IOP Laser Physics Astro Ltd Laser Physics Laser Phys. Laser Phys. 26 (2016) 084010 (20pp) doi:10.1088/1054-660X/26/8/084010 26 Laser technologies in ophthalmic surgery 2016 V V Atezhev1, B V Barchunov1, S K Vartapetov1, A S Zav’yalov2, K E Lapshin1, V G Movshev2 and I A Shcherbakov3 © 2016 Astro Ltd 1 Physics Instrumentation Center, A.M. Prokhorov General Physics Institute, LAPHEJ Russian Academy of Sciences, Moscow, Russia 2 “Optosistemy”, LLC, Moscow, Russia 3 A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia 084010 E-mail:
[email protected] V V Atezhev et al Accepted for publication 16 June 2016 Published 27 July 2016 Abstract Excimer and femtosecond lasers are widely used in ophthalmology to correct refraction. Laser systems for vision correction are based on versatile technical solutions and include multiple Printed in the UK hard- and software components. Laser characteristics, properties of laser beam delivery system, algorithms for cornea treatment, and methods of pre-surgical diagnostics determine LP the surgical outcome. Here we describe the scientific and technological basis for laser systems for refractive surgery developed at the Physics Instrumentation Center (PIC) at the Prokhorov General Physics Institute (GPI), Russian Academy of Sciences. 10.1088/1054-660X/26/8/084010 Keywords: laser technology, ophthalmic surgery, femtosecond lasers Paper (Some figures may appear in colour only in the online journal) 1054-660X 1. Introduction an excimer ArF laser with the wavelength 193 nm is optimal for corneal ablation according to the criteria of the ablation 8 One of the first branches of medical science, where lasers quantitative precision, the absence of any effect upon neigh- were used, was ophthalmology.