Overview of Soft Coastal Protection Solutions Atlantic Network for Coastal Risks Management Galicia (Spain)

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Soft Coastal Protection Solutions Atlantic Network for Coastal Risks Management Galicia (Spain) Overview of soft coastal protection solutions Atlantic Network for Coastal Risks Management Galicia (Spain) Contents Introduction 03 1 - Atlantic coastline erosion 07 Beaches 08 Dunes 09 Cliffs 12 Tidal marshes 16 2 - Soft coastal protection solutions 21 Discussion on the limitations of "hard" and "soft" methods 21 "Soft" solutions 22 3 - Decision support to develop a management strategy to address coastal erosion 49 Managing coastal protection 49 Decision tree 53 Conclusion 54 References 54 2 // Overview of soft coastal protection solutions introduction Rich and varied littoral but fragile Roughly 16% of the European population lives ronments and their functioning in the coastal and coveted in coastal communities. This proportion is ever ecosystem. increasing. However, this human presence has The littoral is a fragile and mobile area at the clearly affected the littoral environment. In Beach, cliff and coastline erosion as well as interface of the atmosphere, lithosphere and general, economic activities increase pressure receding shorelines and the risks of marine hydrosphere. The evolution of littoral environ- on coastal zones (increase in number of buil- submergence are preoccupying subjects that ments depends on continental factors (geolo- dings, beach sediment extraction, intensive are becoming more important for European gical structure), marine factors (variations of tourist use of coastal areas, etc. ). Residential, shoreline communities (20% of the European the mean sea level, processes brought about by touristic and economic attractiveness is stea- Union coasts are affected by this phenome- waves, tide and induced currents) and atmos- dily growing on the European Atlantic coast. non), because of increased stakes, and parti- pheric factors (subaerial agents). Varying com- Coastal zones have large ecological, social cularly economic stakes in zones affected by binations of these factors change shoreline po- and economic functions and it is advisable to recurrent natural climatic hazards. sition and coast morphology (beaches, dunes, define a coastal sustainable development plan cliffs, tidal marshes) on various time and space including protecting people, property and scales (diagram 11). activities, while also protecting natural envi- Galicia (Spain) Diagram 1: Concept of time in littoral processes 1 The different notions are expressed in chapter 1. Overview of soft coastal protection solutions // 3 Some essential concepts However, its current magnitude is undeniably their stakes, it is first necessary to unders- linked to anthropogenic factors. tand the interest and role of natural littoral A hazard is the probability of occurrence of In many sites, solutions to mitigate this phe- infrastructures such as dunes, cliffs and coas- a potentially damaging phenomenon within nomenon, such as the construction of heavy tal marshes, and wherever possible, envisage a given time period and area. The coasts are protection structures, have aggravated erosion "soft" solutions designed to work with nature mainly subject to risks such as erosion, marine on areas requiring protection and neighbou- by integrating natural coastal dynamics and flooding and landslides. ring shorelines. These solutions are used less the mobility of shorelines. Dynamic shoreline A stake is a group of goods, people, systems or frequently with growing preference for soft management is a continuous process which any other element present in a risk area and solutions which are more favourable to the en- oscillates between observation and action and which could be potentially lost. vironment. In addition, the soft infrastructure which lasts for as long as there are stakes ex- Erosion hazard is, by definition, a group of represented by the coast, plays an important posed to coastal risks. A risk is in fact to expect external phenomena, which on the soil sur- role in increasing and preserving biodiversity, losses (lives, injuries, property damage, etc. ) face or at low depth change the topography by which also contributes to coastal protection. due to a particular natural or human-induced matter extraction. Erosion can be natural or Besides, the marine submergence hazard is hazard in a given area and reference period. anthropogenic2. particularly damaging along coasts where the The degree of vulnerability3 and exposure of Coastal erosion occurs when the sea gains concentration of the stakes continues to in- socio-economic or environmental systems to ground on the land under the effects of fac- crease. the hazard are key elements when considering tors such as wind, swell, tides, etc. This natural In order to limit the inevitable phenomenon the severity of potential risks. process has always existed and has shaped the of erosion as well as marine submergence European Atlantic coast throughout history. and thus preserve natural environments and 2 Anthropogenic: result of human activity on the natural environment. 3 Vulnerability: refer to chap. III, A, 1. 4 // Overview of soft coastal protection solutions How can coastal risk management Three pedagogical tools and a glossary were coastal management (decision support tool). be improved? thus developed within this project. Tool n°1 Three kinds of typical European Atlantic coasts deals with coastal risks. Tool n°2 deals with are discussed: sandy and rocky coasts and The European project, ANCORIM, aims to set natural littoral infrastructures and soft solu- coastal marshes. This tool takes as geographi- up a public and scientific stakeholder network tions to protect coastlines threatened by ero- cal reference space the Atlantic space of the for enhanced prevention and management of sion. This document deals with this tool and is European continent, in particular the partner coastal risks in the Atlantic Area. intended for decision-makers and managers. regions of the project Ancorim: Aquitaine, Tool n°3 deals with management and taking Brittany and Poitou-Charentes in France, The project is organized around these risks into consideration for coastal deve- North and Central regions of Portugal, Galicia three main issues: lopment. in Spain and the Border, Midland and Western 1) shoreline erosion and stability, This document initially discusses Atlantic region in Ireland. Other limited examples from 2) coastal water quality and its impact on eco- coastal erosion, then goes on to present a non-partner regions were also included as il- nomic activities, and range of soft solutions for coastal erosion. The lustrative material. 3) rural and urban coastal development. document concludes with a discussion on Rocky coast Overview of soft coastal protection solutions // 5 Galicia (Spain) 6 // Overview of soft coastal protection solutions 1 - atlantic coastline erosion The littoral is an ecologically rich and fra- scales. Its dynamic balance is principally On the European Atlantic littoral, there are gile area. It can experience reversible or due to sediment exchanges and transfers three types of shoreline: the sandy coast, irreversible developments under the in- at the interface between marine and conti- the rocky coast and tidal marshes (wetlands fluence of natural or anthropogenic exter- nental environments (long-shore drift, cliff including estuaries and lagoons). nal agents, in various temporal and spatial erosion, storage in dunes, etc.). Erosion is a natural phenomenon (hazard) - continental agents: in particular hydrology filtration) also contributes to the modifica- created by the combined effects of: by feeding fluvial sediments. These agents tion of littoral shapes; - atmospheric agents: wind, rain, temperature; are mechanical type processes (introduced - biological agents: possible erosive impact of - marine agents: swells, tides, induced cur- by variations in temperature or variations in flora and fauna on hard and soft sediment. rents, sea level (dependant on global war- rock water levels) or physico-chemical pro- ming, tectonic effects, subsidence4, etc. ); cesses (alterations). Precipitation (runoff or Sandy coastlines come from marine as worms). On the Atlantic coastline, functional perspective. Rocky coastlines are sedimentation or from the activity of they include beaches and dunes (photo mainly characterised by coasts with cliffs, organisms (algae and benthic fauna such 1), directly linked from a landscape and and wetlands are principally tidal marshes. The dynamic balance of the shoreline can These infrastructures (mainly wetlands, cliffs also be impacted by sudden variations of and dunes) provide services that are indispen- the sea level (tsunamis, large storms, etc.). sible for managing and developing the littoral Coastlines, also presented as natural littoral and it is for this reason that they should be res- infrastructures, are ecosystems that form an tored and treasured. interface between the marine and terrestrial Europe’s landscape is increasingly fragmented environment whilst providing better pro- and this is a major problem for biodiversity. tection against coastal erosion. In Atlantic The term green infrastructure (European com- Europe, they each have their own identity de- mission website) is used here because these pending on the type of coast and surrounding infrastructures help reconnect existing natu- environmental conditions. ral areas (wetlands, dunes, etc. ) and improve They participate in the coastal dynamic pro- the area’s ecological qualities. They also help cess and make up unique ecosystems with a maintain ecosystem services. high heritage added-value, contributing to the quality of
Recommended publications
  • CONTROL of .ALLUVIAL RIVERS by STEEL JETTIES By
    CONTROL OF .ALLUVIAL RIVERS BY STEEL JETTIES by E. 1. Carlson and R. A. Dodge, Jr. A paper to be presented at The First Water Resources Engineering Conference of The American Society of Civil Engineers, Omaha, Nebraska, May 14-18, 1962 CONTROL OF ALLUVIAL RIVERS BY STEEL JETTIES by E. J. Carlsonl / and R. A. Dodge, Jr. 2 / SYNOPSIS Both field and laboratory studies were conducted to refine the methods used in the design of steel jetty fields for river aline- ment. A set of dimensionless friction head-loss curves, verified by model studies are developed and described. Using the developed curves and reconnaissance field data, a method is given for predict- ing the changes in a riverbed after the designed jetty field is installed. /Head, Sediment Investigations Unit, Hydraulics Branch, Division of Engineering Laboratories, Bureau of Reclamation, Denver, Colorado. 2 /Hydraulic Engineer, Hydraulics Branch, Division of Engineering Laboratories, Bureau of Reclamation, Denver, Colorado. INTRODUCTION Steel jacks and jetties have been used successfully by the Corps of Engineers, highway departments, railway companies, and others to prevent damage to riverbanks, levees, bridge abutments, and other structures. The Bureau of Reclamation and the Corps of Engineers are using them to stabilize the channel of the Rio Grande within the floodway in the Middle Rio Grande Valley. (1)1 / The individual jack unit consists of three angle irons, 12 or 16 feet in length placed at 90° angles in three planes and joined at their cen- ters, Figure 1. Wire is laced through the angle irons in a standard pattern to tie them together.
    [Show full text]
  • Erosion Is the Process Where Soft Shorelines (Sand, Gravel Or Cobble) Disappear and Land Is Lost
    COASTAL EROSION Action Guide What is Coastal Erosion? Erosion is the process where soft shorelines (sand, gravel or cobble) disappear and land is lost. Erosion generally comes in two forms: 1. A Natural part of the coastal environment where a soft shore moves and changes in response to cyclic climate conditions and 2. Erosion can be induced by human interference of natural sand movement and budget patterns. Erosion can be slow and ongoing over many years or fast and dramatic following large storm events. Many erosion problems in the Pacific today, occur because of poor planning, inappropriate shoreline development, overcrowding, beach mining for building material and due to reef degradation. Erosion is a natural process It is important to understand that erosion is a natural process and in many cases is accompanied by its equal and opposite process “accretion”. Put simply, sandy shorelines are dynamic and should be expected to shift and change over time, sometimes by 100’s of meters. This process becomes an “erosion problem” if development is not carefully planned to avoid unstable shorelines. Why is it that erosion seems more of a problem these days? In past times, people lived in harmony with their moving coasts. Their houses could be easily moved to and shoreline homes were built in way which did not disturb shoreline processes (eg. On stilts or pylons). People knew and avoided dangerous or unstable locations. Today, building styles have changed and homes cannot be easily moved or replaced and lack of space often results in people building in locations which are known to be inappropriate.
    [Show full text]
  • Understanding Our Coastal Environment
    Preface The South Carolina Beachfront Management Act In the Beginning The Coastal Zone Management Act of 1977 was enacted to protect our coastal resources from unwise development. This legislation served the beaches well during its first decade, but as South Carolina became a more popular tourist destination, it became apparent that the portion of the Act that dealt with beaches was inadequate. As development crept seaward, seawalls and rock revetments proliferated, damaging the public’s beach. In many areas there was no beach left at high tide. In some areas, there was no beach at low tide, either. In 1988 and again in 1990, South Carolina’s legislators took action and amended and strengthened the Coastal Zone Management Act. The resulting Beachfront Management Act protects South Carolina’s sandy shores by increasing the state’s jurisdiction and encouraging development to move landward. South Carolina’s Beachfront Jurisdiction To find the boundaries of this jurisdiction, staff from the Office of Ocean and Coastal Resource Management must first locate the baseline, which is the crest of the primary oceanfront sand dune. Where there are no dunes, the agency uses scientific methods to determine where the natural dune would lie if natural or man-made occurrences had not interfered with nature’s dune building process. The setback line is the most landward boundary and is measured from the baseline. To find the depth of the setback line, the beach’s average annual erosion rate for the past forty years is calculated and multiplied by forty. For example, if the erosion rate is one foot per year, the results will be a setback line that stretches forty feet from the baseline.
    [Show full text]
  • PDF Brunel Et Al., 2014
    Geomorphology 204 (2014) 625–637 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph 20th century sediment budget trends on the Western Gulf of Lions shoreface (France): An application of an integrated method for the study of sediment coastal reservoirs C. Brunel a,⁎,R.Certaina, F. Sabatier b,N.Robina, J.P. Barusseau a,N.Alemana, O. Raynal a a Université de Perpignan, Laboratoire d'Etudes des Géo-Environnements Marins, 52 av. P Alduy, 66860 Perpignan, France b Aix Marseille Université, CEREGE, UMR 7330 CNRS, Europôle Méditerranéen de l'Arbois, 13545 Aix en Provence Cedex 4, France article info abstract Article history: This paper presents a shoreface sediment budget established for the 20th century (1895–1984–2009) along the Received 17 April 2013 microtidal wave-dominated coast of the western Gulf of Lions (Languedoc-Roussillon, Mediterranean Sea, SE Received in revised form 6 September 2013 France). The implementation of a diachronic bathymetric approach, coupled with the definition of sand reser- Accepted 12 September 2013 voirs (upper sand unit — USU) by very high-resolution seismic surveys and the results of LiDAR investigations, Available online 2 October 2013 offers a new means of defining precisely the magnitude and change trends of the sediment budget. The aim of this study is to link the Large Scale Coastal Behaviour (LSCB) of the littoral prism (expressed in terms of shoreface Keywords: Shoreface sediment budget sediment budget, shoreface sediment volume and spatial distribution pattern of cells) to climatic change, river Large Scale Coastal Behaviour sediment input to the coast, longshore sediment transport distribution, impact of hard coastal defence structures Seismic surveys and artificial beach nourishment.
    [Show full text]
  • Dealing with Erosion: the Spectrum of Coastal Erosion Control Methods
    2ND ANNUAL CAPE COASTAL CONFERENCE Linking Science with Local Solutions and Decision-Making Dealing With Erosion: The Spectrum of Coastal Erosion Control Methods Greg Berman (Woods Hole Sea Grant & Cape Cod Cooperative Extension) Photo Credit: Ted Keon Climate Change Impacts In Coastal Environments 34 5 12 Coastal Adaptation On Cape Cod we manage at parcel scale http://www.ipcc.ch/ipccreports/sres/regional/index.php?idp=223 The Spectrum of Coastal Erosion Control Methods Why protect properties……..? Town of Brewster example The Facts The Implications Value = $333,000,000 (don’t want takings) Only ~1% of properties To keep the same revenue, ~3% of town area the tax rate would go from 8.18 to 9.06 but they make ~10% of the real estate taxes or ~$300 per household The Spectrum of Coastal Erosion Control Methods • Do nothing 1. Will system recover by itself? 2. How far is the structure from the water? 3. Grandfathering protects structures (not lawn) before August 10, 1978 Photo Credit: Ann McNichol The Spectrum of Coastal Erosion Control Methods • Do nothing • Vegetation Plant Natives: Root systems stabilize. Take up water. Break the impact of raindrops or wave-splash. Slow down runoff Remove Invasive The Spectrum of Coastal Erosion Control Methods • Do nothing • Vegetation • Re-grade The Spectrum of Coastal Erosion Control Methods • Do nothing Horizontal • Vegetation • Re-grade • Managed retreat V E R T I C A L The Spectrum of Coastal Erosion Control Methods • Do nothing Photo Credit: Ted Keon • Vegetation • Re-grade • Managed retreat • Beach
    [Show full text]
  • Predicting Shoreline Evolution on a Centennial Scale Using the Example of the Vistula (Baltic) Spit I
    ISSN 00014370, Oceanology, 2012, Vol. 52, No. 5, pp. 700–709. © Pleiades Publishing, Inc., 2012. Original Russian Text © I.O. Leont’yev, 2012, published in Okeanologiya, 2012, Vol. 52, No. 5, pp. 757–767. MARINE GEOLOGY Predicting Shoreline Evolution on a Centennial Scale Using the Example of the Vistula (Baltic) Spit I. O. Leont’yev Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Email: [email protected] Received March 31, 2011; in final form, November 22, 2011 Abstract—The proposed algorithm comprises three main steps. The first step is the evaluation of the sedi ment transport and budget. It was shown that the root segment of the Vistula Spit is dominated by eastward longshore sediment transport (up to 50 thousand m3/year). Over the rest of the spit, the shoreline’s orienta tion causes westward sediment transport (more than 100 thousand m3/year). The gradients of the longshore and cross shore sediment transport become the major contributors to the overall sediment balance. The only exception is the northeastern tip of the spit due to the appreciable imbalance of the sediment budget (13 m3 m–1 yr–1). The second step in the prediction modeling is the estimation of the potential sealevel changes during the 21st century. The third step involves modeling of the shoreline’s behavior using the SPELT model [6, 7, 8]. In the most likely scenario, the rate of the recession is predicted to be about 0.3 m/year in 2010–2050 and will increase to 0.4 m/year in 2050–2100. The sand deficit, other than the sealevel rise, will be a key factor in the control of the shoreline’s evolution at the northeastern tip of the spit, and the amount of recession will range from 160 to 200 m in 2010–2100.
    [Show full text]
  • CLASSIFICATION of CALIFORNIA ESTUARIES BASED on NATURAL CLOSURE PATTERNS: TEMPLATES for RESTORATION and MANAGEMENT Revised
    CLASSIFICATION OF CALIFORNIA ESTUARIES BASED ON NATURAL CLOSURE PATTERNS: TEMPLATES FOR RESTORATION AND MANAGEMENT Revised David K. Jacobs Eric D. Stein Travis Longcore Technical Report 619.a - August 2011 Classification of California Estuaries Based on Natural Closure Patterns: Templates for Restoration and Management David K. Jacobs1, Eric D. Stein2, and Travis Longcore3 1UCLA Department of Ecology and Evolutionary Biology 2Southern California Coastal Water Research Project 3University of Southern California - Spatial Sciences Institute August 2010 Revised August 2011 Technical Report 619.a ABSTRACT Determining the appropriate design template is critical to coastal wetland restoration. In seasonally wet and semi-arid regions of the world coastal wetlands tend to close off from the sea seasonally or episodically, and decisions regarding estuarine mouth closure have far reaching implications for cost, management, and ultimate success of coastal wetland restoration. In the past restoration planners relied on an incomplete understanding of the factors that influence estuarine mouth closure. Consequently, templates from other climatic/physiographic regions are often inappropriately applied. The first step to addressing this issue is to develop a classification system based on an understanding of the processes that formed the estuaries and thus define their pre-development structure. Here we propose a new classification system for California estuaries based on the geomorphic history and the dominant physical processes that govern the formation of the estuary space or volume. It is distinct from previous estuary closure models, which focused primarily on the relationship between estuary size and tidal prism in constraining closure. This classification system uses geologic origin, exposure to littoral process, watershed size and runoff characteristics as the basis of a conceptual model that predicts likely frequency and duration of closure of the estuary mouth.
    [Show full text]
  • Beach Nourishment Effects Østerstrand Fredericia - Denmark 2017
    Beach Nourishment Effects Østerstrand Fredericia - Denmark 2017 Juni 2020 Project Building with Nature (EU-InterReg) Start date 01.11.2016 End date 01.07.2020 Project manager (PM) Ane Høiberg Nielsen Project leader (PL) Per Sørensen Project staff (PS) Henrik Vinge Karlsson Time registering 402412 Approved date 26.06.2020 Signature Report Beach nourishment effects – Østerstrand, Frederica, Denmark Author Henrik Vinge Karlsson and Per Sørensen Keyword Beach nourishment, Nourishment design, Coastal protection, Building with nature, BWN, Fredericia, Østerstrand. Distribution www.kyst.dk, www.northsearegion.eu/building-with-nature Referred to as Kystdirektoratet (2020), Beach nourishment effects – Østerstrand, Frederica; Lemvig. 2 Beach Nourishment Effects Contents 1. Introduction ................................................................................................. 5 1.1 Description of Study site .............................................................................................................................5 1.2 Division of study stretch..............................................................................................................................7 1.3 Description of Nourishment ......................................................................................................................7 1.4 Research design ..............................................................................................................................................8 1.4.1 Research questions..............................................................................................................................................................................................................................................9
    [Show full text]
  • Sea Level Rise and Coastal Morphological Changes on Tropical Islands New Caledonia and French Polynesia (South Pacific) the Project
    Manuel Garcin, Marissa Yates, Goneri Le Cozannet, Patrice Walker, Vincent Donato Sea level rise and coastal morphological changes on tropical islands New Caledonia and French Polynesia (South Pacific) The Project • Work completed within the CECILE project (Coastal Environmental Changes: Impact of sea LEvel rise )=> See Poster Le Cozannet et al. same session • Project objectives: to contribute to assessing the physical impact of sea level rise on shorelines during the recent past (last 50 years) and near future (next 100 years). • Focus on tropical islands : New Caledonia, French Polynesia, La Réunion (Indian Ocean), French Caribbean • What is the importance of recent sea level rise with respect to other causes of change ? • What will be the consequences of sea level rise for coastal change in the future ? GARCIN M., YATES M., LE COZANNET G., WALKER P., DONATO V. (EGU 2011) ‐ Sea level rise and coastal morphological changes on tropical islands Generic driving factors influencing coastline mobility, dynamics and morphology Coastline mobility is an indicator integrating numerous parameters • 5 families of driving factors affecting coastline mobility Erosion, accretion, transport... – Climate change External geodynamics – External geodynamic processes Pluviometry processes linked to climate change Biological Sea Level – Internal geodynamic Change, processes winds, storms, processes pluviometry... – Biological processes Coastline Anthropogenic Climate change actions and – Anthropogenic actions and mobility impacts impacts Tectonic, vertical Sea defences, • To note : interactions & movements, gravels isostasy... extraction, mining, retroactions daming.... Internal geodynamics processes GARCIN M., YATES M., LE COZANNET G., WALKER P., DONATO V. (EGU 2011) ‐ Sea level rise and coastal morphological changes on tropical islands Driving factors Or The data problem GARCIN M., YATES M., LE COZANNET G., WALKER P., DONATO V.
    [Show full text]
  • Coastal Geology of the Holocene Progradant Plains of Sandy Beach
    Quaternary and Environmental Geosciences (2021) 12(1):1-17 Coastal geology of the Holocene progradant plains of sandy beach ridges in Santa Catarina state, Southeastern Brazil Geologia costeira das planícies progradantes holocênicas de cordões litorâneos arenosos no estado de Santa Catarina, sul do Brasil Norberto Olmiro Horn Filho Universidade Federal de Santa Catarina [email protected] Abstract Beach ridges are indicators of supratidal and intertidal depositional environments built by waves. The major factors that influence on the ridge’s formation is related to antecedent topography, sediment supply, sedimentary balance, and substrate gradient. They consist of siliciclastic and/or bioclastic sediments whose grain size varies from very coarse sand to very fine sand. At Santa Catarina state, progradant plains are related to Pleistocene and Holocene regressive marine processes. The Holocene marine terraces, object of this study, predominate in the coastal plains of Passo de Torres, Pinheira, Jurerê, Tijucas and Navegantes, presenting heights from 3 to 6 m in elevations and 1 to 2 m in depressions. The ridge deposits are constituted by sandy sediments, medium to very fine, composed by quartz, opaque and heavy minerals and shell fragments. The runnel deposits comprehend silt-sand-clayey sediments enriched by organic matter. The evolution of Holocene Santa Catarina beach ridges is connected to the regressive events occurred after 5,1 ky BP that indicate the position of paleo coastlines and mean sea level of the Holocene. Key words: Geomorphology; Sedimentology; Coastal evolution. Resumo Os cordões regressivos são indicadores de ambientes deposicionais formados por ondas sob regime de supra e intermarés. Os fatores mais relevantes que influenciam na formação dos cordões estão relacionados à topografia antecedente, suprimento sedimentar, balanço sedimentar e gradiente do substrato.
    [Show full text]
  • COASTAL HAZARDS Too Many People Living Too Close to the Edge of a Rising Sea
    COASTAL HAZARDS Too Many People Living Too Close To The Edge Of A Rising Sea A Growing Challenge For The 21st Century This Report Is Part Of The Ocean On The Edge Series Produced By The Aquarium Of The Pacific As Products Of Its National Conference—Ocean On The Edge: Top Ocean Issues, May 2009 2 COASTAL HAZARDS Ocean on the Edge: Top Ocean Issues Making Ocean Issues Come Alive for the Public The conference brought together leading marine scientists and engineers, policy-makers, film-makers, exhibit designers, informal science educators, journalists and communicators to develop a portfolio of models for communicating major ocean issues to the public. This report is one of a series of reports from that conference. The reports include: Coastal Hazards, Marine Ecosystems and Fisheries, Pollution in the Ocean, and Critical Condition: Ocean Health and Human Health. There is also a series of briefer reports on film-making, kiosk messaging design, and communicating science to the public. All reports are available at www.aquariumofpacific.org COASTAL HAZARDS 3 4 COASTAL HAZARDS Acknowledgements Support for the “Ocean on the Edge Conference: Issues” held in May 2009, at Long Beach Top Ocean Issues” was provided by NOAA, Convention Center. Participants in the the National Science Foundation, Southern Coastal Hazards workshop session included: California Edison, SAVOR, the Long Beach Dr. Robert Dean, Dr. R. A. Dalrymple, Dr. Convention Center, and the Aquarium of the Conrad C. Lautenbacher, Jr., Dr. Jerry R. Pacific. Schubel, and Dana Swanson. Sandy Eslinger was the facilitator of the session. Leah Young We are grateful to the Conference’s National and Margaret Schubel were the rapporteurs.
    [Show full text]
  • EGU2009-7028-1, 2009 EGU General Assembly 2009 © Author(S) 2009
    Geophysical Research Abstracts, Vol. 11, EGU2009-7028-1, 2009 EGU General Assembly 2009 © Author(s) 2009 Sea-level proxies extracted from GPR reflection data collected across recently formed berm, beach ridge and swale deposits on the island of Anholt, Denmark L. Nielsen and L. B. Clemmensen University of Copenhagen, Department of Geography and Geology, Copenhagen K, Denmark ([email protected]) GPR reflection data have been collected across the most recent part of a berm, beach ridge and swale system formed during the last 130 years on the northern coast of the island of Anholt, the Kattegat, Denmark. The reflected arrivals have a peak frequency of about 250 MHz and they image the subsurface with a vertical resolution of 0.1–0.2 m to a maximum depth of 5 m below the surface. The berm and beach ridges with maximum heights of about 1.8 m and 1.5 m, respectively, appear as mounded features in the GPR sections. The berm ridge also contains low-angle, seaward dipping reflections. Similar sea-ward dipping reflections are also observed below swales, and current swale surfaces appear to constitute erosion surfaces. Reflections downlapping on a package of reflections, which is interpreted to be representative of upper shoreface deposits, are suggested to constitute good proxies of sea level. Tamura et al. (2008) suggested that similar downlapping reflections may represent a depth level of about 1 m below the mean sea level based on investigations of the Kujukuri strand plain in eastern Japan. We have made 17 depth readings of such downlaps along our 159-m-long profile.
    [Show full text]