Chemical Biology

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Biology Title ICR ANNUAL REPORT 2007(Volume 14) Author(s) Citation ICR annual report (2008), 14 Issue Date 2008-03 URL http://hdl.handle.net/2433/65597 Right Type Others Textversion publisher Kyoto University ICR ANNUAL REPORT 2007 (Volume 14) - ISSN 1342-0321 - This Annual Report covers from 1 January to 31 December 2007 Editors: Professor: KANEMITSU, Yoshihiko Professor: UESUGI, Motonari Associate Professor: HIRATAKE, Jun Assistant Professor: SHIMOGAWA, Hiroki Editorial Staff: Public Relations Section: TANIMURA, Michiko TSUGE, Aya KOTANI, Masayo Published and Distributed by: Institute for Chemical Research (ICR), Kyoto University Copyright 2008 Institute for Chemical Research, Kyoto University Enquiries about copyright and reproduction should be addressed to: ICR Annual Report Committee, Institute for Chemical Research, Kyoto University Note: ICR Annual Report available from the ICR Office, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Tel: +81-(0)774-38-3344 Fax: +81-(0)774-38-3014 E-mail [email protected] URL http://www.kuicr.kyoto-u.ac.jp/index.html Uji Library, Kyoto University Tel: +81-(0)774-38-3010 Fax: +81-(0)774-38-4370 E-mail [email protected] URL http://lib.kuicr.kyoto-u.ac.jp/homepage/japanese/index.htm Printed by: Nakanishi Printing Co., Ltd. Ogawa Higashi-iru, Shimodachiuri, Kamigyo-ku, Kyoto 602-8048, Japan TEL: +81-(0)75-441-3155 FAX: +81-(0)75-417-2050 ICR AN NU AL REPORT 2007 Institute for Chemical Research Kyoto University Volume 14 Preface with 104 faculty members and about 240 graduate students. Each laboratory belongs to one of the seven graduate schools, which encompass science, engineering, pharmaceutical science, agriculture, medicine, informatics, human and environmental studies. Our laboratories and the graduate schools work together to provide excellent graduate education. Institute for Chemical Research dates back to 1915 with the The Institute strives to be the “central research center in founding of the Specialized Center for Chemical Research at the chemistry” by achieving outstanding results in chemistry and Faculty of Science, Kyoto Imperial University. The formation related fields, and attracting motivated researchers in these of the Specialized Center was greatly influenced by historical fields. Chemistry is a fundamental science, which deals with events. In 1910, Dr. Sahachiro Hata developed salvarsan, a materials, and its importance, including its contribution to phys- highly effective drug for syphilis, while conducting research ics and biology, cannot be overemphasized. One of our major with Dr. Paul Ehrlich. The effectiveness of this compound even- strengths is our breadth and depth. In other words, our Institute tually became widely recognized, and its commercial produc- is multidimensional, and is constantly widening and deepening tion began in Germany. Although Japan was importing this drug, our research activities. We intend to use our strengths to contrib- the outbreak of the World War I ceased the importation, and ute to pioneering research as well as to expand the boundaries of forced by circumstances the Japanese government requested chemical related fields and to promote research collaborations, that the University of Tokyo and Kyoto University produce which are difficult using conventional graduate schools. More- salvarsan. The fourth Chancellor of Kyoto University, Professor over, we aim to utilize our strengths as an outstanding research Mitsuru Kuhara, who also happened to be a chemist, received center in education in order to produce excellent scientists and this request. Facilities for salvarsan production were built with engineers who possess a broad perspective and can positively an investment of 20,000 yen, which is equivalent to about 200 contribute to our global society. million yen in today’s market. Production went well, and as The main body of the Institute belongs to the Department of income was generated, faculty members, who had a passion for Chemistry of the Graduate School of Science and the Depart- research in chemistry, gathered from across the University to ment of Chemical Engineering of the Graduate School of Engi- form the Specialized Center for Chemical Research, which was neering. This basic structure of having these two departments later expanded and renamed as Institute for Chemical Research at the core along with laboratories belonging to other gradu- in 1926. ate schools and departments, such as pharmaceutical science The newly established Institute soon began to produce out- and agriculture, is a natural structure for a chemistry research standing research achievements: research on accelerators by center. Institute for Chemical Research is currently working Professor Bunsaku Arakatsu, research on synthesized petroleum towards establishing Global COE Programs in collaboration oil production, and the development of vinylon, which is Japan’s with the Graduate School of Engineering and the Graduate first synthetic fiber. Almost all the professors at the Institute, School of Science. This year, two programs have been selected including the aforementioned, were also professors at the Fac- from Kyoto University as Global COE Programs: International ulty of Engineering or Science. However, over time, people Center for Integrated Research and Advanced Education in began to recognize the importance of having professors dedi- Materials Science, which encompasses chemistry and materi- cated solely to the Institute in order to operate the Institute with als science fields, and Center of Excellence for Education and a clear responsibility, as well as the importance of the Institute’s Research on Photonics and Electronics Science and Engineering, contribution in training researchers by providing guidance to which includes information science, electrical engineering, and graduate students. Thus, the Institute began accepting graduate electronics. We, at Institute for Chemical Research, would like students in 1962, and reorganization in 1964 saw the installation to be a focal point in the Centers of Excellence by gathering of the research division system where each division was led by chemists in our three campuses at Yoshida, Uji, and Katsura, and one of our dedicated professors. by serving as a bridge between science and engineering. Thus, Since the Institute’s founding in 1926, our basic principle we respectfully request your continued support and encourage- has been to excel in the investigation of the basic principles of ment. chemistry and chemical applications. Through several reorga- January 2008 nizations, the Institute currently consists of the following five research divisions: Division of Synthetic Chemistry, Division of Materials Chemistry, Division of Biochemistry, Division of Environmental Chemistry, and Division of Multidisciplinary Chemistry as well as the following three research centers: Advanced Research Center for Beam Science, International Research Center for Elements Science, and Bioinformatics ESAKI, Nobuyoshi Center. Director Today, the Institute spans 31 research fields (laboratories) iii ICR News 2007 Global COE Programs Prof TOKITOH, Norihiro The Global COE Program is an initiative by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) to provide funding support for the development of internationally outstanding centers of education and research. The program aims to further improve and enrich the education and research capability of Japan’s graduate schools and foster internationally outstanding, creative individuals through a research infrastructure of the highest global standard, promoting the devel- opment of internationally competitive universities. The establishment of the Global COE Program was based on the assessment and evaluation of the 21st Century COE Program. In 2007, Kyoto University was hon- ored with totally six COEs. Institute for Chemical Research is now making a great contribution to two of them, “International Center for Integrated Research and Advanced Education in Materials Science” and “Center of Excellence for Education and Research on Photonics and Electronics Science and Engineering”, as one of the main constituents. Global COE Joint Kick-off Symposium at FUNAI The banquet of Global COE Joint Kick-off Symposium TETSURO Memorial Hall, Katsura Campus on 23 October 2007 International Center for Integrated Research and Advanced Education in Materials Science Representative from ICR: Prof TOKITOH, Norihiro This Global COE project, granted in the area of “Chemistry and Materials Science” for fiscal 2007–2011, is intended to consolidate over 100 chemistry-related research groups of Kyoto University in Graduate School of Engineering, Graduate School of Science, and Institute for Chemical Research, covering virtually all the arenas of chemistry from basic to engineering and from mol- ecules to materials, for the ultimate goal of “Integrated Materials Science” leading to “a New Paradigm and a New Breed of Future Generation in Chemistry and Mate­ Integrated Materials Science: A new paradigm in chemistry and rials Science”. materials science iv Center of Excellence for Education and Research on Photonics and Electronics Science and Engineering Representative from ICR: Prof KANEMITSU, Yoshihiko In this program, we aim at establishing the COE for “photonics and electronics science and engineering”, to investigate and develop innovative technologies, by which an arbitrary manipulation of photons (light) and an ultimate control of electrons
Recommended publications
  • Communications to the Editor 6499
    Communications to the Editor 6499 Nbenzyloxycarbonyl benzyl ester 7. 368 (1971). (17) D. M. Brunwin and G. Lowe, J. Chem. SOC., Perkin Trans. 1, 1321 (34) Computer programs used for these calculations were the X-ray 1972 (1973). system, Technical Report TR-192, Computer Science Center, University (18) R. B. Woodward, "Recent Advances in the Chemistry of p-Lactam Anti- of Maryland, College Park, Md. biotics", Chem. SOC., Spec. Pub/., NO. 28, 167-180 (1977). (35) C. K. Johnson, ORTEP, Oak Ridge National Laboratory, Report ORNL- (19) D. B. Bryan, R. F. Hall, K. G. Holden, W. F. Huffman, and J. G. Gleason, J. 3794. Am. Chem. SOC., 99,2353 (1977). (36) R. M. Sweet in "Cephalosporins and Penicillins", E. H. Flynn, Ed.. Academic (20)T. W. Doyle, J. L. Dowlas, B. Beleau. J. Mennier. and B. Luh. Can. J. Chem., Press, New York, N.Y., 1972, p. 297. 55, 2873 (1977). - (37) X-ray data from H. E. Applegate, J. E. Dolfini, M. S.Puar, W. A. Slusarchyk. (21) F DiNinno. T. R. Beattie, and B. G. Christensen, J. Org. Chem, 42, 1960 and B. Toeplitz, J. Org. Chem., 39, 2794 (1974). (19771\.- ,. (38) Nonfused 4-thioazetidin-2-one intermediates in the synthesis of 6P-ac- (22) Related reductions in penicillin derivatives give predominantly Cis-sJDsli- ylaminopenem esters, e.g., 4~-acetylthio-3P-phenoxyacetylaminoazeti- tded products: J. C. Sheehan and Y. S. Lo, J. Org. Chem., 38, 3227 (19731; din-2-one or terf-butyl 2-(4@-acetyithio-2-oxo-3~-phenoxyacetylamino- F. DiNinno, unpublisned resdts. l-azetidinyl)-2-hydroxyacetate in CH~CIP,show the p-lactam band at 1782 (23) K.
    [Show full text]
  • Icr Annual Report 2005
    ISSN 1342-0321 IAREFM ICR ANNUAL REPORT 2005 Volume 12 Institute for Chemical Research Kyoto University ICR ANNUAL REPORT 2005 (Volume 12) - ISSN 1342-0321 - This Annual Report covers from 1 January to 31 December 2005 Editors: Professor: OZAWA, Fumiyuki Professor: KANAYA, Toshiji Associate Professor: NISHIDA, Koji Associate Professor: GOTO, Susumu Editorial Staff: Public Relations Section: TSUGE, Aya GENMA, Mieko KOTANI, Masayo Published and Distributed by: Institute for Chemical Research (ICR), Kyoto University Copyright 2006 Institute for Chemical Research, Kyoto University Enquiries about copyright and reproduction should be addressed to: ICR Annual Report Committee, Institute for Chemical Research, Kyoto University Note: ICR Annual Report available from the ICR Office, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Tel: +81-(0)774-38-3344 Fax: +81-(0)774-38-3014 E-mail [email protected] URL http://www.kuicr.kyoto-u.ac.jp/index.html Uji Library, Kyoto University Tel: +81-(0)774-38-3011 Fax: +81-(0)774-38-4370 E-mail [email protected] URL http://lib.kuicr.kyoto-u.ac.jp/homepage/english/homepageeng.html Printed by: Nakanishi Printing Co., Ltd. Ogawa Higashi-iru, Shimodachiuri, Kamigyo-ku, Kyoto 602-8048, Japan TEL:+81-(0)75-441-3155 FAX:+81-(0)75-417-2050 ICR AN NU AL REPORT 2005 Institute for Chemical Research Kyoto University Volume 12 Pref ace Institute for Chemical Research at Kyoto University has Moreover, we are encouraging community education to celebrated its 79th anniversary in October 2005. Initially, communicate the signifi cance and appeal of cutting-edge the size of the Institute was not substantial and it contained research through our “Chemical Research for High School only a limited number of laboratories, but growth soon ac- Students” and “Open Campus” programs.
    [Show full text]
  • On the Impact of Excited State Antiaromaticity Relief in a Fundamental
    On the Impact of Excited State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes Tomáš Slanina,1,2 Rabia Ayub,1,‡ Josene Toldo,1,‡ Johan Sundell,3 Wangchuk Rabten,1 Marco Nicaso,1 Igor Alabugin,4 Ignacio Fdez. Galván,5 Arvind K. Gupta,1 Roland Lindh,5,6 Andreas Orthaber,1 Richard J. Lewis,7 Gunnar Grönberg,7 Joakim Bergman3,* and Henrik Ottosson1,* 1 Department of Chemistry – Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden. 2 Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo námĕstí 2, 16610 Prague 6, Czech Republic 3 Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden. 4 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA, 5 Department of Chemistry – BMC, Uppsala University, 751 23, Uppsala, Sweden, 6 Uppsala Center for Computational 7 Chemistry – UC3, Uppsala University, 751 23, Uppsala Sweden, Medicinal Chemistry, Research and Early Development Respiratory, Inflammation and Autoimmune, BioPharmaceutical R&D, AstraZeneca Gothenburg, Sweden. ‡ These authors contributed equally. Table of contents 1. Materials and Methods ..................................................................................................................... 3 1.1 General information .....................................................................................................................
    [Show full text]
  • Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. pubs.acs.org/JACS Article Impact of Excited-State Antiaromaticity Relief in a Fundamental Benzene Photoreaction Leading to Substituted Bicyclo[3.1.0]hexenes ∇ ∇ Tomaś̌Slanina, Rabia Ayub, Josene Toldo, Johan Sundell, Wangchuk Rabten, Marco Nicaso, Igor Alabugin, Ignacio Fdez. Galvan,́ Arvind K. Gupta, Roland Lindh, Andreas Orthaber, Richard J. Lewis, Gunnar Grönberg, Joakim Bergman,* and Henrik Ottosson* Cite This: J. Am. Chem. Soc. 2020, 142, 10942−10954 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: Benzene exhibits a rich photochemistry which can provide access to complex molecular scaffolds that are difficult to access with reactions in the electronic ground state. While benzene is aromatic in its ground state, it is antiaromatic in its lowest ππ* excited states. Herein, we clarify to what extent relief of excited-state antiaromaticity (ESAA) triggers a fundamental benzene photoreaction: the photoinitiated nucleophilic addition of solvent to benzene in acidic media leading to substituted bicyclo[3.1.0]hex-2-enes. The reaction scope was probed experimentally, and it was found that silyl-substituted benzenes provide the most rapid access to bicyclo[3.1.0]hexene derivatives, formed as single isomers with three stereogenic centers in yields up to 75% in one step. Two major mechanism hypotheses, both involving ESAA relief, were explored through quantum chemical calculations and experiments. The first mechanism involves protonation of excited-state benzene and subsequent rearrange- ment to bicyclo[3.1.0]hexenium cation, trapped by a nucleophile, while the second involves photorearrangement of benzene to benzvalene followed by protonation and nucleophilic addition.
    [Show full text]
  • Potentially Aromatic Metallocycles Kim K
    Iowa State University From the SelectedWorks of Mark S. Gordon June, 1988 Potentially Aromatic Metallocycles Kim K. Baldridge Mark S. Gordon Available at: https://works.bepress.com/mark_gordon/69/ 4204 J. Am. Chern. Soc. 1988, 110, 4204-4208 Potentially Aromatic Metallocycles Kim K. Baldridge and MarkS. Gordon* Contribution from the Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105. Received November 12, 1987 Abstract: Ab initio molecular orbital theory is used to characterize a series of metal-substituted benzene and cyclopentadiene structures, with the heteroatom taken from the block in the periodic table bounded by groups IV-VI and periods 2-5. Structures are predicted with the 3-21G* basis set and SCF wave functions. The calculated bond lengths and bond angles are in general within 0.04 A and 2°, respectively, of the available experimental values. As a measure of the de localization stabilization, !::.£and t::..H0 values for the appropriate bond separation and superhomodesmic reactions are calculated with 3-21 G* Hartree-Fock energies for these compounds and some smaller acyclic structures. I. Introduction Scheme I. Bond Separation Reactions a Group IV Considerable efforts have gone into the study of five- and X six-membered ring compounds. 1- 38 The theoretical and exper- 0 + SCH4 + XH4 (I) Baldridge, K. K.; Boatz, J. A.; Sakai, S.; Gordon, M.S. Annu. Rec. 2H 3C-CH3 + H3X-CH3 + 2H2C=CH2 + H2X=CH2 Phys. Chern .. in press. b Group V (2) Baldridge, K. K.; Gordon, M.S. Organometal/ics 1988, 7, 144-154. (3) Dewar, J. S.; Lo, D. H.; Ramsden, C.
    [Show full text]
  • The Synthesis of Carbacyclic Silanes Via Organosilicon Reactive Intermediates Michael J
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 The synthesis of carbacyclic silanes via organosilicon reactive intermediates Michael J. Vuper Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Vuper, Michael J., "The synthesis of carbacyclic silanes via organosilicon reactive intermediates " (1984). Retrospective Theses and Dissertations. 7737. https://lib.dr.iastate.edu/rtd/7737 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS Tliis reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Hydrogenation of Small Aromatic Heterocycles at Low Temperatures
    MNRAS 000,1–8 (2021) Preprint 25 May 2021 Compiled using MNRAS LATEX style file v3.0 Hydrogenation of small aromatic heterocycles at low temperatures April M. Miksch,1 Annalena Riffelt,1 Ricardo Oliveira,2 Johannes Kästner,1 and Germán Molpeceres,1¢ 1Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart, Germany 2Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The recent wave of detections of interstellar aromatic molecules has sparked interest in the chemical behavior of aromatic molecules under astrophysical conditions. In most cases, these detections have been made through chemically related molecules, called proxies, that implicitly indicate the presence of a parent molecule. In this study, we present the results of the theoretical evaluation of the hydrogenation reactions of different aromatic molecules (benzene, pyridine, pyrrole, furan, thiophene, silaben- zene, and phosphorine). The viability of these reactions allows us to evaluate the resilience of these molecules to the most important reducing agent in the interstellar medium, the hydrogen atom (H). All significant reactions are exothermic and most of them present activation barriers, which are, in several cases, overcome by quantum tunneling. Instanton reaction rate constants are provided between 50 K and 500 K. For the most efficiently formed radicals, a second hydrogenation step has been studied. We propose that hydrogenated derivatives of furan, pyrrole, and specially 2,3-dihydropyrrole, 2,5-dihydropyrrole, 2,3-dihydrofuran, and 2,5-dihydrofuran are promising candidates for future interstellar detections. Key words: ISM: molecules – Molecular Data – Astrochemistry – methods: numerical 1 INTRODUCTION (Campbell et al.
    [Show full text]
  • T. Don Tilley's Publications
    Titanium-Germoxy Precursor Route to Germanium-Modified Epoxidation Catalysts with 387. Enhanced Activity. P. J. Cordeiro, P. Guillo, C. S. Spanjers, J. W. Chang, M. E. Fasulo, R. M. Rioux and T. D. Tilley, ACS Catal. 2013, 3, 2269. Photocatalytic Water Oxidation by Very Small Cobalt Domains on a Silica Surface. H. S. 386. Ahn, J. Yano and T. D. Tilley, Energy Environ. Sci. 2013, 6, 3080. Platinum-Catalyzed C-C Activation Induced by C-H Activation. M. Bowring, R. G. 385. Bergman and T. D. Tilley, J. Am. Chem. Soc. 2013, 135, 13121. Structural and mechanistic investigation of a cationic hydrogen-substituted ruthenium 384. silylene catalyst for alkene hydrosilation. M. Fasulo, M. C. Lipke and T. D. Tilley, Chem. Sci. 2013, 4, 3882. Water Oxidation Catalysis via Immobilization of the Dimanganese Complex [Mn2(μ- 383. O)2Cl(μ-O2CCH3)(bpy)2(H2O)](NO3)2 onto Silica. E. M. W. Rumberger, H. S. Ahn, A. T. Bell and T. D. Tilley, Dalton Trans. 2013, 42, 12238. The Osmium-Silicon Triple Bond: Synthesis and Reactivity of an Osmium Silylyne 382. Complex. P. G. Hayes, Z. Xu, C. Beddie, J. M. Keith, M. B. Hall and T. D. Tilley, J. Am. Chem. Soc. 2013, 135, 11780. Silane-Isocyanide Coupling Involving 1,1-Insertion of XylNC into the Si-H Bond of a σ- 381. Silane Ligand. M. C. Lipke and T. D. Tilley, J. Am. Chem. Soc. 2013, 135, 10298. A Remote Lewis Acid Trigger Dramatically Accelerates Biaryl Reductive Elimination from 380. a Platinum Complex. A. Liberman-Martin, R. G. Bergman and T.
    [Show full text]
  • The Silabenzenes: Structure, Properties, and Aromaticity
    Organometallics 2000, 19, 1477-1487 1477 The Silabenzenes: Structure, Properties, and Aromaticity Kim K. Baldridge*,† San Diego Supercomputer Center, 9500 Gilman Drive, Building 109, La Jolla, California 92093-0505 Olivier Uzan and Jan M. L. Martin*,‡ Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel Received May 18, 1999 The electronic structure and properties of the silabenzenes series have been investigated using basis sets of spdf quality and many-body perturbation theory, hybrid density functional theory, and coupled cluster methods. Basic measures of aromatic character derived from structure, molecular orbitals, isodesmic and homodesmotic bond separation reactions, and a variety of magnetic criteria (magnetic isotropic and anisotropic susceptibilities, magnetic susceptibility exaltations, NICS) are considered. Energetic criteria suggest that 1,3,5- trisilabenzene and, to a lesser extent, 1,3-disilabenzene and its complement 1,2,3,5- tetrasilabenzene enjoy conspicuous stabilization. However, by magnetic criteria, these systems are among the least aromatic of the family: population and bond order analyses reveal that they derive part of their stability from ionic contributions to the bonding. Within their isomer series, 1,2-disilabenzene, 1,2,3-trisilabenzene, and 1,2,3,4-tetrasilabenzene are the most aromatic using magnetic criteria: overall, “magnetic aromaticity” decreases with increasing number of Si atoms. The different magnetic aromaticity criteria are fairly consistent within an isomer series: over the complete set of silabenzenes, the magnetic susceptibility exaltations correlate fairly well with the magnetic susceptibility anisotropies. Second-order Jahn-Teller effects cause deviations from planarity to occur in all systems with at least four silicon ring atoms, except for 1,2,4,5-tetrasilabenzene.
    [Show full text]
  • Division of Synthetic Chemistry – Organoelement Chemistry –
    Division of Synthetic Chemistry – Organoelement Chemistry – http://oec.kuicr.kyoto-u.ac.jp/~tokitohlab/index_e.html Prof Assoc Prof Assist Prof Techn PD TOKITOH, Norihiro MIZUHATA, Yoshiyuki YUKIMOTO, Mariko HIRANO, Toshiko GUO, Jing-Dong (D Sc) (D Sc) (D Sc) (Ph D) Students FUJIMORI, Shiori (D3) HONJO, Kazuma (M2) SUGAHARA, Tomohiro (D3) JUN-I, Yuta (M2) YANAGISAWA, Tatsuya (D2) OSHIRO, Taku (M2) OMATSU, Yamato (D1) TSUJI, Shingo (M2) IWAI, Kento (D1) JO, Minwoo (M1) Guest Scholars SCHMER, Alexander Universität Bonn, Germany, 1 May–30 June VOLK, Niklas Universität Bonn, Germany, 1 June–31 July Scope of Research Organic chemistry has mainly developed with the use of second-row elements such as carbon, oxygen, and nitrogen, while the synthesis and isolation of the heavier congeners of typical organic molecules as stable compounds has been a dream for organic chemists. Our main research interest is the elucidation of the similarities and differences in structures and reactivities between organic compounds and the corre- sponding heavier congeners. These studies are interesting and important from the standpoints of fundamental chemis- try, and open the way to the more extensive application of main group chemistry. KEYWORDS Steric Protection Kinetic Stabilization Low-coordinated Species Heteroatom Transition Metal Complexes Selected Publications Sugahara, T.; Guo, J.-D.; Sasamori, T.; Nagase, S.; Tokitoh, N., Regioselective Cyclotrimerization of Terminal Alkynes Using a Digermyne, Angew. Chem. Int. Ed., 57, 3499-3503 (2018). Fujimori, S.; Mizuhata, Y.; Tokitoh, N., Ru-Complexes of an Anionic Germabenzenyl Ligand, Chem. Commun., 54, 8044-8047 (2018). Sugahara, T.; Sasamori, T.; Tokitoh, N., 2,5-Digermaselenophenes: Germanium Analogues of Selenophenes, J.
    [Show full text]
  • TCIMAIL No.105 |
    January, 2000 number 105 January, 2000 number 105 TOKYO KASEI KOGYO CO.,LTD. International Sales Department 3-1-13,Nihonbashi-honcho,Chuo-ku,Tokyo,103-0023 Japan Tel:+81-3-3278-8153 Fax:+81-3-3278-8008 http://www.tokyokasei.co.jp CONTENTS Contribution : The development of new chemistry on multiple-bond compounds with heavier main group elements Renji Okazaki, Professor, Faculty of Science, Japan Women's University - - - - - 2 Chemicals Note : The Suzuki Reaction in Biaryl Synthesis Kayo Ishikawa, Reagent Development Department, Tokyo Kasei Kogyo Co., Ltd. - - - - 16 for Synthesis Anti-Selective Asymmetric Aldol Reaction - - - - - - - - - - - - - - - 21 Ketene Equivalent - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 22 Synthesis of 3-Substituted Indoles Useful Pd(ll) Catalyst for Cross Coupling Reactions - - - - - - - 23 Useful Phosphine Ligand Chiral Ligands - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 24 Non-Coordinative Counter Anion - - - - - - - - - - - - - - - - - - - - - 25 for Analysis Lithium Ion-Selective Electrode - - - - - - - - - - - - - - - - - - - - - - - 25 1 January, 2000 number 105 Contribution The development of new chemistry on multiple-bond compounds with heavier main group elements Renji Okazaki, Professor, Faculty of Science, Japan Women’s University 1. Introduction The multiple-bond compounds including second period elements such as olefin, imine (Schiff base), ketone, acetylene, nitrile etc. are stable compounds and play a very important role in organic chemistry. Contrary to this, multiple-bond compounds containing elements from the third period onward (named as heavier main group elements), have long bond distances and their π bond energy generated through the overlapping of p-orbitals is low so that they are extremely unstable. Examples of π bond energy are shown in Table 1.1 C=C 65 N=N 60 C=O 77 C=Si 38 P=N 44 C=S 52 Si=Si 25 P=P 34 Si=S 50 Table 1.
    [Show full text]
  • Organoelement Chemistry
    Division of Synthetic Chemistry - Organoelement Chemistry - http://boc.kuicr.kyoto-u.ac.jp/www/index-e.html Prof Assoc Prof Assist Prof Assist Prof Techn TOKITOH, Norihiro NAKAMURA, Kaoru SASAMORI, Takahiro MIZUHATA, Yoshiyuki HIRANO, Toshiko (D Sc) (D Sc) (D Sc) (D Sc) Students ISOBE, Toru (D3) TANABE, Yusuke (D1) MATSUMOTO, Takeshi (D3) TSURUSAKI, Akihiro (D1) KAWAI, Masahiro (D2) HIRONAKA, Koji (M2) OZAKI, Shuhei (D2) HORI, Akimi (M2) TANABE, Taro (D2) TAKEUCHI, Kosaku (M2) Proj Res* *Assist Prof (SER) of YUASA, Akihiro (D2) KANEKO, Yoshikazu (M1) NAGAHORA, Noriyoshi Institute of INAMURA, Koji (D1) SATO, Takahiro (M1) (D Eng) Sustainability Science MATSUMOTO, Teruyuki (D1) YAMAMOTO, Osami (M1) Visitor Prof JUTZI, Peter University of Bielefeld, Germany, 23 October–26 November 2007 Scope of Research Organic chemistry has been developed as that of second-row elements such as carbon, oxygen, and nitrogen so far, while the synthesis and isolation of the heavier congeners of typical organic molecules as stable compounds have been one of “dreams” for organic chemists. Our main research interest is the elucidation of the similarities and differences in structures and reactivity between organic compounds and the corresponding heavier congeners. These studies are inter- esting and important from the standpoints of not only fundamental chemistry but also opening the way to more exten- sive application of main group chemistry. Organic synthesis mediated by biocatalysts is also studied. Research Activities (Year 2007) Publications International Conference on the Coordination and Organo- Sasamori T, Matsumoto Te, Takeda N, Tokitoh N: Syn- metallic Chemistry of Germanium, Tin and Lead (ICCOC- thesis and Properties of a Rhodium Complex Having a Novel GTL-12), Galway, Ireland, 13 July 2007 (invited).
    [Show full text]