Satellite Communications: the Indian Scenario
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission/PDS Build Schedule
Mission/PDS Build Schedule Last updated 30 Oct 2017: Updated ExoMars Rover, BepiColom, Chandrayaan-2, Psyche launch dates. Updated New Horizons 2014 MU69 flyby. Updated Juno EOM. Extended active missions: Venus Climate Orbiter, Dawn, Voyager 1/2, Mars Orbiter Mission. Project Summary Extended past mission wrapping up archives: Rosetta. Changed MESSENGER, Cassini to "Past" missions. Added new missions: Hope Mars, Mars Orbiter Mission-2, Martian Moon eXplorer. Removed AIM (cancelled). a = Adoption of PDS4 release(s) PDS4 Release Version 1.7 1.8 1.9 1.10 1.11 V V V V V d = Distribution of PDS4 data Lead PDS PDS4 Release FY17 FY18 FY19 FY20 FY21 FY22 FY23 FY24 FY25 FY26 FY27 FY28 Other Nodes Status Mission Node Version Adopted 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 MAVEN ATM PPI,NAIF Active 4 1.1-1.5 d d d d d d d d d d MOI Sep 2014; Extended through Sep 2018 Mars Science Laboratory/MSL/Curiosity GEO ATM,CIS,PPI,NAIF Active 3 Extended through Sep 2018 Mars Reconnaissance Orbiter/MRO GEO ATM,CIS,NAIF Active 3 Extended through Sep 2018 Study: pre-Phase A (response to proposal request) Mars Exploration Rover/MER/Opportunity GEO ATM,CIS,NAIF Active 3 Extended through Sep 2018 Formulation: Phase A (mission and systems definition) Mars Odyssey GEO CIS,NAIF Active 3 Extended through Sep 2018 Formulation: Phase B (preliminary design) InSight GEO ATM,CIS,PPI,NAIF Future 4 1.4-1.5 (?) a a a a a a/d d d d d d d d d d Launch May 2018; Land Nov 2018 Implementation: Phase C (design) / D (build, test, -
Indian Satellite Navigation Programme
UUssee ooff EEqquuaattoorriiaall oorrbbiitt ffoorr IInnddiiaann SSaatteelllliittee NNaavviiggaattiioonn PPrrooggrraammmmee Presentation by D. Radhakrishnan ISRO HQ, India COSPAR & IAF Workshop, 44th Session of S&T, 13th February 2007 INDIAN SPACE PROGRAMME - Achievements TODAY, 2007 Applications driven programme Self reliance in building & launching satellites ONE AMONG E November 21, 1963 L C I 22 THE H LV Missions E SIX V H NATIONS C N PSLV GSLV U 10 4 A A L GSAT-3 4466 P ++ 66 SS//CC MMiissssiioonnss 20.9.04 P L E INSAT-3A GSAT-2 I C T 10.04.03 08.05.03 I KALPANA-1 A L T L INSAT-2E INSAT- 4A 12.09.02 I E 03.04.99 22.12.05 O T N A INSAT-3E S S CARTOSAT-2 ARYABHATA 28.09.03 INSAT-3B INSAT-3C 10.01.07 19.04.75 22.03.00 24.01.02 IRS-P5 IRS-1C 05.05.05 28.12.95 IRS-P3 IRS-P6 21.03.96 TES IRS-P4 17.10.03 IRS-1D 26.05.99 22.10.01 29.09.97 GGGAAAGGGAAANNN IIIRRRNNNSSSSSS Indian Regional Navigational Space Based Augmentation System Satellite System GGlloobbaall NNaavviiggaattiioonn SSaatteelllliittee SSyysstteemm ((GGNNSSSS)) Core Constellations S S P P G GPS – USA G GLONASS – Russia S S S S A A GALIELO - European Union N N O O L L G Augmentation Systems G • Ground Based Augmentation System (GBAS) o o e e l l i i l l a • Aircraft Based Augmentation Systems (ABAS) a G G • Space Based Augmentation System (SBAS) GGAAGGAANN ((GGPPSS AAnndd GGEEOO AAuuggmmeenntteedd SSaatteelllliittee NNaavviiggaattiioonn)) Objective Satellite Based Augmentation System To provide for -- • Satellite-based Communication, Navigation, Surveillance • Air Traffic Management -
The Modern Broadcaster's Journey from Satellite to Ip
A CONCISE GUIDE TO… THE MODERN BROADCASTER’S JOURNEY FROM SATELLITE TO IP DELIVERY The commercial communication satellite will celebrate its 60th birthday next year but the concept is far from entering retirement. Nonetheless, as it moves into its seventh decade, the use of the satellite is rapidly evolving. As of 2020, approximately 1,400 communications satellites are orbiting the earth, delivering tens of thousands of TV channels and, increasingly, internet connectivity. Satellite communication is also a vital asset for the TV production industry, allowing live reportage to and from anywhere in the world – almost instantly. 1 Its place in the TV ecosystem is changing, much higher value. It was also well before the however, as it plays a reduced role in the on-demand content revolution. This trend delivery of video – a shift that several has led to the last major shift: the emergence underlying trends have accelerated. The first of multiplatform, over-the-top streaming is a massive proliferation of video content. over the last 15 years, which has eroded the dominance of the linear broadcaster. The Although satellite use in TV production rise of the streaming giants and specialist has been integral to high-profile live news platforms has forced broadcasters to increase and sports coverage, its role is waning. The their overall distribution capacity using last couple of decades has seen a massive Internet Protocol (IP)-centric methods. increase in live content from a broader range of leagues, niche sports, performance The trends impacting satellite’s role in events and 24-hour news networks. This the television landscape are forcing many expansion of content leads to the second broadcasters to look to their future and factor. -
Overview of Chandrayaan-1 PDS (Planetary Data System) Products
Chandrayaan-1 PDS Data Products Archival Generation and Browse By Ajay Kumar Prashar HRDPD/SIPG Chandrayaan-1 SAC Data Processing Team Contents • ISDA (ISRO Science Data Archive) Overview • PDS (Planetary Data System) Overview • Mission & instrument Overview • Archive Process • Data Products Definitions • Data Products Archive Generation • Archive Organization : Mission & Instrument level • Visualizations of PDS Data Products (Ch1PDSViewer/NASAVIEW/USGS-ISIS) • Chandrayaan-1 Browse Application ISDA – Overview Central repository for all scientific and engineering data returned by ISRO’s planetary missions Established at Indian Space Science Data Centre (ISSDC) Bangalore - in 2008. ISDA archives data sets from following missions: Chandrayaan-1 Mars Orbiter Mission Astrosat Chandrayaan-2 (Future) ISDA adopted PDS as archive standard for generating mission & instrument specific data sets for the scientific user community ISDA provides international collaboration with IPDA (International Planetary Data Alliance) PDS - Overview Well known Archive standard for all the NASA planetary missions in the scientific user community. Adopted by ESA, JAXA and other space agencies across globe. Features of PDS Self structured, documented & Peer Review Data Sets Long-term access and usability of data ISRO had also adopted PDS3 for following missions Chandrayaan-1 Mars Orbiter Mission. ISRO will adopt PDS4 for Chandrayaan-2 and continue PDS4 for future planetary missions. PDS Home Page (http://pds.nasa.gov) Mission & Instruments – Overview Chandrayaan-1, India’s first mission to Moon, was launched successfully on 22 October 2008 from SDSC SHAR, Sriharikota. Spacecraft was orbiting around Moon at a height of 100 km from the lunar surface for chemical, mineralogical and photo-geologic mapping of the Moon. Spacecraft carried 11 scientific instruments built in India, USA, UK,Germany, Sweden and Bulgaria. -
Low-Cost Wireless Internet System for Rural India Using Geosynchronous Satellite in an Inclined Orbit
Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Timothy Pratt, Chair Jeffrey H. Reed J. Michael Ruohoniemi April 28, 2011 Blacksburg, Virginia Keywords: Internet, Low-cost, Rural Communication, Wireless, Geostationary Satellite, Inclined Orbit Copyright 2011, Karan Desai Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai ABSTRACT Providing affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user. -
Remote Sensing in India
Remote Sensing in India India’s Remote Sensing starts following the successful demonstration flights of Bhaskara-1 and Bhaskara-2 satellites launched in 1979 and 1981, respectively, with the development of indigenous Indian Remote Sensing (IRS) satellite program. Indian Remote Sensing (IRS) satellite system was commissioned with the launch of IRS-1A, in 1988. With many satellites in operation, IRS is the largest civilian remote sensing satellite constellation in the world providing imageries in a variety of spatial resolutions, spectral bands and swaths. Data from Indian Remote Sensing satellites are used for various applications of resources survey and management under the National Natural Resources Management System (NNRMS in following: Pre harvest crop area and production estimation of major crops. Drought/irrigation monitoring and assessment based on vegetation condition. Flood risk zone mapping and flood damage assessment. Hydro-geomorphologic maps for locating underground water resources for drilling well. Snow-melt run-off estimates for planning water use in downstream projects. Land use and land cover mapping. Urban planning. Forest survey. Wetland mapping. Environmental impact analysis. Mineral Prospecting. Coastal studies. India’s Recent IRS satellites 2012: Radar Imaging Satellite-1 (RISAT-1) imaging of the surface features during both day and night under all weather conditions. 2011: Megha-Tropiques, for studying the water cycle and energy exchanges in the tropics. 2011: RESOURCESAT-2 to continue the remote sensing data services to global users provided by RESOURCESAT-1, and to provide data with enhanced multispectral and spatial coverage as well. 2010: Cartosat-2B to provide multiple spot scene imageries. It is capable of imaging a swath (geographical strip) of 9.6 km with a resolution of better than 1 metre. -
G. Madhavan Nair - Wikipedia, the Free Encyclopedia
G. Madhavan Nair - Wikipedia, the free encyclopedia G. Madhavan Nair From Wikipedia, the free encyclopedia G. Madhavan Nair (Malayalam: ജി. മാധവ നായ) (born October 31, 1943) is the G Madhavan Nair present Chairman of Indian Space Research Organisation and Secretary to the Department of Space, Government of India since September 2003. He is also the Chairman, Space Commission and acts as the Chairman of Governing Body of the Antrix Corporation, Bangalore. Madhavan Nair was awarded the Padma Vibhushan, India's second highest civilian honour, on January 26, 2009.[1][2] Contents 1 Early life 2 Career 3 As Chairman of ISRO 4 Additional responsibilities G Madhavan Nair 5 Awards Born 31 October 1943 6 Honours Thiruvanathapuram, India 7 Fellowships/Memberships 8 Lashkar Threat Residence India 9 References Nationality Indian 10 External links Fields Rocket Technology Institutions Indian Space Research Organisation Bhabha Atomic Research Center Early life Alma mate r B.Sc. (Engineering - Electrical & Communication) (1966), College of Nair was born at Neyyattinkara near Thiruvananthapuram, Kerala, India. He also studied in his Engineering, Trivandrum early life in Kanyakumari District. He graduated with a B.Sc. in Engineering (1966) from College Known for Indian Space Program of Engineering, Thiruvananthapuram, Kerala University with specialization in Electrical & Communication Engineering. After his graduation Nair attended a training program at the Bhabha Notable Padma Bhushan (1998) awards Atomic Research Center (BARC) Training School, Mumbai. Padma Vibhushan (2009) Career Nair is a leading technologist in the field of rocket systems and has made significant contribution to the development of multi-stage satellite launch vehicles, achieving self-reliance in independent access to space using indigenous technologies. -
Ariane-DP GB VA209 ASTRA 2F & GSAT-10.Indd
A DUAL LAUNCH FOR DIRECT BROADCAST AND COMMUNICATIONS SERVICES Arianespace will orbit two satellites on its fifth Ariane 5 launch of the year: ASTRA 2F, which mainly provides direct-to-home (DTH) broadcast services for the Luxembourg-based operator SES, and the GSAT-10 communications satellite for the Indian Space Research Organization, ISRO. The choice of Arianespace by the world’s leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads and handling a complete range of missions, from launches of commercial satellites into geostationary orbit, to dedicated launches into special orbits. Arianespace and SES have developed an exceptional relationship of mutual trust over more than 20 years. ASTRA 2F will be the 36th satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to use an Ariane launcher. SES operates the leading direct-to-home (DTH) TV broadcast system in Europe, based on its Astra satellites, serving more than 135 million households via DTH and cable networks. Built by Astrium using a Eurostar E3000 platform, ASTRA 2F will weigh 6,000 kg at launch. Fitted with active Ku- and Ka-band transponders, ASTRA 2F will be positioned at 28.2 degrees East. It will deliver new-generation DTH TV broadcast services to Europe, the Middle East and Africa, and offers a design life of about 15 years. -
Indian Payload Capabilities for Space Missions
INDIAN PAYLOAD CAPABILITIES FOR 13, Bangalore - SPACE MISSIONS July 11 A.S. Kiran Kumar Director Space Applications Centre International ASTROD Symposium, Ahmedabad th 5 Application-specific EO payloads IMS-1(2008) RISAT-1 (2012) MX/ HySI-T C-band SAR CARTOSAT-2/2A/2B RESOURCESAT-2 (2011) (2007/2009/2010) LISS 3/ LISS 4/AWiFS PAN RESOURCESAT-1 (2003) LISS 3/ LISS 4 AWiFS CARTOSAT-1 (2005) (Operational) STEREOPAN Megha-Tropiques (2011) TES(2001) MADRAS/SAPHIR/ScARaB/ Step& Stare ROSA PAN OCEANSAT-2 (2009) OCM/ SCAT/ROSA YOUTHSAT(2011) LiV HySI/RaBIT INSAT-3A (2003) KALPANA-1 (2002) VHRR, CCD VHRR Application-specific EO payloads GISAT MXVNIR/SWIR/TIR/HySI RISAT-3 RESOURCESAT-3A/3B/3C L-band SAR CARTOSAT-3 RESOURCESAT-2A LISS 3/LISS 4/AWiFS PAN LISS3/LISS4/AWiFS RESOURCESAT-3 LISS 3/LISS 4/ CARTOSAT-2C/2D AWiFS (Planned) PAN RISAT-1R C-band SAR SARAL Altimeter/ARGOS OCEANSAT-3 OCM , TIR GISAT MXVNIR/SWIR/ INSAT- 3D TIR/HySI Imager/Sounder EARTH OBSERVATION (LAND AND WATER) RESOURCESAT-1 IMS-1 RESOURCESAT-2 RISAT-1 RESOURCESAT-2A RESOURCESAT-3 RESOURCESAT-3A/3B/3C RISAT-3 GISAT RISAT-1R EARTH OBSERVATION (CARTOGRAPHY) TES CARTOSAT-1 CARTOSAT-2/2A/2B RISAT-1 CARTOSAT-2C/2D CARTOSAT-3 RISAT-3 RISAT-1R EARTH OBSERVATION (ATMOSPHERE & OCEAN) KALPANA-1 INSAT- 3A OCEANSAT-1 INSAT-3D OCEANSAT-2 YOUTHSAT GISAT MEGHA–TROPIQUES OCEANSAT-3 SARAL Current observation capabilities : Optical Payload Sensors in Spatial Res. Swath/ Radiometry Spectral bands Repetivity/ operation Coverage (km) revisit CCD 1 1 Km India & 10 bits 3 (B3, B4, B5) 4 times/ day surround. -
Oih Government of India Department of Space Rajya
OIH GOVERNMENT OF INDIA DEPARTMENT OF SPACE RAJYA SABHA UNSTARRED QUESTION NO. 874 TO BE ANSWERED ON THURSDAY, APRIL 30, 2015 SATELLITE LAUNCHED BY ISRO 874. SHRI RAMDAS ATHAWALE: Will the PRIME MINISTER be pleased to state: (a) the details of the satellites successfully launched so far by ISRO along with those satellites ISRO failed to launch; (b) whether there is any proposal to launch more satellites in near future, if so, the details thereof; and (c) whether Government proposes to enter the global market for images and statistics? ANSWER MINISTER OF STATE IN THE MINISTRY OF PERSONNEL, PG & PENSIONS AND IN THE PRIME MINISTER’S OFFICE (DR. JITENDRA SINGH): (a) As on April 2015, Indian Space Research Organisation (ISRO) has launched 74 satellites. Out of these, 7 satellites failed to reach the orbit due to launch failure and 3 satellites failed in orbit. In addition, ISRO has successfully launched 40 foreign satellites from 19 countries and 4 micro & nano satellites built by students of Indian Universities using Polar Satellite Launch Vehicle (PSLV). The details are enclosed in Annexure-1 (b) Yes, Sir. 6 more satellites are planned to be launched during 2015-16. These are two Communication satellites GSAT-6 & GSAT-15; three Navigation satellites IRNSS-1E, IRNSS-1F & IRNSS-1G; and one Space science satellite ASTROSAT. In addition, it is also planned to launch 13 more satellites from four countries using Polar Satellite Launch Vehicle. The details are enclosed in Annexure-2. …2/- -2- (c) Antrix Corporation Ltd., the commercial arm of Department of Space is already marketing remote sensing data (images) from Indian Remote Sensing satellites in the global market through establishment of International Ground Stations and reseller network. -
25 Years of Indian Remote Sensing Satellite (IRS)
2525 YearsYears ofof IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) SeriesSeries Vinay K Dadhwal Director National Remote Sensing Centre (NRSC), ISRO Hyderabad, INDIA 50 th Session of Scientific & Technical Subcommittee of COPUOS, 11-22 Feb., 2013, Vienna The Beginning • 1962 : Indian National Committee on Space Research (INCOSPAR), at PRL, Ahmedabad • 1963 : First Sounding Rocket launch from Thumba (Nov 21, 1963) • 1967 : Experimental Satellite Communication Earth Station (ESCES) established at Ahmedabad • 1969 : Indian Space Research Organisation (ISRO) established (15 August) PrePre IRSIRS --1A1A SatellitesSatellites • ARYABHATTA, first Indian satellite launched in April 1975 • Ten satellites before IRS-1A (7 for EO; 2 Met) • 5 Procured & 5 SLV / ASLV launch SAMIR : 3 band MW Radiometer SROSS : Stretched Rohini Series Satellite IndianIndian RemoteRemote SensingSensing SatelliteSatellite (IRS)(IRS) –– 1A1A • First Operational EO Application satellite, built in India, launch USSR • Carried 4-band multispectral camera (3 nos), 72m & 36m resolution Satellite Launch: March 17, 1988 Baikanur Cosmodrome Kazakhstan SinceSince IRSIRS --1A1A • Established of operational EO activities for – EO data acquisition, processing & archival – Applications & institutionalization – Public services in resource & disaster management – PSLV Launch Program to support EO missions – International partnership, cooperation & global data sets EarlyEarly IRSIRS MultispectralMultispectral SensorsSensors • 1st Generation : IRS-1A, IRS-1B • -
India and China Space Programs: from Genesis of Space Technologies to Major Space Programs and What That Means for the Internati
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2009 India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati Gaurav Bhola University of Central Florida Part of the Political Science Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Bhola, Gaurav, "India And China Space Programs: From Genesis Of Space Technologies To Major Space Programs And What That Means For The Internati" (2009). Electronic Theses and Dissertations, 2004-2019. 4109. https://stars.library.ucf.edu/etd/4109 INDIA AND CHINA SPACE PROGRAMS: FROM GENESIS OF SPACE TECHNOLOGIES TO MAJOR SPACE PROGRAMS AND WHAT THAT MEANS FOR THE INTERNATIONAL COMMUNITY by GAURAV BHOLA B.S. University of Central Florida, 1998 A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Department of Political Science in the College of Arts and Humanities at the University of Central Florida Orlando, Florida Summer Term 2009 Major Professor: Roger Handberg © 2009 Gaurav Bhola ii ABSTRACT The Indian and Chinese space programs have evolved into technologically advanced vehicles of national prestige and international competition for developed nations. The programs continue to evolve with impetus that India and China will have the same space capabilities as the United States with in the coming years.