50 Ans De Découvertes

Total Page:16

File Type:pdf, Size:1020Kb

50 Ans De Découvertes n°21 octobre 2010 Société Française de Physique www.sfpnet.fr www.refl etsdelaphysique.fr Revue de la Le laser 50 ans de découvertes N° 927 LeOctobre 2010 Bup Physique Chimie UNION DES PROFESSEURS DE PHYSIQUE ET DE CHIMIE 42, rue Saint-Jacques - 75005 PARIS www.udppc.asso.fr Éditorial L’UdPPC et la SFP célèbrent ensemble le cinquantenaire de la découverte du laser Le Laser a 50 ans. Suite à la première démonstration d’un effet laser par Theodore Maiman en mai 1960, et en dépit de prédictions hâtives (« le laser, une solution à la recherche de son problème »), les lasers ont connu un développement exponentiel : les sources se sont multipliées dans tous les domaines de longueur d’onde, de l’infrarouge lointain aux rayons X durs, établissant des records de monochromaticité, cohérence spatiale et pureté spectrale, de durée ultra-courte d’impulsions lumineuses, de puissance, d’énergie… Leurs applications ont été multiples en recherche fondamentale (physique, chimie, etc.), dans l’industrie, dans les télécommunications, en métrologie, en biologie et médecine… À cause de ces nombreuses applications, le laser est devenu un élément de notre vie quotidienne. En tant que source lumineuse quasi idéale, il a aussi révolutionné l’enseignement des sciences physiques et de l’optique. Pour célébrer les 50 ans du laser, présenter les récentes avancées et décrire son impact dans les sciences physiques et ses nombreuses applications dans les autres disciplines, la Société française de physique et l’Union des professeurs de physique et de chimie ont uni leurs forces pour publier un numéro spécial commun de leurs revues respectives, Refl ets de la physique et Le Bulletin de l’Union des Professeurs de physique et de chimie. La lecture de son sommaire montre la diversité des thèmes abordés. Il faut souligner que la présente publication s’inscrit dans un ensemble d’initiatives communes prises par nos deux sociétés depuis de nombreuses années. En juin 2005, à l’occasion de l’Année mondiale de la physique, la SFP et l’UdPPC avaient publié en commun un numéro hors série du Bup et du Bulletin de la Société française de physique, ancêtre des Refl ets de la physique. Ce numéro mettait en relief quelques-uns des champs d’activité des physiciens d’aujourd’hui et leurs liens avec les disciplines les plus diverses. Édouard Brézin, alors vice-président de la SFP, soulignait dans la préface que cette publication témoignait de « la vitalité de la physique contemporaine, la diversité de ses objets d’étude, la richesse de ses contacts avec d’autres disciplines ». Madeleine Sonneville, présidente de l’UdPPC, soulignait de son côté, « l’importance de tels documents pour la culture scientifi que des professeurs ». Si cette publication commune était une « première » dans le domaine éditorial, elle ne représentait pas la première action commune des deux associations. Les lecteurs assidus de nos bulletins se rappellent sûrement qu’en 1986 avait pris naissance une commission mixte UdPPC-SFP sur l’enseignement. Elle a poursuivi ses travaux pendant de longues années, mais fut surtout le lieu d’élaboration du projet des Olympiades de Physique France. Celui-ci vit le jour en septembre 1991, lors du congrès général de la SFP à Caen. Les deux sociétés, cofondatrices des Olympiades, en sont aussi les coorganisatrices, et les deux revues se font chaque année l’écho du concours. Au-delà de cet exemple, notre volonté de collaboration est constamment réaffi rmée et elle trouve en particulier à s’illustrer par des échanges réguliers entre les associations, par des articles publiés en commun et aussi (trop souvent, malheureusement…) chaque fois que sont malmenées les conditions faites à l’enseignement des sciences au lycée. Nos remerciements s’adressent à tous les auteurs qui ont accepté de contribuer, et aux équipes de rédaction qui se sont coordonnées pour mener à bien ce projet ambitieux, afi n d’aboutir à ce beau numéro que nous sommes heureux de vous présenter et qui devrait faire référence. Micheline Izbicki Martial Ducloy Présidente de l’UdPPC Président de la SFP 2 Refl ets de la Physique n° 21 / Le Bup n° 927 Sommaire 2 Éditorial Micheline Izbicki et Martial Ducloy 4 Le laser : 50 ans de dialogue entre science et applications Fabien Bretenaker 6 Glossaire et bibliographie Histoire et principe des lasers 10 Souvenirs de la genèse du laser Charles H. Townes 12 Le laser : principe de fonctionnement p. 9 Catherine Schwob et Lucile Julien Le laser, 50 ans de découvertes 18 Les différents lasers : un tour d’horizon Sébastien Forget, Isabelle Robert-Philip et Philippe Balcou Les lasers de l’extrême 26 Les nanolasers, vers une nouvelle physique des lasers ? Izo Abram, Alexios Beveratos et Isabelle Robert-Philip 30 Sources cohérentes de laboratoire dans l’extrême ultraviolet Thierry Ruchon, Pascal Salières, Philippe Zeitoun et Stéphane Sebban 35 La fusion thermonucléaire par laser Michel Decroisette p. 25 Mesures de grande précision 42 Des lasers à impulsions femtosecondes pour mesurer les fréquences Anne Amy-Klein 46 Atomes froids : réseaux optiques et horloges Michèle Leduc et Pierre Lemonde 53 Le laser : un outil de choix pour l’interférométrie atomique Arnaud Landragin et Franck Pereira Dos Santos Quelques exemples d’application des lasers 60 La cohérence de la lumière et l’imagerie des tissus du corps humain A. Claude Boccara p. 41 65 Applications médicales du laser Serge Mordon 70 Des lasers pour les télécommunications optiques par fi bres Mehdi Alouini 76 Les lidars atmosphériques Jean-Pierre Cariou et Laurent Sauvage 83 Deux exemples d’applications industrielles des lasers Philippe Aubourg, François Fariaut, Patrick Mauchien et François Salin 89 Faire de la physique autour des fontaines lasers Sébastien Forget, Christophe Daussy et Paul-Éric Pottie p. 59 REFLETS DE LA PHYSIQUE LE BUP PHYSIQUE-CHIMIE POUR CE NUMÉRO Directeur de la publication : Mohamed DAOUD Directeur de la publication : Micheline IZBICKI Responsable scientifique : Fabien BRETENAKER Rédacteur en chef : Charles de NOVION Rédacteur en chef : Gérard DUPUIS Secrétaire de rédaction : Catherine FRANÇOIS Comité de rédaction : P. BASSEREAU - M. BELAKHOVSKY - Comité de rédaction : G. BOUYRIE - L. DETTWILLER - Graphiste : [email protected] F. CASOLI - A. DAVAILLE - É. GUYON - P. HENNEQUIN - J.-P. HULIN - D. LAUNER - B. VELAY - J. WINTHER Imprimé en France par SPEI – 54425 Pulnoy Laser accordable : S. LABROSSE - G. LANDA - R. LEHOUCQ - J. MARGUERON - V. MOSSER - Service publicité : [email protected] Dépôt légal : 4e trimestre 2010 S. REMY - C. SÉBENNE - J. TEIXEIRA - J. VANNIMENUS - C. YÈCHE Serveur : www.udppc.asso.fr Édité à 7500 exemplaires superposition Service publicité : [email protected] Numéro commission paritaire : 0110G85858 © SFP / UdPPC de poses sur Serveur : www.refletsdelaphysique.fr ISSN : 1770-1368. Prix du numéro : 10 €. ISSN : 1953-793X – e-ISSN : 2102-1777 Publication mensuelle - 104e année la même image 5 numéros par an Annonceurs : (LCFIO, Orsay). Dunod (p. 17), Yenista (p. 52), Laser Quantum Société Française de Physique Union des professeurs de physique et de chimie (p. 52), Quantel (p. 52), TEEM Photonics (p. 64), © CNRS Photothèque / 33, rue Croulebarbe, 75013 Paris 42, rue Saint-Jacques, 75005 Paris Alphanov (p. 88), CNRS/LCMI (p. 88), Kircheim EQUILBEY Serge. www.sfpnet.fr www.udppc.asso.fr optique (p. 88). Refl ets de la Physique n° 21 / Le Bup n° 927 3 Le laser : 50 ans de dialogue entre science et applications Un des objectifs de nos deux revues, Refl ets de la physique et Le Bup physique-chimie, est de présenter à leurs lecteurs les avancées récentes de la recherche en sciences de la matière. En cette année 2010, anniversaire des 50 ans de la découverte du laser, l’UdPPC et la SFP ont pris la décision de réaliser en commun ce numéro spécial sur le laser. Fabien Bretenaker, directeur de recherche au CNRS et professeur chargé de cours à l’École polytechnique, a accepté Il y a cinquante ans, Ted Maiman mettait au point le premier d’en prendre la direction scientifi que. Il nous présente « MASER optique », qui sera ensuite rebaptisé « LASER ». Après ici l’organisation de ce numéro commun, qui comprend la découverte du maser dans le domaine micro-ondes par Townes quinze articles scientifi ques, répartis en quatre parties. en 1954, plusieurs équipes de physiciens s’étaient lancées dans la Après un rappel des notions de base sur le laser, on y traite quête de ce Graal. Charles Townes lui-même a accepté de nous de certaines des avancées les plus récentes, aussi bien en livrer ses souvenirs de cette épopée. Cela constitue le premier recherche fondamentale que dans les applications. article de ce numéro spécial, commun aux Refl ets de la physique et Nous le remercions pour avoir mené à bien ce projet. au Bulletin de l’Union des Professeurs de physique et de chimie. Un grand merci également à Jean-Pierre Hulin, à qui l’on doit une analyse approfondie des articles, et à Catherine François Initialement simple objet de curiosité pour les physiciens, le laser et Laetitia Morin, qui se sont chargées avec enthousiasme et est, cinquante ans plus tard, tellement présent dans notre quotidien compétence de son édition et de sa mise en forme. que nous ne le remarquons quasiment plus. Au même titre que le transistor, il peut être considéré comme une des réussites majeures Gérard Dupuis Charles de Novion de la physique du XX e siècle, dont se sont emparés tous les domaines Rédacteur en chef du Bup physique-chimie Rédacteur en chef de Refl ets de la physique de la recherche et de l’innovation. Faire un tour d’horizon un tant soit peu exhaustif de ce domaine est devenu impossible. Aussi avons-nous choisi ici de nous limiter, en faisant appel à la plume de plusieurs des meilleurs spécialistes, à quelques exemples regroupés en quatre parties.
Recommended publications
  • CONDUCTIVE KERATOPLASTY: a RADIOFREQUENCY-BASED TECHNIQUE for the CORRECTION of HYPEROPIA by Marguerite B
    CONDUCTIVE KERATOPLASTY: A RADIOFREQUENCY-BASED TECHNIQUE FOR THE CORRECTION OF HYPEROPIA BY Marguerite B. McDonald MD ABSTRACT Purpose: To evaluate the data on the safety, effectiveness, and stability of conductive keratoplasty (CK), a thermal, radiofrequency- based technique for treating 0.75 to 3.00 diopters (D) of spherical hyperopia. Methods: A prospective, consecutive series, multicenter clinical trial involving 400 hyperopic eyes was conducted by 19 surgeons at 12 centers. The treatment goal was emmetropia. Cohort follow-up was up to 2 years. Results: At 12 months postoperatively, data were available for 97.5% (354/363) of eyes for efficacy variables and 98% (391/400) of eyes for safety variables. A total of 54% of the CK eyes showed 20/20 or better uncorrected visual acuity, and 92% showed 20/40 or better at 12 months. The mean postoperative manifest refractive spherical equivalent was within 0.50 D in 61% and within 1.00 D in 88%. After CK, eyes were approximately 0.50 D myopic at month 1 and effectively emmetropic at 6 months. At 24 months, there was a 20% loss of initial effect. Safety results showed a 2-line loss of best-corrected visual acuity in 2% of the CK-treated eyes. The incidence of induced cylinder of 2.00 D or greater was below 1%. Conclusion: The CK technique corrects low to moderate hyperopia effectively and safely and with acceptable stability. It spares the visual axis, does not require the creation of a large flap, and is not associated with postoperative dry eye. CK has value as an alternative to hyperopic LASIK for patients with hyperopia.
    [Show full text]
  • Soft Tissue Laser Dentistry and Oral Surgery Peter Vitruk, Phd
    Soft Tissue Laser Dentistry and Oral Surgery Peter Vitruk, PhD Introduction The “sound scientific basis and proven efficacy in order to ensure public safety” is one of the main eligibility requirements of the ADA CERP Recognition Standards and Procedures [1]. The outdated Laser Dentistry Curriculum Guidelines [2] from early 1990s is in need of an upgrade with respect to several important laser-tissue interaction concepts such as Absorption Spectra and Hot Glass Tip. This position statement of The American Board of Laser Surgery (ABLS) on soft tissue dentistry and oral surgery is written and approved by the ABLS’s Board of Directors. It focuses on soft tissue ablation and coagulation science as it relates to both (1) photo-thermal laser-tissue interaction, and (2) thermo-mechanical interaction of the hot glass tip with the tissue. Laser Wavelengths and Soft Tissue Chromophores Currently, the lasers that are practically available to clinical dentistry operate in three regions of the electromagnetic spectrum: near-infrared (near-IR) around 1,000 nm, i.e. diode lasers at 808, 810, 940, 970, 980, and 1,064 nm and Nd:YAG laser at 1,064 nm; mid-infrared (mid-IR) around 3,000 nm, i.e. erbium lasers at 2,780 nm and 2,940 nm; and infrared (IR) around 10,000 nm, i.e. CO2 lasers at 9,300 and 10,600 nm. The primary chromophores for ablation and coagulation of oral soft tissue are hemoglobin, oxyhemoglobin, melanin, and water [3]. These four chromophores are also distributed spatially within oral tissue. Water and melanin, for example, reside in the 100-300 µm-thick epithelium [4], while water, hemoglobin, and oxyhemoglobin reside in sub-epithelium (lamina propria and submucosa) [5], as illustrated in Figure 1.
    [Show full text]
  • Laser Technologies in Ophthalmic Surgery
    IOP Laser Physics Astro Ltd Laser Physics Laser Phys. Laser Phys. 26 (2016) 084010 (20pp) doi:10.1088/1054-660X/26/8/084010 26 Laser technologies in ophthalmic surgery 2016 V V Atezhev1, B V Barchunov1, S K Vartapetov1, A S Zav’yalov2, K E Lapshin1, V G Movshev2 and I A Shcherbakov3 © 2016 Astro Ltd 1 Physics Instrumentation Center, A.M. Prokhorov General Physics Institute, LAPHEJ Russian Academy of Sciences, Moscow, Russia 2 “Optosistemy”, LLC, Moscow, Russia 3 A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia 084010 E-mail: [email protected] V V Atezhev et al Accepted for publication 16 June 2016 Published 27 July 2016 Abstract Excimer and femtosecond lasers are widely used in ophthalmology to correct refraction. Laser systems for vision correction are based on versatile technical solutions and include multiple Printed in the UK hard- and software components. Laser characteristics, properties of laser beam delivery system, algorithms for cornea treatment, and methods of pre-surgical diagnostics determine LP the surgical outcome. Here we describe the scientific and technological basis for laser systems for refractive surgery developed at the Physics Instrumentation Center (PIC) at the Prokhorov General Physics Institute (GPI), Russian Academy of Sciences. 10.1088/1054-660X/26/8/084010 Keywords: laser technology, ophthalmic surgery, femtosecond lasers Paper (Some figures may appear in colour only in the online journal) 1054-660X 1. Introduction an excimer ArF laser with the wavelength 193 nm is optimal for corneal ablation according to the criteria of the ablation 8 One of the first branches of medical science, where lasers quantitative precision, the absence of any effect upon neigh- were used, was ophthalmology.
    [Show full text]
  • Fakultät Für Physik Und Astronomie
    Fakult¨atf¨urPhysik und Astronomie Ruprecht-Karls-Universit¨atHeidelberg Diplomarbeit im Studiengang Physik vorgelegt von Felix Frank aus Lahr 2007 Comparison of Two Femtosecond Laser Systems For Two-Photon Imaging of RPE Cells Die Diplomarbeit wurde von Felix Frank ausgef¨uhrtam Kirchhoff Institut f¨urPhysik unter der Betreuung von Herrn Prof. Dr. J. Bille Abstract Age-related macular degeneration (AMD) is a retinal disease that affects the retinal pigment epithelium (RPE) cells in the macular region. It is the lead- ing cause for blindness in the Western world. In the RPE, enlarged lipofuscin granules show autofluorescence that is monitored through confocal scanning laser ophthalmoscope (cSLO) in clinical practice today. This work focuses on a new approach. The lipofuscin is imaged by means of a two-photon excited fluorescence (TPEF) ophthalmoscope. This offers intrinsic three dimensional resolution and a larger sensing depth. A conven- tional cSLO (HRT, Heidelberg Engineering, Germany) has been modified for TPEF imaging at video rate speed (20 Hz). Two different femtosecond (fs) lasers have been used for the setup. A mode- locked Ti:Sa laser (Mira 900, Coherent, USA) and a compact, all diode- pumped, solid-state Nd:glass fsd oscillator (femtoTRAINTM Nd-Glas V1.0, High Q Laser, Austria). The first images of the high-speed TPEF ophthalmoscope on retinas from donor eyes are presented. The results show the potential for in vivo TPEF imaging of the human eye in everyday clinical use. Zusammenfassung Altersbedingte makul¨areDegeneration (AMD) ist eine Netzhauterkrankung, welche die Pigmentepithelzellen (RPE) in der Makula beeintr¨achtigt. In den RPE Zellen zeigen vergr¨oßerte Lipofuscin K¨ornchen Autofluoreszenz, die heutzutage in den Kliniken mit einem konfokalen Scanning Laser Oph- thalmoskop (cSLO) kontrolliert wird.
    [Show full text]
  • Surgical and Minimally Invasive Treatments for Benign Prostatic Hypertrophy/Hyperplasia (BPH) Effective Date: 8/17/2020
    Medica Coverage Policy Policy Name: Surgical and Minimally Invasive Treatments for Benign Prostatic Hypertrophy/Hyperplasia (BPH) Effective Date: 8/17/2020 Important Information – Please Read Before Using This Policy These services may or may not be covered by all Medica plans. Please refer to the member’s plan document for specific coverage information. If there is a difference between this general information and the member’s plan document, the member’s plan document will be used to determine coverage. With respect to Medicare and Minnesota Health Care Programs, this policy will apply unless those programs require different coverage. Members may contact Medica Customer Service at the phone number listed on their member identification card to discuss their benefits more specifically. Providers with questions about this Medica coverage policy may call the Medica Provider Service Center toll-free at 1-800-458-5512. Medica coverage policies are not medical advice. Members should consult with appropriate health care providers to obtain needed medical advice, care and treatment. Coverage Policy The following surgical and minimally invasive approaches to the treatment of benign prostatic hypertrophy/ hyperplasia (BPH) are COVERED for patients with documented urinary outflow obstruction secondary to BPH. 1. Transurethral resection of the prostate (TURP) 2. Transurethral incision of the prostate (TUIP) 3. Transurethral laser coagulation therapies, including non-contact visual laser ablation of the prostate (VLAP) and interstitial laser coagulation of the prostate (ILCP, Indigo Laser) 4. Transurethral vaporization therapies, including contact laser vaporization, electrovaporization, and photoselective vaporization (aka Green Light Laser PVP) 5. Transurethral needle ablation of the prostate (TUNA, radiofrequency thermotherapy) 6.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Laser brain cancer surgery in a xenograft model guided by optical coherence tomography. Permalink https://escholarship.org/uc/item/9hn478d1 Journal Theranostics, 9(12) ISSN 1838-7640 Authors Katta, Nitesh Estrada, Arnold D McElroy, Austin B et al. Publication Date 2019 DOI 10.7150/thno.31811 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Theranostics 2019, Vol. 9, Issue 12 3555 Ivyspring International Publisher Theranostics 2019; 9(12): 3555-3564. doi: 10.7150/thno.31811 Research Paper Laser brain cancer surgery in a xenograft model guided by optical coherence tomography Nitesh Katta1, Arnold D Estrada1, Austin B McElroy1, Aleksandra Gruslova2, Meagan Oglesby2, Andrew G Cabe2, Marc D Feldman2, RY Declan Fleming1, Andrew J Brenner2, and Thomas E Milner1 1. University of Texas at Austin 2. University of Texas Health Science Center at San Antonio Corresponding author: [email protected]. © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2018.11.26; Accepted: 2019.04.24; Published: 2019.05.26 Abstract Higher precision surgical devices are needed for tumor resections near critical brain structures. The goal of this study is to demonstrate feasibility of a system capable of precise and bloodless tumor ablation. An image-guided laser surgical system is presented for excision of brain tumors in vivo in a murine xenograft model. The system combines optical coherence tomography (OCT) guidance with surgical lasers for high-precision tumor ablation (Er:YAG) and microcirculation coagulation (Thulium (Tm) fiber laser).
    [Show full text]
  • Guidelines on Lasers and Technologies T.R
    Guidelines on Lasers and Technologies T.R. Herrmann, E.N. Liatsikos, U. Nagele, O. Traxer, A.S. Merseburger (chair) © European Association of Urology 2014 TABLE OF CONTENTS PAGE 1. INTRODUCTION 5 1.1 Safety 5 1.2 Methodology 5 1.2.1 Data identification 5 1.2.2 Publication history 6 1.2.3 Quality assessment of the evidence 6 1.3 References 6 2. LASER-BASED TREATMENTS FOR BLADDER OUTLET OBSTRUCTION (BOO) AND BENIGN PROSTATIC ENLARGEMENT (BPE) 7 2.1 Introduction 7 2.2 Physical principles of laser action 7 2.2.1 Reflection 7 2.2.2 Scattering 7 2.2.3 Absorption 7 2.2.4 Extinction length 7 2.3 Historical use of lasers 8 2.3.1 Nd:YAG laser 8 2.3.2 Nd:YAG laser-based techniques 8 2.4 References 8 3. CONTEMPORARY LASER SYSTEMS 9 3.1 Introduction 9 3.2 KTP (kalium titanyl phosphate, KTP:Nd:YAG [SHG] and LBO (lithium borat, LBO:Nd:YAG [SHG]) lasers 9 3.2.1 Physical properties 10 3.2.1.1 Ablation capacity 10 3.2.1.2 Bleeding rate 10 3.2.1.3 Coagulation zone 10 3.2.2 Surgical technique of KTP/LBO lasers 11 3.2.3 Urodynamic results and symptom reduction 11 3.2.4 Risk and complications, durability of results 12 3.2.4.1 Intra-operative complications 12 3.2.4.2 Early post-operative complications 12 3.2.4.3 Late complications and durability of results 13 3.2.5 Conclusions and recommendations for the use of KTP and LBO lasers 14 3.2.6 References 14 3.3 Diode lasers 16 3.3.1 General aspects 16 3.3.2 Physical properties 17 3.3.2.1 Ablation capacity 17 3.3.2.2 Bleeding rate 17 3.3.2.3 Coagulation zone 17 3.3.3 Diode laser techniques 18 3.3.4 Clinical results
    [Show full text]
  • Modernity, Experience, Security
    Ophthalmology Clinical Centre SPEKTRUM in Wroclaw, POLAND was established in 2001 by a team of ophthalmologists, headed by prof. M.H.Niżankowska. Team consisted of specialists with many years of clinical experience, improved in continuous studies in Ophthalmological Departmants across Europe, the US and in other leading ophthalmic centers in the world. Modernity, Experience, Security Performed medical services Diagnostics The modern diagnostic equipment allows us to perform a wide range of ophthalmic examinations at the highest level: Pentacam, OCT, OCT Visante, HRT III, fluorescein angiography, digital photograph of the eye (anterior and posterior), ultrasound of the eye and orbit, pachymetry, tonometry, perimetry, corneal topography, endothelial microscopy, measuring of the power of artificial intraocular lens preformed by IOL master Surgery Surgical Ophthalmology Ward, equipped with the latest generation of ophthalmic devices, two air- conditioned operating theaters with digital recording of each procedure. Enables to perform microsurgical ophthalmic operations in the "one-day surgery." Range of services - full spectrum of vitreoretinal surgery in indications such as intravitreal haemorrhage, epiretinal membrane or macular holes - cataract surgery We provide • accurate and reliable power selection implanted lens (IOL) non-contact optical biometry IOL MASTER or ultrasound biometry • highest quality IOL implants (including lenses AcrySof ReSTOR multifocal, toric lenses AcrySof Toric multifocal toric lens AcrySof ReSTORToric) •we minimize
    [Show full text]
  • Basics of Laser in Surgery from Incision Time to Restoration
    *IN THE NAME OF GOD* summary Basics of laser in surgery from Incision time to Restoration Dr.Alborz Mirzadeh Th e development of non-invasive, non-toxic, and non-pollutant methods for the treatment of diff erent illnesses represents a constant concern of scientists from the medical fi eld worldwide. In this category fi t the methods based on the use of laser systems, which are successfully applied both in human and veterinary medicine due to the special properties of laser radiation: monocromaticity, coherence, intensity, and directionality. Th e aim of this paper is to present the laser systems used in several domains of veterinary medicine and some experimental results obtained by diff erent authors. Fields of laser use in veterinary medicine Protecting life and human and animal health is a constant concern of both doctors and specialists in various fi elds (biochemistry, biophysics, biology, etc.). Th eir joint eff orts have led to the development of new methods of treatment based on new discoveries and technology including laser. The first use of lasers in veterinary medicine was in larynx surgery in dogs (1) and horses (2). Th e results obtained in these early studies paved the way for the current use of the laser in general surgery, small animal targeting liver lobe resection, partial excision of the kidneys, and tumor excision or resection (intra-abdominal, intra-thoracic, breast, brain). At the same time, experiments on the use of laser for photodynamic therapy of tumors in animals and laser phototherapy have begun. What’s in
    [Show full text]
  • Laser Brain Cancer Surgery Guided by Optical Coherence Tomography
    Supplementary Material: Laser Brain Cancer Surgery Guided by Optical Coherence Tomography 250µm B 500µm 500µm A C D 500µm E 500µm Figure S1. Angiography images computed using described methodology (Section 2). Panel A, B, C, D and E correspond to mice #1, #2, #3, #4 and #5, respectively. D A 250µm B 250µm C D Figure S2. A, B) Angiography image contrast improvement (mouse #2). A-scan interleaving improves vasculature contrast (Panel B compared to Panel A) without loss in spatial resolution. C, D) Histograms of angiography images in A, B respectively. Gaussian distributions of signal (thin solid line) and background (asterisk line) levels. See text for description. A B C 250µm 1.10 mm Figure S3. A) Raw intensity image (-30dB to 25dB grayscale). B) Calculated attenuation1.10 mm coefficient image (inverted grayscale to highlight regions of low attenuation corresponding to tumor regions as well as shadows from large blood vessels. C) Overlay of intensity and masked, thresholded attenuation image. A B C D Figure S4. Rendered tumor volumes (yellow, attenuation coefficient less than 5.7mm-1) overlaid on OCT intensity (blue). Panels A, B, C and D correspond to mice #1, #2, #3, #5. For Panel C, the volume stack was reduced from 3.5 3.5 3mm3 (Panels A, B and D) to 3.5 1.75 3mm3 for better tumor visualization. In all mice imaged, tumors occupied a characteristic columnar region along the needle track and a wider region along the corpus callosum/hippocampus (for mouse #4 refer to Figure 4 Panel B). B 500 µm C 250 µm A 250µm 300 µm 500 µm Figure S5.
    [Show full text]
  • The Retinal Effects of Copper Vapor Laser Exposure Shimon Gabay.T Israel Kremer,* Isaac Ben-Sira,* Dan Sagie,T Dov Weinberger,* and Gideon Erezf
    Investigative Ophthalmology & Visual Science, Vol. 29, No. 4, April 1988 Copyright © Association for Research in Vision and Ophthalmology The Retinal Effects of Copper Vapor Laser Exposure Shimon Gabay.t Israel Kremer,* Isaac Ben-Sira,* Dan Sagie,t Dov Weinberger,* and Gideon Erezf The copper vapor laser is a pulsed gas laser which emits energy in two wavelengths simultaneously: 510.6 nm (green) and 578.2 nm (yellow). Each pulse has a duration of 15 nsec, maximal energy of 3 mJ and a peak power of more than 100 kW. It is a variably high repetition rate laser, in the range between 1 kHz and more than 20 kHz. We studied its interaction with the rabbit retina, while using two different repetition rates, 4 kHz and 18 kHz. The histological analysis of the lesion produced by 4 kHz repetition rate showed undesired retinal effects, similar to those caused by other pulsed lasers. On the other hand, the histological examination of the lesion produced by the 18 kHz repetition rate showed a desired coagulation effect, limited to the outer retinal layers, and comparable to a lesion produced by a continuous wave (CW) laser. Invest Ophthalmol Vis Sci 29:528-533, 1988 Lasers in ophthalmology are used mainly for reti- above 20 kHz, delivering two wavelengths: 510.6 nm nal coagulation, iridectomy and lens capsulotomy. and 578.2 nm.10 The pulse peak power can be in- Argon laser is now widely in use as a retinal photo- creased by decreasing the repetition rate, while the coagulator,12 as it is well-transmitted by the ocular average power has an optimal level at intermediate media3 and well-absorbed by the retinal pigment epi- repetition rate.
    [Show full text]
  • Subthreshold Nano-Second Laser Treatment and Age-Related Macular Degeneration
    Journal of Clinical Medicine Review Subthreshold Nano-Second Laser Treatment and Age-Related Macular Degeneration Amy C. Cohn 1,* , Zhichao Wu 1,2 , Andrew I. Jobling 3 , Erica L. Fletcher 3 and Robyn H. Guymer 1,2 1 Centre for Eye Research Australia, The Royal Victorian Eye and Ear Hospital, Melbourne 3002, Australia; [email protected] (Z.W.); [email protected] (R.H.G.) 2 Department of Ophthalmology, Department of Surgery, The University of Melbourne, Parkville 3052, Australia 3 Department of Anatomy and Neuroscience, The University of Melbourne, Parkville 3052, Australia; [email protected] (A.I.J.); e.fl[email protected] (E.L.F.) * Correspondence: [email protected] Abstract: The presence of drusen is an important hallmark of age-related macular degeneration (AMD). Laser-induced regression of drusen, first observed over four decades ago, has led to much interest in the potential role of lasers in slowing the progression of the disease. In this article, we summarise the key insights from pre-clinical studies into the possible mechanisms of action of various laser interventions that result in beneficial changes in the retinal pigment epithelium/Bruch’s membrane/choriocapillaris interface. Key learnings from clinical trials of laser treatment in AMD are also summarised, concentrating on the evolution of laser technology towards short pulse, non- thermal delivery such as the nanosecond laser. The evolution in our understanding of AMD, through advances in multimodal imaging and functional testing, as well as ongoing investigation of key pathological mechanisms, have all helped to set the scene for further well-conducted randomised trials to further explore potential utility of the nanosecond and other subthreshold short pulse lasers Citation: Cohn, A.C; Wu, Z.; Jobling, in AMD.
    [Show full text]