Invasive Species Conference
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Complete Mitochondrial Genome of the Fall Webworm, Hyphantria
Int. J. Biol. Sci. 2010, 6 172 International Journal of Biological Sciences 2010; 6(2):172-186 © Ivyspring International Publisher. All rights reserved Research Paper The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) Fang Liao1,2, Lin Wang3, Song Wu4, Yu-Ping Li4, Lei Zhao1, Guo-Ming Huang2, Chun-Jing Niu2, Yan-Qun Liu4, , Ming-Gang Li1, 1. College of Life Sciences, Nankai University, Tianjin 300071, China 2. Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300457, China 3. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 101113, China 4. College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China Corresponding author: Y. Q. Liu, College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China; Tel: 86-24-88487163; E-mail: [email protected]. Or to: M. G. Li, College of Life Sciences, Nankai University, Tianjin 300071, China; Tel: 86-22-23508237; E-mail: [email protected]. Received: 2010.02.03; Accepted: 2010.03.26; Published: 2010.03.29 Abstract The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other le- pidopterans. -
How to Control Soil Insects with Beneficial Nematodes
How to Control Soil Insects with Beneficial Nematodes Ed Lewis Department of Entomology and Nematology University of California, Davis Using Microbials in IPM • Do not have to change everything about crop management • Many microbial insecticides fit into current production plans with minimal effort and change • They require specialized information about their use Insect pathogens can be effective • Naturally occur – Even in intensively managed systems • Have an impact on insect populations at natural levels Necessary information: Products • Shelf life • Storage conditions • Resting stage? • Viability in field • Host range • Time to kill • What does an infected insect look like? Recognized Species of Entomopathogenic Nematodes H. bacteriophora H. marelatus H. brevicaudis H. megidis H. hawaiiensis H. zealandica H. indica H. argentinensis S. kraussei S. karii S. arenarium S. kushidai S. bicornutum S. longicaudum S. carpocapsae S. monticolum S. caudatum S. neocurtillae S. ceratophorum S. oregonense S. cubanum S. puertoricense S. feltiae S. rarum S. glaseri S. riobrave S. intermedium S. ritteri S. affine S. scapterisci Infective Juveniles • Resistant to Environmental Extremes • Only Function is to Find A New Host • No Feeding • No Development • No Reproduction • Only Life Stage Outside the Host Infective Stage Juvenile Steinernema carpocapsae Symbiotic Bacteria Released Bacterial Chamber Mating for Steinernema spp. Two to three generations occur in a single host. About 6 days after the original infection, this is the appearance New Infective Juveniles in 10 Days Entomopathogenic Nematodes Can Control: • Weevils: Diaprepes root weevil, Diaprepes abbreviatus Blue green weevils, Pachnaeus spp. Otiorhynchus spp. Bill bugs • Fungus gnats: e.g., Sciaridae Entomopathogenic Nematodes Can Control: • Scarab larvae: e.g., Japanese beetle, Popillia japonica, Chafers, etc. -
210 Part 319—Foreign Quarantine Notices
§ 318.82–3 7 CFR Ch. III (1–1–03 Edition) The movement of plant pests, means of 319.8–20 Importations by the Department of conveyance, plants, plant products, and Agriculture. other products and articles from Guam 319.8–21 Release of cotton and covers after into or through any other State, Terri- 18 months’ storage. 319.8–22 Ports of entry or export. tory, or District is also regulated by 319.8–23 Treatment. part 330 of this chapter. 319.8–24 Collection and disposal of waste. 319.8–25 Costs and charges. § 318.82–3 Costs. 319.8–26 Material refused entry. All costs incident to the inspection, handling, cleaning, safeguarding, treat- Subpart—Sugarcane ing, or other disposal of products or ar- 319.15 Notice of quarantine. ticles under this subpart, except for the 319.15a Administrative instructions and in- services of an inspector during regu- terpretation relating to entry into Guam larly assigned hours of duty and at the of bagasse and related sugarcane prod- usual places of duty, shall be borne by ucts. the owner. Subpart—Citrus Canker and Other Citrus PART 319—FOREIGN QUARANTINE Diseases NOTICES 319.19 Notice of quarantine. Subpart—Foreign Cotton and Covers Subpart—Corn Diseases QUARANTINE QUARANTINE Sec. 319.24 Notice of quarantine. 319.8 Notice of quarantine. 319.24a Administrative instructions relating 319.8a Administrative instructions relating to entry of corn into Guam. to the entry of cotton and covers into Guam. REGULATIONS GOVERNING ENTRY OF INDIAN CORN OR MAIZE REGULATIONS; GENERAL 319.24–1 Applications for permits for impor- 319.8–1 Definitions. -
And Lepidoptera Associated with Fraxinus Pennsylvanica Marshall (Oleaceae) in the Red River Valley of Eastern North Dakota
A FAUNAL SURVEY OF COLEOPTERA, HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH FRAXINUS PENNSYLVANICA MARSHALL (OLEACEAE) IN THE RED RIVER VALLEY OF EASTERN NORTH DAKOTA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Samuel Walker In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Entomology March 2014 Fargo, North Dakota North Dakota State University Graduate School North DakotaTitle State University North DaGkroadtaua Stet Sacteho Uolniversity A FAUNAL SURVEYG rOFad COLEOPTERA,uate School HEMIPTERA (HETEROPTERA), AND LEPIDOPTERA ASSOCIATED WITH Title A FFRAXINUSAUNAL S UPENNSYLVANICARVEY OF COLEO MARSHALLPTERTAitl,e HEM (OLEACEAE)IPTERA (HET INER THEOPTE REDRA), AND LAE FPAIDUONPATLE RSUAR AVSESYO COIFA CTOEDLE WOIPTTHE RFRAA, XHIENMUISP PTENRNAS (YHLEVTAENRICOAP TMEARRAS),H AANLDL RIVER VALLEY OF EASTERN NORTH DAKOTA L(EOPLIDEAOCPTEEAREA) I ANS TSHOEC RIAETDE RDI VWEITRH V FARLALXEIYN UOSF P EEANSNTSEYRLNV ANNOICRAT HM DAARKSHOATALL (OLEACEAE) IN THE RED RIVER VAL LEY OF EASTERN NORTH DAKOTA ByB y By JAMESJAME SSAMUEL SAMUE LWALKER WALKER JAMES SAMUEL WALKER TheThe Su pSupervisoryervisory C oCommitteemmittee c ecertifiesrtifies t hthatat t hthisis ddisquisition isquisition complies complie swith wit hNorth Nor tDakotah Dako ta State State University’s regulations and meets the accepted standards for the degree of The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of University’s regulations and meetMASTERs the acce pOFted SCIENCE standards for the degree of MASTER OF SCIENCE MASTER OF SCIENCE SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: SUPERVISORY COMMITTEE: David A. Rider DCoa-CCo-Chairvhiadi rA. -
Hyphantria Cunea)
University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 6-1-2013 Host Use and Geographic Variation in Fall Webworms (Hyphantria cunea) Katrina J. Loewy University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Loewy, Katrina J., "Host Use and Geographic Variation in Fall Webworms (Hyphantria cunea)" (2013). Electronic Theses and Dissertations. 379. https://digitalcommons.du.edu/etd/379 This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. HOST USE AND GEOGRAPHIC VARIATION IN FALL WEBWORMS (HYPHANTRIA CUNEA) __________ A Thesis Presented to the Faculty of Natural Sciences and Mathematics University of Denver __________ In Partial Fulfillment of the Requirements for the Degree Master of Science __________ by Katrina J. Loewy June 2013 Advisor: Shannon M. Murphy ©Copyright by Katrina J. Loewy 2013 All Rights Reserved Author: Katrina J. Loewy Title: HOST USE AND GEOGRAPHIC VARIATION IN FALL WEBWORMS (HYPHANTRIA CUNEA) Advisor: Shannon M. Murphy Degree Date: June 2013 Abstract Host use in herbivores is determined by a variety of ecological drivers, including bottom-up and top-down selective pressures such as host abundance, host plant quality, and parasitism pressure. If the relative importance and strength of interactions among these selective conditions change over an herbivore’s geographic range, local patterns of host use should change in response, evident in differing diet breadths. -
Lepidoptera: Noctuoidea: Erebidae) and Its Phylogenetic Implications
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 113: 558–570, 2016 http://www.eje.cz doi: 10.14411/eje.2016.076 ORIGINAL ARTICLE Characterization of the complete mitochondrial genome of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) and its phylogenetic implications YU SUN, SEN TIAN, CEN QIAN, YU-XUAN SUN, MUHAMMAD N. ABBAS, SAIMA KAUSAR, LEI WANG, GUOQING WEI, BAO-JIAN ZHU * and CHAO-LIANG LIU * College of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, China; e-mails: [email protected] (Y. Sun), [email protected] (S. Tian), [email protected] (C. Qian), [email protected] (Y.-X. Sun), [email protected] (M.-N. Abbas), [email protected] (S. Kausar), [email protected] (L. Wang), [email protected] (G.-Q. Wei), [email protected] (B.-J. Zhu), [email protected] (C.-L. Liu) Key words. Lepidoptera, Noctuoidea, Erebidae, Spilarctia robusta, phylogenetic analyses, mitogenome, evolution, gene rearrangement Abstract. The complete mitochondrial genome (mitogenome) of Spilarctia robusta (Lepidoptera: Noctuoidea: Erebidae) was se- quenced and analyzed. The circular mitogenome is made up of 15,447 base pairs (bp). It contains a set of 37 genes, with the gene complement and order similar to that of other lepidopterans. The 12 protein coding genes (PCGs) have a typical mitochondrial start codon (ATN codons), whereas cytochrome c oxidase subunit 1 (cox1) gene utilizes unusually the CAG codon as documented for other lepidopteran mitogenomes. Four of the 13 PCGs have incomplete termination codons, the cox1, nad4 and nad6 with a single T, but cox2 has TA. It comprises six major intergenic spacers, with the exception of the A+T-rich region, spanning at least 10 bp in the mitogenome. -
Fall Webworm: Biology and Management
Fall Webworms: Biology and Management Fawad Z.A. Khan, Shimat V. Joseph, and Will Hudson Department of Entomology The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae) (Figure 1) is a polyphagous caterpillar pest of ornamentals and trees in Georgia. “Polyphagous” means that it can feed on many types of food, and the fall webworm is known to feed on more than 600 species of plants, including row crops, herbaceous plants, shrubs, fruit, and ornamental trees in orchards, nurseries, and landscapes. Fall webworm larvae construct silk web nesting to facilitate feeding, to escape the attack of natural enemies, and for heat retention. The webbing is considered unsightly, and feeding on foliage inside the nest leads to extensive defoliation. The fall webworm can quickly reduce the aesthetic appeal of landscape trees and shrubs (Figure 2), and severe infestation can cause considerable damage to trees. Biology The fall webworm is active during the summer and early fall. The white, hairy female moth (Figure 1 deposits approximately 600 eggs on the underside of leaves in masses covered with white hairs from the female’s body (Figure 3). The eggs hatch within a week, revealing red- or black-headed larvae covered with fine hair (Figure 4). Almost immediately, the larvae begin working together to construct a silken web over a branch tip, where they begin to feed. Initially they skeletonize the leaves inside the web (Figures 5 and 6), but as the larvae develop, the webbing expands and covers more foliage on the tree branch. Larvae feed for up to six weeks until pupation. Mature caterpillars leave the web to pupate under bark crevices, soil, or stones. -
Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
diversity Review Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review Stela Lazarova 1,* , Danny Coyne 2 , Mayra G. Rodríguez 3 , Belkis Peteira 3 and Aurelio Ciancio 4,* 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Y. Gagarin Str., 1113 Sofia, Bulgaria 2 International Institute of Tropical Agriculture (IITA), Kasarani, Nairobi 30772-00100, Kenya; [email protected] 3 National Center for Plant and Animal Health (CENSA), P.O. Box 10, Mayabeque Province, San José de las Lajas 32700, Cuba; [email protected] (M.G.R.); [email protected] (B.P.) 4 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, 70126 Bari, Italy * Correspondence: [email protected] (S.L.); [email protected] (A.C.); Tel.: +359-8865-32-609 (S.L.); +39-080-5929-221 (A.C.) Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field Citation: Lazarova, S.; Coyne, D.; level, and its response to current changes, will help to explain the observed community shifts. -
Opogona Sacchari
EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 7/71 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Diagnostics1 Diagnostic Opogona sacchari Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Opogona Approved in 2005-09. sacchari. Introduction Detection Opogona sacchari originates in the humid tropical and O. sacchari larvae are highly versatile pests, exploiting a wide subtropical regions of Africa, where it is not a significant pest. range of live and dead plant material. The symptoms displayed It first attracted attention as a serious pest on bananas in Spain largely depend on the type of host the larvae are infesting. In (Islas Canarias) in the 1920s. In the 1970s, it was introduced European glasshouses, they can infest various tropical or into Brazil and Central America, and also started to appear in subtropical ornamentals, including mainly Cactaceae, Dracaena, the EPPO region. O. sacchari has a wide host range, and is Strelizia and Yucca (Billen, 1987), but also occasionally Alpinia, found mainly in the tropics on banana, pineapple, bamboos, Begonia, Bougainvillea, Bromeliaceae, Chamaedorea and other maize and sugarcane in the field, and on various stored Arecaceae, Cordyline, Dieffenbachia, Euphorbia pulcherrima, tubers. More recently, O. sacchari has been introduced into the Ficus, Heliconia, Hippeastrum, Maranta, Philodendron, USA (Florida) (Heppner et al., 1987) and China (Kun & Fang, Saintpaulia, Sansevieria and Sinningia speciosa. Vegetable 1997). crops are also attacked: capsicum and aubergine (Billen, 1987). In import inspections, it is mainly Dracaena and Yucca which have been found to be infested (EPPO, 1997). In banana, Identity normally the fruiting head is infested, but in ornamental plants Name: Opogona sacchari (Bojer). -
Genome of the Webworm Hyphantria Cunea Unveils Genetic Adaptations
Chen et al. BMC Genomics (2020) 21:242 https://doi.org/10.1186/s12864-020-6629-6 RESEARCH ARTICLE Open Access Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its rapid invasion and spread Qi Chen1,2†, Hanbo Zhao1,2†, Ming Wen1,2, Jiaxin Li1,2, Haifeng Zhou1,2, Jiatong Wang1,2, Yuxin Zhou1,2, Yulin Liu1,2, Lixin Du1,2, Hui Kang1,2, Jian Zhang3, Rui Cao4, Xiaoming Xu5, Jing-Jiang Zhou1,2,6, Bingzhong Ren1,2 and Yinliang Wang1,2* Abstract Background: The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. Results: Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. -
Banana Moth on Palms, Hodel and Santos, 2020-12
PALMARBOR Hodel and Santos: Banana Moth on Palms 2020-12: 1–20 Banana Moth A Resurgent and Serious Pest of Palms in Southern California DONALD R. HODEL AND PAUL SANTOS The banana moth (Opogona sacchari) is a primary pest of many agricultural and landscape plants, including palms (Howard et al. 2001). Although native to tropical and subtropical areas of Africa, it is now a widespread and rather common pest and occurs in California, Florida, Hawaii, South and Central America, Europe, Madagascar, and many Pacific Islands. In Hawaii it is a significant pest of sugarcane, banana, pineapple, and palms, especially the much beloved native Pritchardia spp. (loulu) (Hodel 2012c, Nelson and Wright 2005). In southern California, the banana moth has mostly been documented or observed on only a few species of palms, primarily Ravenea rivularis (majesty palm) (Fig. 1), Trachycarpus fortunei (windmill palm), and sometimes Syagrus romanzoffiana (queen palm), the latter typically as young, containerized nursery plants (Hodel 2012 a, b). However, in the last several years, two additional species have come under increasing attack, including Archontophoenix cunninghamiana (king palm) and Howea forsteriana (kentia palm), two of our more elegant, stately, and common landscape palms (Fig. 2). Or, perhaps these species were always under attack but the symptoms were attributed to other causes. While the banana moth attacks mostly stressed, weakened, and/ or wounded palms, in some instances it attacks seemingly healthy, unstressed palms although the underlying stress might not always be obvious or the attacked palm has yet to show stress symptoms. One of the subtle factors that could be stressing palms and leaving them susceptible to banana moth is climate change and its attendant ramifications, including temperature extremes, reduced rainfall, salt accumulation in the root zone, and excessively high soil pH, among others. -
Sex Attractant for the Banana Moth, Opogona Sacchari Bojer
Research Article Received: 2 July 2009 Revised: 27 November 2009 Accepted: 21 December 2009 Published online in Wiley Interscience: 9 February 2010 (www.interscience.wiley.com) DOI 10.1002/ps.1922 Sex attractant for the banana moth, Opogona sacchari Bojer (Lepidoptera: Tineidae): provisional identification and field evaluation Eric B Jang,a Matthew S Siderhurst,b∗ Robert G Hollingsworth,a David N Showalterb and Elisa J Troyerb Abstract BACKGROUND: The banana moth, Opogona sacchari Bojer, is a polyphagous agricultural pest in many tropical areas of the world. The identification of an attractant for male O. sacchari could offer new methods for detection, study and control. RESULTS: A compound extracted from female O. sacchari elicited responses from antennae of male moths. This compound was identified as a 2/3,(Z)13-octadecadienal by gas chromatography-mass spectrometry. An analog, 2/3,(Z)13-octadecadienol, was also detected in some extracts at roughly a 1 : 20 ratio (alcohol : aldehyde) but did not elicit responses from antennae of male moths. Electroantennograms of synthetic candidate dienals found the strongest responses from (Z, Z)-2,13-octadecadienal and (E, Z)-2,13-octadecadienal. In field trials, (E, Z)-2,13-octadecadienal attracted more male O. sacchari than (Z, Z)-2,13- octadecadienal. Attraction was not improved for either of these compounds when the corresponding stereoisomeric alcohol was added at ratios of 1 : 1, 1 : 10 or 1 : 100 (alcohol : aldehyde). Jackson sticky traps containing 250 µgluresof(E, Z)-2,13- octadecadienal caught as many males as did traps holding virgin females. CONCLUSION: (E, Z)-2,13-octadecadienal has been identified as an attractant for O.