New Applications of the Existence of Solutions for Equilibrium Equations with Neumann Type Boundary Condition

Total Page:16

File Type:pdf, Size:1020Kb

New Applications of the Existence of Solutions for Equilibrium Equations with Neumann Type Boundary Condition Ji et al. Journal of Inequalities and Applications (2017)2017:86 DOI 10.1186/s13660-017-1357-4 RESEARCH Open Access New applications of the existence of solutions for equilibrium equations with Neumann type boundary condition Zhaoqi Ji1,TaoLiu2,HongTian3 and Tanriver Ülker4* *Correspondence: [email protected] Abstract 4Departamento de Matemática, Universidad Austral, Paraguay 1950, Using the existence of solutions for equilibrium equations with a Neumann type Rosario, S2000FZF, Argentina boundary condition as developed by Shi and Liao (J. Inequal. Appl. 2015:363, 2015), Full list of author information is we obtain the Riesz integral representation for continuous linear maps associated available at the end of the article with additive set-valued maps with values in the set of all closed bounded convex non-empty subsets of any Banach space, which are generalizations of integral representations for harmonic functions proved by Leng, Xu and Zhao (Comput. Math. Appl. 66:1-18, 2013). We also deduce the Riesz integral representation for set-valued maps, for the vector-valued maps of Diestel-Uhl and for the scalar-valued maps of Dunford-Schwartz. Keywords: Neumann type boundary condition;ARTICLE set-valued measures; integral representation; topology 1 Introduction The Riesz-Markov-Kakutani representation theorem states that, for every positive func- tional L on the space Cc(T) of continuous compact supported functional on a locally com- pact Hausdorff space T, there exists a unique Borel regular measure μ on T such that L(f )= fdμ for all f ∈ Cc(T). Riesz’s original form [] was proved in for the unit in- terval (T = [; ]). Successive extensions of this result were given, first by Markov in to some non-compact space (see []), by Radon for compact subset of Rn (see []), by Ba- nach in note II of Saks’ book (see []) and by Kakutani in to a compact Hausdorff space []. Other extensions for locally compact spaces are due to Halmos [], Hewith [], Edward []andBourbaki[]. Singer [, ], Dinculeanu [, ] and Diestel-Uhl [] gave an integral representation for functional on the space C(T, E) of vector-valued con- tinuous functions. Recently Leng, Xu and Zhao (see []) gave the integral representation for continuous functionals defined on the space C(T) of all continuous real-valued func- tions on T; as an application, Shi and Liao (see []) also gave short solutions for the full and truncated K-moment problem. The set-valued measures, which are natural extensions of RETRACTEDthe classical vector measures, have been the subject of many theses. In the school of Pallu DeLaBarrierewehavetheonesofThiam[], Cost [], Siggini [], in the school of Cas- taing the one of Godet-Thobie [], and in the school of Thiam the ones of Dia []and Thiam []. Investigations are undertaken for the generalization of results for set-valued © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro- vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Ji et al. Journal of Inequalities and Applications (2017)2017:86 Page 2 of 8 measures in particular the Radon-Nikodym theorem for weak set-valued measures [, ] and the integral representation for additive strictly continuous set-values maps with reg- ular set-valued measures. The work of Rupp in the two cases, T arbitrary non-empty set and T compact, allowed one to generalize the Riesz integral representation of additive and σ -additive scalar measures to the case of additive and σ -additive set-valued measures (see [, ]). He has proved among others that if T is a non-empty set and A the algebra of subsets of T, for all continuous linear maps l defined on the space B(T; R)ofalluniform limits of finite linear combinations of characteristic functions of sets in A associated with an additive set-valued map with values in the space ck(Rn) of convex compact non-empty R subsets of n, there exists a unique bounded additive set-valued measure M from A to the space ck(Rn)suchthatδ∗(·|l(f )) = δ∗(·| fM) and conversely. In this paper we extend this resulttothecaseofanyBanachspaceE.WededucetheRieszintegralrepresentationfor additive set-valued maps with values in the space of all closed bounded convex non-empty subsets of E; for vector-valued maps (see [], Theorem , p.) and for scalar-valued maps (see []). 2 Notations and definitions Let E be a Banach space and E itsdualspace.Wedenoteby·the norm on E and E.If X and Y are subsets of E we shall denote by X + Y the family of all elements of the form x + y with x ∈ X and y ∈ Y ,andbyX +˙ Y or adh(X + Y)theclosureofX + Y .Theclosed convex hull of X is denoted by co(X). The support function of X is the function δ∗(·|X) ARTICLE from E to ] – ∞;+∞]definedby ∗ δ (y|X)=sup y(x); x ∈ X . We denote by cfb(E) the set of all closed bounded convex non-empty subsets of E.We endowed cfb(E) with the Hausdorff distance denoted by δ and the structures +andthe˙ multiplication by positive real numbers. For all K ∈ cfb(E)andforallK ∈ cfb(E), we have ∗ ∗ δ K; K = sup δ (y|K)–δ y|K ; y ∈ E, y≤ . Recall that (cfb(E); δ)isacompletemetricspace(see[], Theorem , p.). We denote by Ch(E) the space of all continuous real-valued map defined on E and positively homo- geneous. If u ∈ Ch(E), then we have u(λy)=λu(y) for all y ∈ E and for all λ ∈ R,whereλ ≥ . We endowed Ch(E)withthenorm u = sup u(y); y ∈ E ; y≤ . { ∗ | ∈ } ˜ ˜ RETRACTEDPut C = δ (y B); B cfb(E) and put C = C – C;then C is a subspace of the vector h space C (E ) generated by C.LetT be a non-empty set, let A be an algebra consisting of subsets of T and let B(T; R) be the space of all bounded real-valued functions defined on T, endowed with the topology of uniform convergence. We denote by S(T; R)thesub- B R ∈ R space of (T; ) consisting of simple functions (i.e. of the form αiAi where αi ; ∈ { · } Ai A; A, A, , An a partition of A and Ai the characteristic function of Ai.) We de- note by B(T, R)theclosureinB(T; R)ofS(T; R); S+(T; R)(resp.B+(T; R)) the subspace Ji et al. Journal of Inequalities and Applications (2017)2017:86 Page 3 of 8 of S(T; R)(resp.B(T; R)) consisting of positive functions. We endowed B(T; R)withthe induced topology. Notes that if A is the Borel σ -algebra, then B(T; R)isthespaceofall bounded measurable real-valued functions. Let M be a set-valued map from A to cfb(E). We say that M is additive if M(∅)={} and M(A ∪ B)=M(A) +˙ M(B) for all disjoint sets A, B in A.Theset-valuedmeasureM is said to be bounded if {M(A), A ∈ A} is a bounded subset of E.ThesemivariationofM is the map M(·)from A to [; +∞]definedby M(A)=sup f δ y|M(·) (A); y ∈ E , y≤ , where |δ(y|M(·))|(A) denotes the total variation of the scalar measure δ∗(y|M(·)) on A de- fined by ∗ δ y|M(·) |(A)=sup δ y|M(Ai) ; i the supremum is taken over all finite partition (Ai)ofA; Ai ∈ A.IfM(T)<+∞,then M will be called a set-valued measure of finite semivariation.ARTICLE We denote by M(A; cfb(E)) the space of all bounded set-valued measures defined on A with values in cfb(E). Let m be avectormeasurefromA to E.Wesaythatm is a bounded additive vector measure if its verifies similar conditions of bounded additive set-valued measures. We denote by m the semivariation of m defined by m(A)=sup{|y◦m|(A); y ∈ E; y≤} where |y◦m|(A) denotes the total variation of the scalar measure y ◦ m on A defined by |y ◦ m|(A)=sup y m(Ai) i for all A ∈ A; the supremum is taken over all finite partition (Ai)ofA; Ai ∈ A.Let L : B+(T; R) → cfb(E)beaset-valuedmap.WesaythatL is an additive (resp. positively homogeneous) if for all f , g ∈ B+(T; R) (resp. for all λ ≥ ), L(f + g)=L(f ) +˙ L(g)(resp. L(λf )=λL(f )).WedenotebyL(B(T, R); Ch(E)) the space of all linear continuous maps defined on B(T, R)withvaluesinCh(E). If l ∈ L(B(T, R); Ch(E)); we put l = sup l(f ) ; f ∈ B+(T, R), f ≤ , where f = sup{|f (t); t ∈ T|}. For a numerical function f defined on T,wesetf + = sup(f ,) and f – = sup(–f ,). ∈ L B R h B R → RETRACTEDDefinition . Let l ( (T, , C (E ))) and let L : +(T, ) cfb(E) be an additive, positively homogeneous and continuous set-valued map. We say that l is associated with ∗ L if l(f )=δ (·|L(f )) for all f ∈ B+(T; R). Then we have ∗ + ∗ – l(f )=δ ·|L f – δ ·|L f ∈ C for all f ∈ B(T; R). Ji et al. Journal of Inequalities and Applications (2017)2017:86 Page 4 of 8 3 Lemmas In order to prove our main results, we need the following lemmas. Lemma . Let M : A → cfb(E) be an additive set-valued measure. Then M is bounded if and only if it is finite semivariation. Proof The set-valued measure M is bounded if there exists a nonnegative real number c such that ∗ sup sup δ y|M(A) ≤ c.
Recommended publications
  • The Total Variation Flow∗
    THE TOTAL VARIATION FLOW∗ Fuensanta Andreu and Jos´eM. Maz´on† Abstract We summarize in this lectures some of our results about the Min- imizing Total Variation Flow, which have been mainly motivated by problems arising in Image Processing. First, we recall the role played by the Total Variation in Image Processing, in particular the varia- tional formulation of the restoration problem. Next we outline some of the tools we need: functions of bounded variation (Section 2), par- ing between measures and bounded functions (Section 3) and gradient flows in Hilbert spaces (Section 4). Section 5 is devoted to the Neu- mann problem for the Total variation Flow. Finally, in Section 6 we study the Cauchy problem for the Total Variation Flow. 1 The Total Variation Flow in Image Pro- cessing We suppose that our image (or data) ud is a function defined on a bounded and piecewise smooth open set D of IRN - typically a rectangle in IR2. Gen- erally, the degradation of the image occurs during image acquisition and can be modeled by a linear and translation invariant blur and additive noise. The equation relating u, the real image, to ud can be written as ud = Ku + n, (1) where K is a convolution operator with impulse response k, i.e., Ku = k ∗ u, and n is an additive white noise of standard deviation σ. In practice, the noise can be considered as Gaussian. ∗Notes from the course given in the Summer School “Calculus of Variations”, Roma, July 4-8, 2005 †Departamento de An´alisis Matem´atico, Universitat de Valencia, 46100 Burjassot (Va- lencia), Spain, [email protected], [email protected] 1 The problem of recovering u from ud is ill-posed.
    [Show full text]
  • Total Variation Deconvolution Using Split Bregman
    Published in Image Processing On Line on 2012{07{30. Submitted on 2012{00{00, accepted on 2012{00{00. ISSN 2105{1232 c 2012 IPOL & the authors CC{BY{NC{SA This article is available online with supplementary materials, software, datasets and online demo at http://dx.doi.org/10.5201/ipol.2012.g-tvdc 2014/07/01 v0.5 IPOL article class Total Variation Deconvolution using Split Bregman Pascal Getreuer Yale University ([email protected]) Abstract Deblurring is the inverse problem of restoring an image that has been blurred and possibly corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear and shift-invariant so it may be expressed as a convolution of the image with a point spread function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution is essentially Fourier division. The challenge is that since the multipliers are often small for high frequencies, direct division is unstable and plagued by noise present in the input image. Effective deconvolution requires a balance between frequency recovery and noise suppression. Total variation (TV) regularization is a successful technique for achieving this balance in de- blurring problems. It was introduced to image denoising by Rudin, Osher, and Fatemi [4] and then applied to deconvolution by Rudin and Osher [5]. In this article, we discuss TV-regularized deconvolution with Gaussian noise and its efficient solution using the split Bregman algorithm of Goldstein and Osher [16]. We show a straightforward extension for Laplace or Poisson noise and develop empirical estimates for the optimal value of the regularization parameter λ.
    [Show full text]
  • Guaranteed Deterministic Bounds on the Total Variation Distance Between Univariate Mixtures
    Guaranteed Deterministic Bounds on the Total Variation Distance between Univariate Mixtures Frank Nielsen Ke Sun Sony Computer Science Laboratories, Inc. Data61 Japan Australia [email protected] [email protected] Abstract The total variation distance is a core statistical distance between probability measures that satisfies the metric axioms, with value always falling in [0; 1]. This distance plays a fundamental role in machine learning and signal processing: It is a member of the broader class of f-divergences, and it is related to the probability of error in Bayesian hypothesis testing. Since the total variation distance does not admit closed-form expressions for statistical mixtures (like Gaussian mixture models), one often has to rely in practice on costly numerical integrations or on fast Monte Carlo approximations that however do not guarantee deterministic lower and upper bounds. In this work, we consider two methods for bounding the total variation of univariate mixture models: The first method is based on the information monotonicity property of the total variation to design guaranteed nested deterministic lower bounds. The second method relies on computing the geometric lower and upper envelopes of weighted mixture components to derive deterministic bounds based on density ratio. We demonstrate the tightness of our bounds in a series of experiments on Gaussian, Gamma and Rayleigh mixture models. 1 Introduction 1.1 Total variation and f-divergences Let ( R; ) be a measurable space on the sample space equipped with the Borel σ-algebra [1], and P and QXbe ⊂ twoF probability measures with respective densitiesXp and q with respect to the Lebesgue measure µ.
    [Show full text]
  • Calculus of Variations
    MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture 5 Calculus of Variations • Calculus of Variations • Most books cover this material well, but Kirk Chapter 4 does a particularly nice job. • See here for online reference. x(t) x*+ αδx(1) x*- αδx(1) x* αδx(1) −αδx(1) t t0 tf Figure by MIT OpenCourseWare. Spr 2008 16.323 5–1 Calculus of Variations • Goal: Develop alternative approach to solve general optimization problems for continuous systems – variational calculus – Formal approach will provide new insights for constrained solutions, and a more direct path to the solution for other problems. • Main issue – General control problem, the cost is a function of functions x(t) and u(t). � tf min J = h(x(tf )) + g(x(t), u(t), t)) dt t0 subject to x˙ = f(x, u, t) x(t0), t0 given m(x(tf ), tf ) = 0 – Call J(x(t), u(t)) a functional. • Need to investigate how to find the optimal values of a functional. – For a function, we found the gradient, and set it to zero to find the stationary points, and then investigated the higher order derivatives to determine if it is a maximum or minimum. – Will investigate something similar for functionals. June 18, 2008 Spr 2008 16.323 5–2 • Maximum and Minimum of a Function – A function f(x) has a local minimum at x� if f(x) ≥ f(x �) for all admissible x in �x − x�� ≤ � – Minimum can occur at (i) stationary point, (ii) at a boundary, or (iii) a point of discontinuous derivative.
    [Show full text]
  • Calculus of Variations in Image Processing
    Calculus of variations in image processing Jean-François Aujol CMLA, ENS Cachan, CNRS, UniverSud, 61 Avenue du Président Wilson, F-94230 Cachan, FRANCE Email : [email protected] http://www.cmla.ens-cachan.fr/membres/aujol.html 18 september 2008 Note: This document is a working and uncomplete version, subject to errors and changes. Readers are invited to point out mistakes by email to the author. This document is intended as course notes for second year master students. The author encourage the reader to check the references given in this manuscript. In particular, it is recommended to look at [9] which is closely related to the subject of this course. Contents 1. Inverse problems in image processing 4 1.1 Introduction.................................... 4 1.2 Examples ....................................... 4 1.3 Ill-posedproblems............................... .... 6 1.4 Anillustrativeexample. ..... 8 1.5 Modelizationandestimator . ..... 10 1.5.1 Maximum Likelihood estimator . 10 1.5.2 MAPestimator ................................ 11 1.6 Energymethodandregularization. ....... 11 2. Mathematical tools and modelization 14 2.1 MinimizinginaBanachspace . 14 2.2 Banachspaces.................................... 14 2.2.1 Preliminaries ................................. 14 2.2.2 Topologies in Banach spaces . 17 2.2.3 Convexity and lower semicontinuity . ...... 19 2.2.4 Convexanalysis................................ 23 2.3 Subgradient of a convex function . ...... 23 2.4 Legendre-Fencheltransform: . ....... 24 2.5 The space of funtions with bounded variation . ......... 26 2.5.1 Introduction.................................. 26 2.5.2 Definition ................................... 27 2.5.3 Properties................................... 28 2.5.4 Decomposability of BV (Ω): ......................... 28 2.5.5 SBV ...................................... 30 2.5.6 Setsoffiniteperimeter . 32 2.5.7 Coarea formula and applications .
    [Show full text]
  • Range Convergence Monotonicity for Vector
    RANGE CONVERGENCE MONOTONICITY FOR VECTOR MEASURES AND RANGE MONOTONICITY OF THE MASS JUSTIN DEKEYSER AND JEAN VAN SCHAFTINGEN Abstract. We prove that the range of sequence of vector measures converging widely satisfies a weak lower semicontinuity property, that the convergence of the range implies the strict convergence (convergence of the total variation) and that the strict convergence implies the range convergence for strictly convex norms. In dimension 2 and for Euclidean spaces of any dimensions, we prove that the total variation of a vector measure is monotone with respect to the range. Contents 1. Introduction 1 2. Total variation and range 4 3. Convergence of the total variation and of the range 14 4. Zonal representation of masses 19 5. Perimeter representation of masses 24 Acknowledgement 27 References 27 1. Introduction A vector measure µ maps some Σ–measurable subsets of a space X to vectors in a linear space V [1, Chapter 1; 8; 13]. Vector measures ap- pear naturally in calculus of variations and in geometric measure theory, as derivatives of functions of bounded variation (BV) [6] and as currents of finite mass [10]. In these contexts, it is natural to work with sequences of arXiv:1904.05684v1 [math.CA] 11 Apr 2019 finite Radon measures and to study their convergence. The wide convergence of a sequence (µn)n∈N of finite vector measures to some finite vector measure µ is defined by the condition that for every compactly supported continuous test function ϕ ∈ Cc(X, R), one has lim ϕ dµn = ϕ dµ. n→∞ ˆX ˆX 2010 Mathematics Subject Classification.
    [Show full text]
  • Total Variation As a Local Filter∗
    SIAM J. IMAGING SCIENCES c 2011 Society for Industrial and Applied Mathematics Vol. 4, No. 2, pp. 651–694 Total Variation as a Local Filter∗ † ‡ C´ecile Louchet and Lionel Moisan Abstract. In the Rudin–Osher–Fatemi (ROF) image denoising model, total variation (TV) is used as a global regularization term. However, as we observe, the local interactions induced by TV do not propagate much at long distances in practice, so that the ROF model is not far from being a local filter. In this paper, we propose building a purely local filter by considering the ROF model in a given neighborhood of each pixel. We show that appropriate weights are required to avoid aliasing- like effects, and we provide an explicit convergence criterion for an associated dual minimization algorithm based on Chambolle’s work. We study theoretical properties of the obtained local filter and show that this localization of the ROF model brings an interesting optimization of the bias-variance trade-off, and a strong reduction of an ROF drawback called the “staircasing effect.” Finally, we present a new denoising algorithm, TV-means, that efficiently combines the idea of local TV-filtering with the nonlocal means patch-based method. Key words. total variation, variational model, local filter, image denoising, nonlocal means AMS subject classifications. 68U10, 65K10, 62H35 DOI. 10.1137/100785855 1. Introduction. Image denoising/smoothing is one of the most frequently considered issues in image processing, not only because it plays a key preliminary role in many computer vision systems, but also because it is probably the simplest way to address the fundamental issue of image modeling, as a starting point towards more complex tasks such as deblurring, demosaicking, and inpainting.
    [Show full text]
  • 5.2 Complex Borel Measures on R
    MATH 245A (17F) (L) M. Bonk / (TA) A. Wu Real Analysis Contents 1 Measure Theory 3 1.1 σ-algebras . .3 1.2 Measures . .4 1.3 Construction of non-trivial measures . .5 1.4 Lebesgue measure . 10 1.5 Measurable functions . 14 2 Integration 17 2.1 Integration of simple non-negative functions . 17 2.2 Integration of non-negative functions . 17 2.3 Integration of real and complex valued functions . 19 2.4 Lp-spaces . 20 2.5 Relation to Riemann integration . 22 2.6 Modes of convergence . 23 2.7 Product measures . 25 2.8 Polar coordinates . 28 2.9 The transformation formula . 31 3 Signed and Complex Measures 35 3.1 Signed measures . 35 3.2 The Radon-Nikodym theorem . 37 3.3 Complex measures . 40 4 More on Lp Spaces 43 4.1 Bounded linear maps and dual spaces . 43 4.2 The dual of Lp ....................................... 45 4.3 The Hardy-Littlewood maximal functions . 47 5 Differentiability 51 5.1 Lebesgue points . 51 5.2 Complex Borel measures on R ............................... 54 5.3 The fundamental theorem of calculus . 58 6 Functional Analysis 61 6.1 Locally compact Hausdorff spaces . 61 6.2 Weak topologies . 62 6.3 Some theorems in functional analysis . 65 6.4 Hilbert spaces . 67 1 CONTENTS MATH 245A (17F) 7 Fourier Analysis 73 7.1 Trigonometric series . 73 7.2 Fourier series . 74 7.3 The Dirichlet kernel . 75 7.4 Continuous functions and pointwise convergence properties . 77 7.5 Convolutions . 78 7.6 Convolutions and differentiation . 78 7.7 Translation operators .
    [Show full text]
  • Functions of Bounded Variation and Absolutely Continuous Functions
    209: Honors Analysis in Rn Functions of bounded variation and absolutely continuous functions 1 Nondecreasing functions Definition 1 A function f :[a, b] → R is nondecreasing if x ≤ y ⇒ f(x) ≤ f(y) holds for all x, y ∈ [a, b]. Proposition 1 If f is nondecreasing in [a, b] and x0 ∈ (a, b) then lim f(x) and lim f(x) x→x0, x<x0 x→x0, x>x0 exist. We denote them f(x0 − 0) and, respectively f(x0 + 0). Proof Exercise. Definition 2 The function f is sait to be continuous from the right at x0 ∈ (a, b) if f(x0 + 0) = f(x0). It is said to be continuous from the left if f(x0 − 0) = f(x0). A function is said to have a jump discontinuity at x0 if the limits f(x0 ± 0) exist and if |f(x0 + 0) − f(x0 − 0)| > 0. Let x1, x2 ... be a sequence in [a, b] and let hj > 0 be a sequence of positive P∞ numbers such that n=1 hn < ∞. The nondecreasing function X f(x) = hn xn<x is said to be the jump function associated to the sequences {xn}, {hn}. Proposition 2 Let f be nondecreasing on [a, b]. Then it is measurable and bounded and hence it is Lebesgue integrable. Proof Exercise. (Hint: the preimage of (−∞, α) is an interval.) 1 Proposition 3 Let f :[a, b] → R be nondecreasing. Then all the discon- tinuities of f are jump discontinuities. There are at most countably many such. Proof Exercise. (Hint: The range of the function is bounded, and the total length of the range is larger than the sum of the absolute values of the jumps, so for each fixed length, there are at most finitely many jumps larger than that length.) Exercise 1 A jump function associated to {xn}{hn} is continuous from the left and jumps hn = f(xn + 0) − f(xn − 0).
    [Show full text]
  • On the Total Variation Distance of Semi-Markov Chains
    On the Total Variation Distance of Semi-Markov Chains Giorgio Bacci, Giovanni Bacci, Kim Guldstrand Larsen, and Radu Mardare Department of Computer Science, Aalborg University, Denmark {grbacci,giovbacci,kgl,mardare}@cs.aau.dk Abstract. Semi-Markov chains (SMCs) are continuous-time probabilis- tic transition systems where the residence time on states is governed by generic distributions on the positive real line. This paper shows the tight relation between the total variation dis- tance on SMCs and their model checking problem over linear real-time specifications. Specifically, we prove that the total variation between two SMCs coincides with the maximal difference w.r.t. the likelihood of sat- isfying arbitrary MTL formulas or ω-languages recognized by timed au- tomata. Computing this distance (i.e., solving its threshold problem) is NP- hard and its decidability is an open problem. Nevertheless, we propose an algorithm for approximating it with arbitrary precision. 1 Introduction The growing interest in quantitative aspects in real world applications motivated the introduction of quantitative models and formal methods for studying their behaviors. Classically, the behavior of two models is compared by means of an equivalence (e.g., bisimilarity, trace equivalence, logical equivalence, etc.). However, when the models depend on numerical values that are subject to error estimates or obtained from statistical samplings, any notion of equivalence is too strong a concept. This motivated the study of behavioral distances. The idea is to generalize the concept of equivalence with that of pseudometric, aiming at measuring the behavioral dissimilarities between nonequivalent models. Given a suitably large set of properties Φ, containing all the properties of interest, the behavioral dissimilarities of two states s, s of a quantitative model are naturally measured by the pseudometric d(s, s )=supφ∈Φ |φ(s) − φ(s )|, where φ(s) denotes the value of φ at s.
    [Show full text]
  • Extremum Problems with Total Variation Distance and Their
    1 Extremum Problems with Total Variation Distance and their Applications Charalambos D. Charalambous, Ioannis Tzortzis, Sergey Loyka and Themistoklis Charalambous Abstract The aim of this paper is to investigate extremum problems with pay-off being the total variational distance metric defined on the space of probability measures, subject to linear functional constraints on the space of probability measures, and vice-versa; that is, with the roles of total variational metric and linear functional interchanged. Utilizing concepts from signed measures, the extremum probability measures of such problems are obtained in closed form, by identifying the partition of the support set and the mass of these extremum measures on the partition. The results are derived for abstract spaces; specifically, complete separable metric spaces known as Polish spaces, while the high level ideas are also discussed for denumerable spaces endowed with the discrete topology. These extremum problems often arise in many areas, such as, approximating a family of probability distributions by a given probability distribution, maximizing or minimizing entropy subject to total variational distance metric constraints, quantifying uncertainty of probability distributions by total variational distance metric, stochastic minimax control, and in many problems of information, decision theory, and minimax theory. Keywords: Total variational distance, extremum probability measures, signed measures. arXiv:1301.4763v1 [math.OC] 21 Jan 2013 I. INTRODUCTION Total variational distance metric on the space of probability measures is a fundamental quantity in statistics and probability, which over the years appeared in many diverse applications. In C. D. Charalambous and I. Tzortzis are with the Department of Electrical Engineering, University of Cyprus, Nicosia, Cyprus.
    [Show full text]
  • 5 Measure Theory II
    5 Measure theory II 1. Charges (signed measures). Let (Ω; A) be a σ -algebra. A map φ: A! R is called a charge, (or signed measure or σ -additive set func- tion) if 0 1 1 1 [ X φ @ AjA = φ(Aj) (5.1) j=1 j=1 for any disjoint countable family fAjg , Aj 2 A . 2. The equivalent definition is to require that the series in (5.1) converges absolutely. Indeed, the left hand side in (5.1) does not change if we replace fAjg by fAσ(j)g for any rearrangement (bijective map) σ : N ! N . Hence the number series in the right hand side converges to the same finite sum after an arbitrary rearrangement of terms. This is equivalent to the absolute convergence (Riemann’s theorem). 3. Recall that a measure µ on (Ω; A) is a σ -additive map µ: A! [0; 1] . Thus the measure of a set can be infinite. This is prohibited for signed measures. Hence a measure must be nonnegative but can be infinite, but a charge must be finite but can have arbitrary sign. We see, that a positive charge φ (or positive signed measure φ ) is nothing but a finite measure on A (this means φ(Ω) < 1 ). 4. Proposition 1 Let (Ω; A) be a σ -algebra. Then: (a) the set of all charges with the obvious algebraic operations is a vector space over R denoted by M = M(Ω; A) ; (b) for any φ 2 M and any monotone sequence A1 ⊂ A2 ⊂ · · · (or A1 ⊃ A2 ⊃ · · · ), A1;2;::: 2 A , we have lim φ(Aj) = φ lim Aj : j!1 j!1 Prove the proposition.
    [Show full text]