Matem´atico, Universitat de Valencia, 46100 Burjassot (Va- lencia), Spain, [email protected], [email protected] 1 The problem of recovering u from ud is ill-posed.
    [Show full text]
  • On Absolute Continuity∗
    journal of mathematical analysis and applications 222, 64–78 (1998) article no. AY975804 On Absolute Continuity∗ Zolt´an Buczolich† Department of Analysis, Eotv¨ os¨ Lorand´ University, Muzeum´ krt. 6–8, H–1088, Budapest, Hungary View metadata, citation and similar papers at core.ac.ukand brought to you by CORE provided by Elsevier - Publisher Connector Washek F. Pfeffer ‡ Department of Mathematics, University of California, Davis, California 95616 Submitted by Brian S. Thomson Received June 5, 1997 We prove that in any dimension a variational measure associated with an additive continuous function is σ-finite whenever it is absolutely continu- ous. The one-dimensional version of our result was obtained in [1] by a dif- ferent technique. As an application, we establish a simple and transparent relationship between the Lebesgue integral and the generalized Riemann integral defined in [7, Chap. 12]. In the process, we obtain a result (The- orem 4.1) involving Hausdorff measures and Baire category, which is of independent interest. As variations defined by BV sets coincide with those defined by figures [8], we restrict our attention to figures. The set of all real numbers is denoted by , and the ambient space of this paper is m where m 1 is a fixed integer. In m we use exclusively the metric induced by the maximum≥ norm . The usual inner product of · x; y m is denoted by x y, and 0 denotes the zero vector of m. For an ∈ · x m and ε>0, we let ∈ B x y m x y <ε : ε = ∈ x − *The results of this paper were presented to the Royal Belgian Academy on June 3, 1997.
    [Show full text]
  • Absolute Continuity for Operator Valued Completely Positive Maps on C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Bilkent University Institutional Repository JOURNAL OF MATHEMATICAL PHYSICS 50, 022102 ͑2009͒ Absolute continuity for operator valued completely algebras-ءpositive maps on C ͒ ͒ Aurelian Gheondea1,a and Ali Şamil Kavruk2,b 1Department of Mathematics, Bilkent University, Bilkent, Ankara 06800, Turkey and Institutul de Matematică al Academiei Române, C. P. 1-764, 014700 Bucureşti, Romania 2Department of Mathematics, University of Houston, Houston, Texas 77204-3476, USA ͑Received 15 October 2008; accepted 16 December 2008; published online 11 February 2009͒ Motivated by applicability to quantum operations, quantum information, and quan- tum probability, we investigate the notion of absolute continuity for operator valued algebras, previously introduced by Parthasarathy-ءcompletely positive maps on C ͓in Athens Conference on Applied Probability and Time Series Analysis I ͑Springer- Verlag, Berlin, 1996͒, pp. 34–54͔. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maxi- mal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Le- besgue decomposition, and we point out the nonuniqueness of the Lebesgue de- composition as well as a sufficient condition for uniqueness. In addition, we con- sider Radon–Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon–Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi’s matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.
    [Show full text]
  • The Absolutely Continuous Spectrum of the Almost Mathieu Operator
    THE ABSOLUTELY CONTINUOUS SPECTRUM OF THE ALMOST MATHIEU OPERATOR ARTUR AVILA Abstract. We prove that the spectrum of the almost Mathieu operator is absolutely continuous if and only if the coupling is subcritical. This settles Problem 6 of Barry Simon’s list of Schr¨odinger operator problems for the twenty-first century. 1. Introduction This work is concerned with the almost Mathieu operator H = Hλ,α,θ defined on ℓ2(Z) (1.1) (Hu)n = un+1 + un−1 +2λ cos(2π[θ + nα])un where λ = 0 is the coupling, α R Q is the frequency and θ R is the phase. This is the6 most studied quasiperiodic∈ \ Schr¨odinger operator, arisin∈ g naturally as a physical model (see [L3] for a recent historical account and for the physics back- ground). We are interested in the decomposition of the spectral measures in atomic (corre- sponding to point spectrum), singular continuous and absolutely continuous parts. Our main result is the following. Main Theorem. The spectral measures of the almost Mathieu operator are abso- lutely continuous if and only if λ < 1. | | 1.1. Background. Singularity of the spectral measures for λ 1 had been pre- viously established (it follows from [LS], [L1], [AK]). Thus| | the ≥ Main Theorem reduces to showing absolute continuity of the spectral measures for λ < 1, which is Problem 6 of Barry Simon’s list [S3]. | | We recall the history of this problem (following [J]). Aubry-Andr´econjectured the following dependence on λ of the nature of the spectral measures: arXiv:0810.2965v1 [math.DS] 16 Oct 2008 (1) (Supercritical regime) For λ > 1, spectral measures are pure point, (2) (Subcritical regime) For λ| <| 1, spectral measures are absolutely continu- ous.
    [Show full text]
  • Total Variation Deconvolution Using Split Bregman
    Published in Image Processing On Line on 2012{07{30. Submitted on 2012{00{00, accepted on 2012{00{00. ISSN 2105{1232 c 2012 IPOL & the authors CC{BY{NC{SA This article is available online with supplementary materials, software, datasets and online demo at http://dx.doi.org/10.5201/ipol.2012.g-tvdc 2014/07/01 v0.5 IPOL article class Total Variation Deconvolution using Split Bregman Pascal Getreuer Yale University ([email protected]) Abstract Deblurring is the inverse problem of restoring an image that has been blurred and possibly corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear and shift-invariant so it may be expressed as a convolution of the image with a point spread function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution is essentially Fourier division. The challenge is that since the multipliers are often small for high frequencies, direct division is unstable and plagued by noise present in the input image. Effective deconvolution requires a balance between frequency recovery and noise suppression. Total variation (TV) regularization is a successful technique for achieving this balance in de- blurring problems. It was introduced to image denoising by Rudin, Osher, and Fatemi [4] and then applied to deconvolution by Rudin and Osher [5]. In this article, we discuss TV-regularized deconvolution with Gaussian noise and its efficient solution using the split Bregman algorithm of Goldstein and Osher [16]. We show a straightforward extension for Laplace or Poisson noise and develop empirical estimates for the optimal value of the regularization parameter λ.
    [Show full text]
  • Guaranteed Deterministic Bounds on the Total Variation Distance Between Univariate Mixtures
    Guaranteed Deterministic Bounds on the Total Variation Distance between Univariate Mixtures Frank Nielsen Ke Sun Sony Computer Science Laboratories, Inc. Data61 Japan Australia [email protected] [email protected] Abstract The total variation distance is a core statistical distance between probability measures that satisfies the metric axioms, with value always falling in [0; 1]. This distance plays a fundamental role in machine learning and signal processing: It is a member of the broader class of f-divergences, and it is related to the probability of error in Bayesian hypothesis testing. Since the total variation distance does not admit closed-form expressions for statistical mixtures (like Gaussian mixture models), one often has to rely in practice on costly numerical integrations or on fast Monte Carlo approximations that however do not guarantee deterministic lower and upper bounds. In this work, we consider two methods for bounding the total variation of univariate mixture models: The first method is based on the information monotonicity property of the total variation to design guaranteed nested deterministic lower bounds. The second method relies on computing the geometric lower and upper envelopes of weighted mixture components to derive deterministic bounds based on density ratio. We demonstrate the tightness of our bounds in a series of experiments on Gaussian, Gamma and Rayleigh mixture models. 1 Introduction 1.1 Total variation and f-divergences Let ( R; ) be a measurable space on the sample space equipped with the Borel σ-algebra [1], and P and QXbe ⊂ twoF probability measures with respective densitiesXp and q with respect to the Lebesgue measure µ.
    [Show full text]
  • Absolute Continuity of Poisson Random Fields
    Publ. RIMS, Kyoto Univ. 26 (1990), 629-647 Absolute Continuity of Poisson Random Fields By Yoichiro TAKAHASHI* § 0. Introduction Let R be a locally compact Hausdorff space with countable basis. Given a nonatomic nonnegative Radon measure 2. on R, we denote the Poisson measure (or random fields or point processes) with intensity 1 by TT^. Theorem. Let X and p be two nonatomic infinite nonnegative Radon measures on R. Then the Poisson measures KZ and TCP are mutually absolutely continuous if and only if (a) 2 and p are mutually absolutely continuous and (b) the Hellinger distance d(p, 1} between 1 and p is finite: (1) d(p Furthermore, the Hellinger distance D(xp, m) between KP and KI is then given by the formula /o\ D(rr T \^ ' The main purpose of the present note is to give a proof to Theorem above. In the last section we shall apply Theorem to the problem of giving the precise definition of the Fisher information or, equivalently, of giving a statistically natural Riemannian metric for an "infinite dimensional statistical model", which consists of mutually absolutely continuous Poisson measures. Remark, (i) Assume (a) and denote d (3) A- P Y~ dl ' Then the Radon-Nikodym derivative ^ is positive and finite ^-almost everywhere Communicated by H. Araki, October 23, 1989. * Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153, Japan. 630 YOICHIRO TAKAHASHI and the condition (b) means that (10 V0~-1<EEL\R, X). In fact, by definition, (ii) The case where R is an Euclidean space is already studied by A.V.
    [Show full text]
  • Calculus of Variations
    MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture 5 Calculus of Variations • Calculus of Variations • Most books cover this material well, but Kirk Chapter 4 does a particularly nice job. • See here for online reference. x(t) x*+ αδx(1) x*- αδx(1) x* αδx(1) −αδx(1) t t0 tf Figure by MIT OpenCourseWare. Spr 2008 16.323 5–1 Calculus of Variations • Goal: Develop alternative approach to solve general optimization problems for continuous systems – variational calculus – Formal approach will provide new insights for constrained solutions, and a more direct path to the solution for other problems. • Main issue – General control problem, the cost is a function of functions x(t) and u(t). � tf min J = h(x(tf )) + g(x(t), u(t), t)) dt t0 subject to x˙ = f(x, u, t) x(t0), t0 given m(x(tf ), tf ) = 0 – Call J(x(t), u(t)) a functional. • Need to investigate how to find the optimal values of a functional. – For a function, we found the gradient, and set it to zero to find the stationary points, and then investigated the higher order derivatives to determine if it is a maximum or minimum. – Will investigate something similar for functionals. June 18, 2008 Spr 2008 16.323 5–2 • Maximum and Minimum of a Function – A function f(x) has a local minimum at x� if f(x) ≥ f(x �) for all admissible x in �x − x�� ≤ � – Minimum can occur at (i) stationary point, (ii) at a boundary, or (iii) a point of discontinuous derivative.
    [Show full text]
  • On the Existence of Monotone Pure Strategy Equilibria in Bayesian Games
    On the Existence of Monotone Pure Strategy Equilibria in Bayesian Games Philip J. Reny Department of Economics University of Chicago January 2006 Abstract We extend and strengthen both Athey’s (2001) and McAdams’(2003) results on the existence of monotone pure strategy equilibria in Bayesian games. We allow action spaces to be compact locally-complete metrizable semilatttices and can handle both a weaker form of quasisupermodularity than is employed by McAdams and a weaker single-crossing property than is required by both Athey and McAdams. Our proof — which is based upon contractibility rather than convexity of best reply sets — demonstrates that the only role of single-crossing is to help ensure the existence of monotone best replies. Finally, we do not require the Milgrom-Weber (1985) absolute continuity condition on the joint distribution of types. 1. Introduction In an important paper, Athey (2001) demonstrates that a monotone pure strategy equilib- rium exists whenever a Bayesian game satis…es a Spence-Mirlees single-crossing property. Athey’s result is now a central tool for establishing the existence of monotone pure strat- egy equilibria in auction theory (see e.g., Athey (2001), Reny and Zamir (2004)). Recently, McAdams (2003) has shown that Athey’sresults, which exploit the assumed total ordering of the players’one-dimensional type and action spaces, can be extended to settings in which type and action spaces are multi-dimensional and only partially ordered. This permits new existence results in auctions with multi-dimensional signals and multi-unit demands (see McAdams (2004)). At the heart of the results of both Athey (2001) and McAdams (2003) is a single-crossing assumption.
    [Show full text]
  • Topics in Analysis 1 — Real Functions
    Topics in analysis 1 | Real functions Onno van Gaans Version May 21, 2008 Contents 1 Monotone functions 2 1.1 Continuity . 2 1.2 Differentiability . 2 1.3 Bounded variation . 2 2 Fundamental theorem of calculus 2 2.1 Indefinite integrals . 2 2.2 The Cantor function . 2 2.3 Absolute continuity . 2 3 Sobolev spaces 2 3.1 Sobolev spaces on intervals . 3 3.2 Application to differential equations . 6 3.3 Distributions . 10 3.4 Fourier transform and fractional derivatives . 16 4 Stieltjes integral 20 4.1 Definition and properties . 20 4.2 Langevin's equation . 28 4.3 Wiener integral . 32 5 Convex functions 33 1 1 Monotone functions 1.1 Continuity 1.2 Differentiability 1.3 Bounded variation 2 Fundamental theorem of calculus 2.1 Indefinite integrals 2.2 The Cantor function 2.3 Absolute continuity 3 Sobolev spaces When studying differential equations it is often convenient to assume that all functions in the equation are several times differentiable and that their derivatives are continuous. If the equation is of second order, for instance, one usually assumes that the solution should be two times continuously differentiable. There are several reasons to allow functions with less smoothness. Let us consider two of them. Suppose that u00(t) + αu0(t) + βu(t) = f(t) describes the position u(t) of a particle at time t, where f is some external force acting on the particle. If the force is contiuous in t, one expects the solution u to be twice continuously differentiable. If the functions f has jumps, the second derivative of u will not be continuous and, more than that, u0 will probably not be differentiable at the points where f is discon- tinuous.
    [Show full text]
  • The Converse Envelope Theorem∗
    The converse envelope theorem∗ Ludvig Sinander Northwestern University 14 July 2021 Abstract I prove an envelope theorem with a converse: the envelope formula is equivalent to a first-order condition. Like Milgrom and Segal’s (2002) envelope theorem, my result requires no structure on the choice set. I use the converse envelope theorem to extend to abstract outcomes the canonical result in mechanism design that any increasing allocation is implementable, and apply this to selling information. 1 Introduction Envelope theorems are a key tool of economic theory, with important roles in consumer theory, mechanism design and dynamic optimisation. In blueprint form, an envelope theorem gives conditions under which optimal decision- making implies that the envelope formula holds. In textbook accounts,1 the envelope theorem is typically presented as a consequence of the first-order condition. The modern envelope theorem of Milgrom and Segal (2002), however, applies in an abstract setting in which the first-order condition is typically not even well-defined. These authors therefore rejected the traditional intuition and developed a new one. In this paper, I re-establish the intuitive link between the envelope formula arXiv:1909.11219v4 [econ.TH] 14 Jul 2021 and the first-order condition. I introduce an appropriate generalised first-order ∗I am grateful to Eddie Dekel, Alessandro Pavan and Bruno Strulovici for their guidance and support. This work has profited from the close reading and insightful comments of Gregorio Curello, Eddie Dekel, Roberto Saitto, Quitzé Valenzuela-Stookey, Alessandro Lizzeri and four anonymous referees, and from comments by Piotr Dworczak, Matteo Escudé, Benny Moldovanu, Ilya Segal and audiences at Northwestern and the 2021 Kansas Workshop in Economic Theory.
    [Show full text]