Home Range of the Parthenogenetic Lizard Aspidoscelis Maslini (FRITTS, 1969), on a Beach Strand 83-86 All Short Notes:SHORT NOTE.Qxd 02.09.2018 11:02 Seite 1

Total Page:16

File Type:pdf, Size:1020Kb

Home Range of the Parthenogenetic Lizard Aspidoscelis Maslini (FRITTS, 1969), on a Beach Strand 83-86 All Short Notes:SHORT NOTE.Qxd 02.09.2018 11:02 Seite 1 ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Herpetozoa Jahr/Year: 2018 Band/Volume: 31_1_2 Autor(en)/Author(s): Hernandez-Gallegos Oswaldo, Lopez-Moreno Ana Esthela, Mendez-de la Cruz Fausto R., Walker James M. Artikel/Article: Home range of the parthenogenetic lizard Aspidoscelis maslini (FRITTS, 1969), on a beach strand 83-86 All_Short_Notes:SHORT_NOTE.qxd 02.09.2018 11:02 Seite 1 SHORT NOTE HERPETOZOA 31 (1/2) Wien, 30. August 2018 SHORT NOTE 83 Home range to cozumelus as recommended by REEdER et of the parthenogenetic lizard al. (2002). unfortunately: (1) anthropogenic ef - Aspidoscelis maslini (FRiTTS , 1969), fects on the open sand beaches by the de - on a beach strand velopment of tourism infrastructure may jeopardize the existence of parthenogenetic Home range is the area within which lizards ( HERNáNdEZ -G AllEGOS et al. 2015), an animal moves to acquire resources ( ROSE including A. maslini , and (2) most studies 1982) including food, shelter, mating part - including the herpetofauna of the Yucatán ners in gonochoristic species, nesting sites Peninsula are concerned with diversity (HiRTH 1963; GuTiéRREZ & O RTEGA 1985) rather than knowledge of ecological rela - and to escape predators; it may vary in size tionships ( CHARRuAu et al. 2015). The and shape inter- and intra-specifically with present study includes information about the biotic and abiotic factors ( PéREZ -P éREZ et structure of the home ranges of individuals al. 2017). in certain lizard species, biotic of A. maslini , which was compared with that factors such as foraging mode and absence of other lizards, including both gonochoris - of mating activities (e.g., in parthenogenetic tic and parthenogenetic species within the species of the genus Aspidoscelis REEdER , genus Aspidoscelis . COlE & d ESSAuER , 2002) can influence the This study was conducted at a tropical home range and movement patterns even sand beach located in km 95 of the Ciudad where actively foraging species (e.g., liz - del Carmen-Champotón highway, Cam - ards of the genus Aspidoscelis ) exhibit larg - peche, Yucatán Peninsula, mexico (19°4’ er home ranges ( HulSE 1981; VERWAijEN & 35.62” N, 91°3’57.76” W). The habitat is VAN dAmmE 2008). The diploid partheno - composed of halophytic vegetation with genetic whiptail lizard, Aspidoscelis maslini high levels of sunlight, salinity and strong (FRiTTS , 1969) , is a product of natural inter - winds; the vegetation comprises both erect specific hybridization between female Aspi - and prostrate plants of both shrubby and doscelis angusticeps (COPE , 1878), and male herbaceous form ( TéllEZ -V AldEZ et al. Aspidoscelis deppii (WiEGmANN , 1834), as 1989). The females of A. maslini actively demonstrated by genetic studies ( mORiTZ et use this beach strand community for thermo - al. 1992; REEdER et al. 2002; mANRíquEZ - regulation, foraging, burrowing, oviposition mORAN et al. 2014) . The descendants from and protection from predators ( HERNáNdEZ - these progenitors are exclusively female. GAllEGOS personal observation); to the According to lEE (1996), this species is authors’ knowledge, A. maslini is the only oviparous, terrestrial, diurnal, carnivorous species of whiptail lizard at the study site. and a wide-ranging forager; moreover, in Two seasons can be defined at the Yucatán contrast to other Aspidoscelis , females of A. Peninsula: dry season (march-may), and maslini are unwary and can be approached rainy season (june-February). Precipitation closely. Typical habitats selected by A. occurs from November to February on cool maslini include open sand beaches within its overcast days, called ‘nortes’, which signifi - geographic range, viz. parts of the Yucatán cantly decrease the temperature. in an area Peninsula of mexico, Belize, and northern of 4,000 m 2, nine samples of A. maslini were Guatemala ( lEE 1996). Although HERNáN- taken from 1999 to 2001 during different cli - dEZ -G AllEGOS et al. (2015) recorded the matic seasons including the lizard’s repro - home ranges of individuals of Aspidoscelis ductive season ( HERNáNdEZ -G AllEGOS et al. cozumelus (GAdOW , 1906), on isla de Cozu - 2003). An opportunity to add to this study mel, mexico, there is no data pertaining to more recently was not forthcoming; how - the home ranges of individuals of A. mas - ever, studies such as that of AlVAREZ et al. lini . Nomenclature for the Cozumel species (2017) have emphasized the importance of of Aspidoscelis is based on STEYSkAl (1971) documenting all possible sites and conditions who explained the basis for treating this of occupancy for species as a basis for under - generic name as of masculine rather than standing responses to long-term changes feminine gender. Consequently, TuCkER et al. in bioclimatic conditions. Thus, validly ob - (2016) corrected the spelling of cozumela tained scientific data on a little-known spe - All_Short_Notes:SHORT_NOTE.qxd 02.09.2018 11:02 Seite 2 84 SHORT NOTE HERPETOZOA 31 (1/2) Wien, 30. August 2018 SHORT NOTE Fig. 1: Spatial composition of home ranges of the parthenogenetic lizard, Aspidoscelis maslini (FRiTTS , 1969), from Champotón, Campeche, mexico. Each polygon represents the home range of one female ( N = 8). Scale bar = 10 meters. Arrow points to the north. cies remains perpetually applicable within a tory overlaps with conspecifics were largely historical context. The information the pres - absent (Fig. 1, Table 1). ent analysis is based upon originates from The average home range size of A. samplings ocurred from 1999 to 2001, how - maslini represents the smallest within the ever according to díAZ dE lA VEGA -P éREZ et genus Aspidoscelis recorded to date ( PERRY al. (2013; sampligs from 2008 to 2012) and & G ARlANd 2002), including both parthe - méNdEZ -d E lA CRuZ (personal observation; nogenetic [616 m 2 in Aspidoscelis unipa - evaluation during 2015), the study site did rens (WRiGHT & l OWE , 1965) , HulSE 1981; not change markedly since then with respect 45.1 m 2 in A. cozumelus , HERNáNdEZ -G Al- to habitat structure, lizard community and the lEGOS et al. 2015] and gonochoristic species population of A. maslini . [400 m 2 in Aspidoscelis tigris (BAiRd & during each sampling, capture-mark- GiRARd , 1852), jORGENSEN & T ANNER 1963; recapture techniques were conducted and the 306 m 2 in Aspidoscelis hyperythrus (COPE , date, time of day, and snout-vent length (to 1863), R OWlANd 1992] . This result con - the nearest millimeter) were recorded. trasts with theoretical predictions of broad using a drift fence trap, females were cap - home ranges for widely foraging species tured during their activity period (09:00- (HulSE 1981; ROWlANd 1992; VERWAijEN & 18:00 h). individuals were located in the VAN dAmmE 2008). Reduced home ranges at study area based on a bi-coordinate refer - coastal habitats in other species of lizards ence using 10 m x 10 m subdivisions of the including both sit and wait predators ( RO- habitat. To calculate a female’s home range, CHA 1999; kACOliRiS et al. 2009) and wide two or more recaptures were considered; foraging species ( HiRTH 1963) have been home ranges were calculated using the con - recorded previously. vex polygon method in mCPAAl (micro - Thermoregulatory benefits may ex - computer Program for the Analysis of Ani - plain the small home range at open sand mal locations) software package, version beach habitats for A. cozumelus (HERNáN- 1.2 (m. Stüwe 1985, Conservation and dEZ -G AllEGOS et al. 2015). in contrast with Research Center, National Zoological Park, previous studies, A. maslini in Champotón, Smithsonian institution, Washington, d.C.) Campeche, is thermally stressed, inhabiting (HERNáNdEZ -G AllEGOS et al. 2015). environments with low thermal quality (díAZ A total of 70 females were captured: dE lA VEGA -P éREZ et al. 2013), i.e., reduced 62 were recaptured once, six two times, and availability of thermally advantageous mi - two three times. Females with two or more cro habitats, and both energy and time invest - recaptures (N = 8) , based on the date of last ed in movements associated with the ther - capture for each lizard (Table 1), averaged moregulation are relatively high ( CAdENA & 69.1 ± SE 0.6 mm (range 65-71 mm) in SVl. TATTERSAll 2009). How ever, this popula - A total of eight home ranges that averaged tion exhibits a very high population density 34.9 ± 9.6 m 2 (range 0.7-79.7 m 2) in area, (HERNáNdEZ -G AllEGOS 2004; díAZ dE lA and covered a period of 207.1 ± 49.5 days VEGA -P éREZ et al. 2013; méNdEZ -d E lA (range 106-420 days), were obtained. Terri - CRuZ personal observation; evaluation dur - All_Short_Notes:SHORT_NOTE.qxd 02.09.2018 11:02 Seite 3 SHORT NOTE HERPETOZOA 31 (1/2) Wien, 30. August 2018 SHORT NOTE 85 Table 1: Body size, capture and home range data from eight individuals of the parthenogenetic lizard Aspidoscelis maslini (FRiTTS , 1969), on a beach strand in Campeche, Yucatán Peninsula, mexico . SVl α – Snout- vent-length upon first capture, SVl ω – Snout-vent-length upon last recapture, duration (days) – Number of days elapsed between first capture and last recapture. 2 lizard id (number SVl α (mm) – date SVl ω (mm) – date duration (days) Home range (m ) of recaptures) 2-14 (2) 58 – 04/19/1999 69 – 08/04/1999 107 27.7 2-15 (2) 54 – 04/19/1999 65 – 08/04/1999 107 1.1 2-16 (2) 59 – 04/19/1999 69 – 08/04/1999 107 33.8 3-10 (2) 60 – 04/19/1999 69 – 08/04/1999 107 0.7 3-14 (2) 62 – 04/19/1999 70 – 08/03/1999 106 32.0 8-17 (2) 51 – 08/04/1999 70 – 07/28/2000 359 61.3 3-9 (3) 55 – 04/19/1999 71 – 03/28/2000 344 42.9 5-20 (3) 61 – 06/03/1999 70 – 07/27/2000 420 79.7 ing 2015) , which may explain the unusually ACkNOWlEdGmENTS: This study was small home ranges observed, as stated pre - funded by the Theodore Roosevelt memorial Fund of the American museum of Natural History (grants 1999 viously in the small home range in A.
Recommended publications
  • Other Contributions
    Other Contributions NATURE NOTES Amphibia: Caudata Ambystoma ordinarium. Predation by a Black-necked Gartersnake (Thamnophis cyrtopsis). The Michoacán Stream Salamander (Ambystoma ordinarium) is a facultatively paedomorphic ambystomatid species. Paedomorphic adults and larvae are found in montane streams, while metamorphic adults are terrestrial, remaining near natal streams (Ruiz-Martínez et al., 2014). Streams inhabited by this species are immersed in pine, pine-oak, and fir for- ests in the central part of the Trans-Mexican Volcanic Belt (Luna-Vega et al., 2007). All known localities where A. ordinarium has been recorded are situated between the vicinity of Lake Patzcuaro in the north-central portion of the state of Michoacan and Tianguistenco in the western part of the state of México (Ruiz-Martínez et al., 2014). This species is considered Endangered by the IUCN (IUCN, 2015), is protected by the government of Mexico, under the category Pr (special protection) (AmphibiaWeb; accessed 1April 2016), and Wilson et al. (2013) scored it at the upper end of the medium vulnerability level. Data available on the life history and biology of A. ordinarium is restricted to the species description (Taylor, 1940), distribution (Shaffer, 1984; Anderson and Worthington, 1971), diet composition (Alvarado-Díaz et al., 2002), phylogeny (Weisrock et al., 2006) and the effect of habitat quality on diet diversity (Ruiz-Martínez et al., 2014). We did not find predation records on this species in the literature, and in this note we present information on a predation attack on an adult neotenic A. ordinarium by a Thamnophis cyrtopsis. On 13 July 2010 at 1300 h, while conducting an ecological study of A.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • A Review of the Cnemidophorus Lemniscatus Group in Central America (Squamata: Teiidae), with Comments on Other Species in the Group
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3722 (3): 301–316 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3722.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:4E9BA052-EEA9-4262-8DDA-E1145B9FA996 A review of the Cnemidophorus lemniscatus group in Central America (Squamata: Teiidae), with comments on other species in the group JAMES R. MCCRANIE1,3 & S. BLAIR HEDGES2 110770 SW 164th Street, Miami, Florida 33157-2933, USA. E-mail: [email protected] 2Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802-5301, USA. E-mail: [email protected] 3Corresponding author. E-mail: [email protected] Abstract We provide the results of a morphological and molecular study on the Honduran Bay Island and mainland populations of the Cnemidophorus lemniscatus complex for which we resurrect C. ruatanus comb. nov. as a full species. Morphological comparison of the Honduran populations to Cnemidophorus populations from Panama led to the conclusion that the Pan- amanian population represents an undescribed species named herein. In light of these new results, and considering past morphological studies of several South American populations of the C. lemniscatus group, we suggest that three other nominal forms of the group are best treated as valid species: C. espeuti (described as a full species, but subsequently treat- ed as a synonym of C. lemniscatus or a subspecies of C.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Prolonged Poststrike Elevation in Tongue-Flicking Rate with Rapid Onset in Gila Monster, <Emphasis Type="Italic">
    Journal of Chemical Ecology, Vol. 20. No. 11, 1994 PROLONGED POSTSTRIKE ELEVATION IN TONGUE- FLICKING RATE WITH RAPID ONSET IN GILA MONSTER, Heloderma suspectum: RELATION TO DIET AND FORAGING AND IMPLICATIONS FOR EVOLUTION OF CHEMOSENSORY SEARCHING WILLIAM E. COOPER, JR. I'* CHRISTOPHER S. DEPERNO I and JOHNNY ARNETT 2 ~Department of Biology Indiana University-Purdue University Fort Wayne Fort Wayne. bldiana 46805 2Department of Herpetology Cincinnati Zoo and Botanical Garden Cincinnati, Ohio 45220 (Received May 6, 1994; accepted June 27, 1994) Abstract--Experimental tests showed that poststrike elevation in tongue-flick- ing rate (PETF) and strike-induced chemosensory searching (SICS) in the gila monster last longer than reported for any other lizard. Based on analysis of numbers of tongue-flicks emitted in 5-rain intervals, significant PETF was detected in all intervals up to and including minutes 41~-5. Using 10-rain intervals, PETF lasted though minutes 46-55. Two of eight individuals con- tinued tongue-flicking throughout the 60 rain after biting prey, whereas all individuals ceased tongue-flicking in a control condition after minute 35. The apparent presence of PETF lasting at least an hour in some individuals sug- gests that there may be important individual differences in duration of PETF. PETF and/or SICS are present in all families of autarchoglossan lizards stud- ied except Cordylidae, the only family lacking lingually mediated prey chem- ical discrimination. However, its duration is known to be greater than 2-rain only in Helodermatidae and Varanidae, the living representatives of Vara- noidea_ That prolonged PETF and S1CS are typical of snakes provides another character supporting a possible a varanoid ancestry for Serpentes.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. Amphib. Reptile Conserv. | http://redlist-ARC.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Lizard ID Guide
    Lizards of Anderson County, TN Lizards are extraordinary gifts of nature. World-wide there are close to 6,000 species. The United States is home to more than100 native species, along with many exotic species that have become established, especially in Florida. Tennessee has 9 species, 6 of which are listed for Anderson County. Some are fairly widespread and easy to observe, such as the Common Five-lined Skink below. Unfortunately, the liberal use of pesticides, combined with predation by free roaming house cats have taken a heavy toll on our lizard populations. Most lizards are insect eating machines and their ecological services should be promoted through backyard and schoolyard wildlife habitat projects. Lizard watching is great fun, and over time, observers can gain interesting insights into lizard behavior. Your backyard may be a good place to start your lizarding career. This guide will be helpful for identifying our local lizards and will also provide you with examples of lizard behaviors to observe. Some species must be captured—this can be challenging—to insure accurate identification. Please see the back page for more resources. Lizarding Lizard watching, often referred to as lizarding, will likely never be as popular as bird watching (birding), but there is an advantage to being a “lizarder.” Unlike birders, you don’t need to be an early riser. Bright sunny days with warm temperatures are the keys for successful lizarding, but like birding, close-up binoculars are helpful. A lizard’s life centers around three performance activities: 1) avoiding predators, 2) feeding, and 3) reproduction. Lizard performance is all about optimal body temperature.
    [Show full text]
  • Ctenosaura Defensor (Cope, 1866)
    Ctenosaura defensor (Cope, 1866). The Yucatecan Spiny-tailed Iguana, a regional endemic in the Mexican Yucatan Peninsula, is distributed in the Tabascan Plains and Marshes, Karstic Hills and Plains of Campeche, and Yucatecan Karstic Plains regions in the states of Campeche, Quintana Roo, and Yucatán (Lee, 1996; Calderón-Mandujano and Mora-Tembre, 2004), at elevations from near “sea level to 100 m” (Köhler, 2008). In the original description by Cope (1866), the type locality was given as “Yucatán,” but Smith and Taylor (1950: 352) restricted it to “Chichén Itzá, Yucatán, Mexico.” This lizard has been reported to live on trees with hollow limbs, into which they retreat when approached (Lee, 1996), and individuals also can be found in holes in limestone rocks (Köhler, 2002). Lee (1996: 204) indicated that this species lives “mainly in the xeric thorn forests of the northwestern portion of the Yucatán Peninsula, although they are also found in the tropical evergreen forests of northern Campeche.” This colorful individual was found in low thorn forest 5 km N of Sinanché, in the municipality of Sinanché, in northern coastal Yucatán. Wilson et al. (2013a) determined its EVS as 15, placing it in the lower portion of the high vulnerability category. Its conservation status has been assessed as Vulnerable by the IUCN, and as endangered (P) by SEMARNAT. ' © Javier A. Ortiz-Medina 263 www.mesoamericanherpetology.com www.eaglemountainpublishing.com The Herpetofauna of the Mexican Yucatan Peninsula: composition, distribution, and conservation status VÍCTOR HUGO GONZÁLEZ-SÁNCHEZ1, JERRY D. JOHNSON2, ELÍ GARCÍA-PADILLA3, VICENTE MATA-SILVA2, DOMINIC L. DESANTIS2, AND LARRY DAVID WILSON4 1El Colegio de la Frontera Sur (ECOSUR), Chetumal, Quintana Roo, Mexico.
    [Show full text]
  • Molecular Phylogenetics and Evolution 55 (2010) 153–167
    Molecular Phylogenetics and Evolution 55 (2010) 153–167 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Conservation phylogenetics of helodermatid lizards using multiple molecular markers and a supertree approach Michael E. Douglas a,*, Marlis R. Douglas a, Gordon W. Schuett b, Daniel D. Beck c, Brian K. Sullivan d a Illinois Natural History Survey, Institute for Natural Resource Sustainability, University of Illinois, Champaign, IL 61820, USA b Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303-3088, USA c Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA d Division of Mathematics & Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA article info abstract Article history: We analyzed both mitochondrial (MT-) and nuclear (N) DNAs in a conservation phylogenetic framework to Received 30 June 2009 examine deep and shallow histories of the Beaded Lizard (Heloderma horridum) and Gila Monster (H. Revised 6 December 2009 suspectum) throughout their geographic ranges in North and Central America. Both MTDNA and intron Accepted 7 December 2009 markers clearly partitioned each species. One intron and MTDNA further subdivided H. horridum into its Available online 16 December 2009 four recognized subspecies (H. n. alvarezi, charlesbogerti, exasperatum, and horridum). However, the two subspecies of H. suspectum (H. s. suspectum and H. s. cinctum) were undefined. A supertree approach sus- Keywords: tained these relationships. Overall, the Helodermatidae is reaffirmed as an ancient and conserved group. Anguimorpha Its most recent common ancestor (MRCA) was Lower Eocene [35.4 million years ago (mya)], with a 25 ATPase Enolase my period of stasis before the MRCA of H.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]