Enabling Solid Lipid Nanoparticle Drug Delivery Technology by Investigating Improved Production Techniques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications
Garud et al., International Current Pharmaceutical Journal 2012, 1(11): 384-393 International Current http://www.icpjonline.com/documents/Vol1Issue11/08.pdf Pharmaceutical Journal REVIEW ARTICLE OPEN ACCESS Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications *Akanksha Garud, Deepti Singh, Navneet Garud Department of Pharmaceutics, Institute of Professional Studies, College of Pharmacy, Gwalior, Madhya Pradesh 474002, India ABSTRACT Solid lipid nanoparticles (SLN) have emerged as a next-generation drug delivery system with potential applications in pharmaceutical field, cosmetics, research, clinical medicine and other allied sciences. Recently, increasing attention has been focused on these SLN as colloidal drug carriers for incorporating hydrophilic or lipophilic drugs. Proteins and antigens intended for therapeutic purposes may be incorporated or adsorbed onto SLN, and further administered by parenteral routes or be alternative routes such as oral, nasal and pulmonary. The obstacles associated with conventional chemotherapy may be partially overcome by encapsulating them as SLN. The present review focuses on the utility of SLN in terms of their advantages, production methodology, characterization and applications. If properly investigated, SLNs may open new vistas in therapy of complex diseases. Key Words: Solid lipid nanoparticles, drug delivery, drug incorporation. INTRODUCTIONINTRODUCTION to cells and tissues and prevents them against Targeted delivery of a drug molecule to specific enzymatic degradation (Rao et al., 2004). The organ sites is one of the most challenging research advantages of nanoparticles as drug delivery areas in pharmaceutical sciences. By developing systems are that they are biodegradable, non-toxic, colloidal delivery systems such as liposomes, and capable of being stored for longer periods as micelles and nanoparticles, new frontiers have they are more stable (Chowdary et al., 1997). -
Evaluation and Comparison of Solid Lipid Nanoparticles (Slns) And
pharmaceutics Article Evaluation and Comparison of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Vectors to Develop Hydrochlorothiazide Effective and Safe Pediatric Oral Liquid Formulations Paola Mura 1 , Francesca Maestrelli 1 , Mario D’Ambrosio 2, Cristina Luceri 2 and Marzia Cirri 1,* 1 Department of Chemistry, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; paola.mura@unifi.it (P.M.); francesca.maestrelli@unifi.it (F.M.) 2 Department of Neurofarba, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; mario.dambrosio@unifi.it (M.D.); cristina.luceri@unifi.it (C.L.) * Correspondence: marzia.cirri@unifi.it; Tel.: +39-055-4573674 Abstract: The aim of this study was the optimization of solid lipid nanoparticles (SLN) and nanos- tructured lipid carriers (NLC) in terms of physicochemical and biopharmaceutical properties, to develop effective and stable aqueous liquid formulations of hydrochlorothiazide, suitable for paedi- atric therapy, overcoming its low-solubility and poor-stability problems. Based on solubility studies, Precirol® ATO5 and Transcutol® HP were used as solid and liquid lipids, respectively. The effect of different surfactants, also in different combinations and at different amounts, on particle size, Citation: Mura, P.; Maestrelli, F.; homogeneity and surface-charge of nanoparticles was carefully investigated. The best formulations D’Ambrosio, M.; Luceri, C.; Cirri, M. Evaluation and Comparison of Solid were selected for drug loading, and evaluated also for entrapment efficiency and release behaviour. ® Lipid Nanoparticles (SLNs) and For both SLN and NLC series, the use of Gelucire 44/14 as surfactant rather than PluronicF68 or ® Nanostructured Lipid Carriers Tween 80 yielded a marked particle size reduction (95–75 nm compared to around 600–400 nm), and (NLCs) as Vectors to Develop an improvement in entrapment efficiency and drug release rate. -
A Review on Nanoparticles, Their Preparation and Applications Ashish A
Review Article ISSN: 0976-7126 CODEN (USA): IJPLCP Gawai et al., 11(4):6540-6548, 2020 [[ A Review on nanoparticles, their preparation and applications Ashish A. Gawai, Rahul J. Sarode and K.R. Biyani Anuradha College of Pharmacy, Chikhli, Buldana, (M.S) - India Abstract Article info The aim of pharmaceutical nanotechnology is to deliver the drug in the form of nanoparticles by enhancing their therapeutic potential. Received: 30/01/2020 Nanoparticles are solid colloidal particles ranging size 10 to 1000 nanometer, nanoparticle possess a matrix structure which incorporate Revised: 28/02/2020 pharmacological active substances & facilitate control release of active agent. While the nano capsule contains an oily core incorporating drug Accepted: 13/04/2020 surrounded by membrane structure. Nanoparticals use to successfully deliver the verity of drug protein, peptide & genes to cell both as non- © IJPLS targeted & targeted form. Drug can coupled in monomers that are specific for cell & organs. This strategies use to concentrate drug in www.ijplsjournal.com selected targeted tissues thus minimizing side effect & toxicity. Nanoparticles are prepared from either synthetic or natural macro molecules using two distinct techniques that is bottom up& top down technology. The bottom up technology adopts method to aggregate molecule into particle of nano range, while top-down adapt to breaking down macro molecules into nano range. Nano-tubes are used to deliver drug into targeted tissue cell & organs meanly use Carbon nanotube membrane. DNA nanotube, pharmaceutical nanoparticle are those where the drug is dissolved entrapped encapsulated or adsorbed on surface. Keywords: Nanoparticles, Encapsulated, Nanopolymers Introduction Nanoparticle is a small object that behaves as a therapeutic efficacy &reduction in side effect can whole unit in terms of its transport & properties, be achieved by various routs of administration size of nanoparticle is 1 to 100 nanometer, including oral, nasal, injection and intraocular use. -
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers As Novel Drug Delivery Systems: Applications, Advantages and Disadvantages
Research in Pharmaceutical Sciences, August 2018; 13(4): 288-303 School of Pharmacy & Pharmaceutical Sciences Received: November 2017 IsfahanUniversity of Medical Sciences Accepted: February 2018 Review Article Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages Parisa Ghasemiyeh1 and Soliman Mohammadi-Samani2,* 1Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran. 2Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. Iran. Abstract During the recent years, more attentions have been focused on lipid base drug delivery system to overcome some limitations of conventional formulations. Among these delivery systems solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising delivery systems due to the ease of manufacturing processes, scale up capability, biocompatibility, and also biodegradability of formulation constituents and many other advantages which could be related to specific route of administration or nature of the materials are to be loaded to these delivery systems. The aim of this article is to review the advantages and limitations of these delivery systems based on the route of administration and to emphasis the effectiveness of such formulations. Keywords: Drug delivery systems; Nanoparticles; Nanostructured lipid carriers (NLCs); Routes of administration; Solid lipid nanoparticles (SLNs). CONTENTS 1. Introduction 2. Types of lipid nanoparticles 3. Methods of lipid nanoparticles preparation 3.1. High pressure homogenization technique 3.1.1. Hot high pressure homogenization 3.1.2. Cold high pressure homogenization 3.2. Solvent emulsification/evaporation technique 3.3. Microemulsion formation technique 3.4. Ultrasonic solvent emulsification technique 4. Lipid nanoparticles applications and different routes of administration 4.1. -
Solid Lipid Nanoparticles: Preparation Techniques, Their Characterization, and an Update on Recent Studies
Journal of Applied Pharmaceutical Science Vol. 10(06), pp 126-141, June, 2020 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2020.10617 ISSN 2231-3354 Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies Koduru Trideva Sastri*, Gadela Venkata Radha, Sruthi Pidikiti, Priya Vajjhala GITAM Institute of Pharmacy, GITAM Deemed to be University, Visakhapatnam, India. ARTICLE INFO ABSTRACT Received on: 03/12/2019 Solid lipid nanoparticles (SLNs) have emerged as a remarkable nanocolloidal system for drug delivery. This review Accepted on: 17/04/2020 presents contemporary information regarding various aspects about SLNs, i.e., SLN morphology, structural features, Available online: 05/06/2020 preparatory methods, and their characterizations. This carrier system allows advancing the therapeutic efficacy of drugs belonging to several categories. The present uses of SLNs include cancer therapy, infectious conditions, diabetes, central nervous system disorders, cardiovascular disorders, cosmeceuticals, and others. SLNs facilitate improved the Key words: pharmacokinetics and modify the drug releases. The prospect of surface modification, enhanced permeation against Solid lipid nanoparticles, various biological barriers, the ability to resist chemical degradation, and the possibility of encapsulation of two carrier system, nanomedicine, or more therapeutic agents simultaneously has gained attention for SLNs universally. Simultaneously, this review biocompatibility, emphasizes on recent research trends pertaining to this carrier system. nanotechnology. INTRODUCTION SLNs are morphologically spherical with a smooth In the past few years, there has been a fascinating surface possessing mean diameter ranging between 50 and development in nanoscale drug delivery technologies. Majorly 1,000 nm. Both in vivo and in vitro behaviors are dependent on biocompatible polymers and lipid excipients have been on the the physicochemical characterization of SLNs. -
Molecular Interactions in Surfactant Solutions: from Micelles to Microemulsions
MOLECULAR INTERACTIONS IN SURFACTANT SOLUTIONS: FROM MICELLES TO MICROEMULSIONS By MONICA A. JAMES-SMITH A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 1 Copyright 2006 by Monica A. James-Smith 2 To my parents who have been my #1 supporters since October 17, 1977. 3 ACKNOWLEDGMENTS I thank my Almighty Heavenly Father for allowing me to make it to this point and for seeing me through every obstacle that arose. I am forever grateful to my husband, Rod, for all of his support, love and encouragement. I sincerely thank my parents, Dan and Elaine James, for always believing in me, for their constant prayers, and for always providing the right words when the journey seemed difficult. I would like to thank Melanie, Dan, Chris, and Bruce for knowing how to make me feel like I can accomplish anything. I owe a huge debt of gratitude to my best friend, Brandi Chestang, who has been there to answer every phone call and has cheered me on all my life. I am also greatly appreciative to all of my other friends, family, and loved ones. I must also extend my sincerest appreciation to my in-laws who have taken me in as a family member and provided tremendous support as I have pursued this degree. I am forever grateful to Dr. Dinesh O. Shah for being a mentor, an advisor, and a confidant, for providing me with the highest caliber of guidance and for always pushing me towards greatness. -
Microemulsion and Macroemulsion Behaviour of Systems Containing Oil
THE UNIVERSITY OF HULL MICROEMULSION AND MACROEMULSION BEHAVIOUR OF SYSTEMS CONTAINING OIL, WATER AND NONIONIC SURFACTANT being a Thesis submitted for the Degree of Doctor of Philosophy in the University of Hull by N David Ian Horsup, B. Sc. August 1991 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisor, Dr. Paul Fletcher for his assistance -and advice during the period of my research and for his encouragement of my interest in surface and colloid chemistry. Thanks are also due to Dr. Robert Aveyard, Dr. Bernard Binks and my fellow colleagues for many fruitful discussions. I am also grateful to the Agricultural and Food ResearchCouncil and Unilever (Colworth) for the provision of a three year studentship. August 1991 To my parentsfor providing me with the opportunity to pursue my academicstudies. Scientist atoneis tracepoet, fiegives us the moon,he promises the stars, he'fI makpus a new universeif it comesto that. Allen Ginsberg, "Poem Rocket, " Kaddish and Other Poems (1961). ABSTRACT In this thesis, attempts have been made to correlate some equilibrium properties of microemulsions with the formation and stability of macroemulsions. Studies have been mainly limited to water-in-oil (W/O) systems stabilised by pure nonionic (CnE, Initially however, brief surfactantsof the poly-oxyethylene alkyl ether n) type. a accountis presentedof the behaviour of W/O microemulsions stabilised by commercial nonionic surfactantsof the type usedin foods. A detailed study of the equilibrium behaviour of W/O microemulsions stabilised by tetra-oxyethylene mono-n-dodecyl ether, C12E4,in hydrocarbon oils is presented. Aggregates form above a certain surfactant concentration in the oil, designated the critical microemulsion concentration, cµc. -
Microemulsion Microstructure(S): a Tutorial Review
nanomaterials Review Microemulsion Microstructure(s): A Tutorial Review Giuseppe Tartaro 1 , Helena Mateos 1 , Davide Schirone 1 , Ruggero Angelico 2 and Gerardo Palazzo 1,* 1 Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; [email protected] (G.T.); [email protected] (H.M.); [email protected] (D.S.) 2 Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy; [email protected] * Correspondence: [email protected] Received: 30 June 2020; Accepted: 18 August 2020; Published: 24 August 2020 Abstract: Microemulsions are thermodynamically stable, transparent, isotropic single-phase mixtures of two immiscible liquids stabilized by surfactants (and possibly other compounds). The assortment of very different microstructures behind such a univocal macroscopic definition is presented together with the experimental approaches to their determination. This tutorial review includes a necessary overview of the microemulsion phase behavior including the effect of temperature and salinity and of the features of living polymerlike micelles and living networks. Once these key learning points have been acquired, the different theoretical models proposed to rationalize the microemulsion microstructures are reviewed. The focus is on the use of these models as a rationale for the formulation of microemulsions with suitable features. Finally, current achievements and challenges of the use of microemulsions are reviewed. Keywords: microemulsions; wormlike micelles; packing parameter; flexible surface model; hydrophilic–lipophilic difference (HLD); net average curvature (NAC) 1. Introduction As a matter of fact, water and oil do not mix. There are several applications in which this is a bitter truth and the coexistence of oil and water as separate macroscopic phases, interacting just through a small interface, is highly disappointing. -
Microemulsion in Enhanced Oil Recovery
Chapter 9 Microemulsion in Enhanced Oil Recovery Shehzad Ahmed and Khaled Abdalla Elraies Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.75778 Abstract The success of surfactant flooding for enhanced oil recovery (EOR) process depends on the efficiency of designed chemical formula. In this chapter, a thorough discussion on Winsor Type III microemulsion was included which is considered the most desirable condition for achieving an ultra-low interfacial tension during surfactant-flooding pro- cess. A brief literature review on chemicals, experimental approaches, and methods used for the generation of the desirable phase was presented. Phase behavior studies of microemulsion are a very important tool in describing the interaction of an aqueous phase containing surfactant with hydrocarbon phase to form the Type III microemulsion. Microemulsion highly depends on brine salinity and the interfacial tension (IFT) changes as microemulsion phase transition occurs. At optimal salinity, Type III microemulsion forms, whereas salinity greater or lower than optimal value causes a significant increase in the IFT, resulting in insufficient oil displacement efficiency. Type III microemulsion at optimum salinity is characterized by ultra-low IFT, and extremely high oil recovery can be achieved. In addition, this chapter also stated various other mechanisms relating to oil entrapment, microemulsion phase transition, and surfactant loss in porous media. Keywords: surfactant, microemulsion, type III, enhanced oil recovery 1. Introduction Existing oil fields are maturing day by day, and finding new reserves have become more exigent. An average of about 35% of total oil can be recovered naturally from the reservoir while the rest remains entrapped [1, 2]. -
Surface Charge Modification and Antibacterial Study on Tilmicosin-Loaded Solid Lipid Nanoparticles Against Avian Pasteurella
Research Article Annals of Pharmacology and Pharmaceutics Published: 11 Jan, 2021 Surface Charge Modification and Antibacterial Study on Tilmicosin-Loaded Solid Lipid Nanoparticles against Avian Pasteurella Mengmeng Lu1,2, Yiyan Wang1, Xihe Li3 and Wenzhong Zhou1* 1Department of Basic Veterinary Medicine, China Agricultural University, China 2School of Life Sciences, Henan University, China 3Research Center for Animal Genetic Resources of Mongolian Plateau, Inner Mongolia University, China Abstract Surface charge (zeta potential) is one of the most important factors of drug nanocarriers. In this study, Tilmicosin-loaded Solid Lipid Nanoparticles (TMS-SLNs) were prepared by a hot homogenization and ultra-sonication technique using castor oil as lipid matrix and polyvinyl alcohol as surfactant. Dimethyl Dioctadecyl Ammonium Chloride (DDAC, 2%, w/w) was used as a cationic surfactant to modify the zeta potential of the SLNs for the purpose of improving the formulation. The obtained TMS-SLNs were characterized and the antibacterial ability was evaluated in vitro and in vivo against avian pasteurella. The results showed that addition of DDAC switched the zeta potential from - 11.7 ± 1.5 mv to 38.9 ± 1.5 mv. DDAC significantly increased the drug loading and enhanced the sustained release property of the TMS-SLNs. Scanning electron microscopy showed the SLNs were spherical and DDAC made no change of the morphology. Fluorescent microscopy revealed that DDAC enhanced the nanoparticle binding to the bacteria. The modified TMS-SLNs showed enhanced in vitro and in vivo antibacterial efficacy and good stability similar to the unmodified formulation. These results suggest that DDAC modification facilitated drug entrapment and sustained release property of the TMS-SLNs. -
Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: a Review
biomolecules Review Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application: A Review Sara Silva 1,2,* , António J. Almeida 2 and Nuno Vale 1,3,4,5 1 Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; [email protected] 2 Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1964-003 Lisbon, Portugal; [email protected] 3 Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal 4 Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal 5 Department of Molecular Pathology and Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-220-428-500 Received: 17 December 2018; Accepted: 3 January 2019; Published: 10 January 2019 Abstract: Cell-penetrating peptides (CPPs), also known as protein translocation domains, membrane translocating sequences or Trojan peptides, are small molecules of 6 to 30 amino acid residues capable of penetrating biological barriers and cellular membranes. Furthermore, CPP have become an alternative strategy to overcome some of the current drug limitations and combat resistant strains since CPPs are capable of delivering different therapeutic molecules against a wide range of diseases. In this review, we address the recent conjugation of CPPs with nanoparticles, which constitutes a new class of delivery vectors with high pharmaceutical potential in a variety of diseases. -
09 2979 NANOTECHNOLOGY ASSOCIATED.Indd
Disciplinarum Scientia. Série: Naturais e Tecnológicas, Santa Maria, v. 20, n. 2, p. 243-252, 2019. Recebido em: 09.09.2019. Aprovado em: 23.10.2019. ISSN 2176-462X NANOTECHNOLOGY ASSOCIATED WITH GRAPE SEED EXTRACT AND APPLICATIONS1 NANOTECNOLOGIA ASSOCIADA A EXTRATO DE SEMENTE DE UVA E SUAS APLICAÇÕES Giane Engel Montagner2, Aline de Oliveira Fogaça3 e Patrícia Gomes4 ABSTRACT The aim of this study was to investigate the main nanostructures used to protect polyphenols present in grape seed extract and their actions. This study is an integrative review of the literature. The data collection was performed on 31st may, 2019, in the electronic databases Web of Science and Bireme (Virtual Health Library). The Boolean descriptors and operators used were: Nano* AND Grape seed AND Extract. English, Spanish or Portuguese were included in the sample. The search in the databases resulted in the collection of 132 articles, of which 12 fulfilled the inclusion criteria. As all the nanoparticles containing grape seed extract maintained or increased the activity of the polyphenols present in the extract, thus showing that the use of nanotechnology is effective in protecting these bioactive compounds and can be used in health and food industry. Keywords: antioxidant, nanoparticle, oxidative stress, polyphenols. RESUMO O objetivo deste estudo foi investigar as principais nanoestruturas utilizadas para proteger polifenóis presentes no extrato de semente de uva e suas ações. Este estudo é uma revisão integrativa da literatura. A coleta dos dados foi realizada no dia 31 de maio de 2019, nas bases de dados eletrônicos Web of Science e Bireme (Biblioteca Virtual em Saúde).