<<

KINS/HR-707

BS&1 ESR

ESR dating of the rocks

2006. 1

S S CH tf H

Kins r\ r\ u go T ^0 gn oJ Kl M K rh K" si Di- RO P900Z !<0 o W 'Kir oP 30 K ?J So 3D V< cc oM CO ~ W E LU n- n- r\ 3"0 30 KO oO ■KHu ||0 Klo uJ TF im 30 KO n- p< 30 # oiU gr K n ofO iH r\ r" iTJ U4 w 50 Sr oJ oh W of K mini im rs o|U M # Hr iH r\ ioJ * aJ I

[y to th-iria •

|oF2 #tb IK)## ib # tkitr R> Al

#H§- # totb to HS3 • tr# tbio ## HS3 to^-fo "Sr # •

[# tt- "a [y io## iS-UB: [to lb io [y^ HS3 * [o#&-# #lo [o [y## •

to" m fb # H"l |o# ti^iir Po III

#[/[Y## -[aMci ##|o [bR>k# asa-

# o' Br In te# |o# B^-cb P° ||

## ^#tbto asa -jo##

# Ik " i

1o o SUMMARY

I . Project Title

• ESR dating of the fault rocks

II. Objective and Importance of the Project

• Determination of the last activity of fault rocks using ESR dating method

III. Scope and Contents of the Project

• Recognition of the possibly active faults

• Collecting of samples for ESR dating

• ESR dating of fault rocks

• Geological interpretation of results of ESR dating of fault rocks

IV. Results and Recommendations for Application

• Evaluation of the space-time pattern of fault activities of the fault system

- in - CONTENTS

SUMMARY IN KOREAN...... i SUMMARY IN ENGLISH...... Hi CONTENTS IN ENGLISH...... v CONTENTS IN KOREAN...... vii LIST OF FIGURES...... ix LIST OF TABLES...... xiii

Chapter 1 Introduction ...... 1

Chapter 2 Principles of electron spin resonance dating of fault rocks ...... 7

Chapter 3 Method of ESR dating of fault rocks ...... 11

Chapter 4 Sample of fault rocks and ESR dating ...... 15 Section 1 Ungsang site...... 15

Chapter 5 Spatial and temporal pattern of fault activity of the Yangsan fault zone ...... 27 Chapter 6 Spatial and temporal pattern of fault activity of eastern part of the Ulsan fault zone ...... 41 Chapter 7 Spatial and temporal pattern of fault activity of the llkwang fault zone ...... 49 Chapter 8 Spatial and temporal pattern of fault activity of the Gampo area...... -...... 55 Chapter 9 Fault activity of the Uljin area...... 59 Chapter 10 Fault activity of the Yeonggwang area...... 61 Chapter 11 Quaternary fault activity in the southeastern part of the Korean peninsula...... 63 References...... 79

v N LO LO CD LO CD > * X OJ st ■st LO LO CD s £

Sr uf UJ nJ F0 ioO mo mo mo ujo Kr r-\ UJ * «gu SPU ftii o'K FID $0 Kr Ko mo Kr KT Kr g o'K R0 m|r * xJ xJ xJ xJ r\ ■K|r No Ko No No No mo UJ Kr of M" if ON $0 xJ < 31 FJ K" K" T KO ^0 No 'K|0 K0 of ■Kir * • of ■Kir F" oT oT mo uJ KN K" mo mo mo u Kr oN oN FT Nr FJ "FvJ oT oN oN 'K|0 st FJ 'Kio 'K|0 'K|0

ESR No sr tP R R uJ uJ u"J

32 1 xj\ 471 44 y dH #2 22 s| oil (After Noller et al„ 2000)...... 6 32 2 ye*# 4 oil y§4 4 o| y-Af^oll 7|ojoj- o|gs|-y#o||

44I yy 247f y#2 44 444 d(a| 44

244* Aj^o| Ai|7|7|- cfA| #7fyy 2# 32 £A'£ (After Lee and Schwarcz, 1994) ...... 9 32 3 ESR =r22cH/4437|4 oil (After Lee and Schwarcz, 2001)...... 10 32 4 ye 44 243:4 44 4 4 #2 42 (Modified from Lee and Schwarcz, 1994) ...... 14 32 5 42y#4 44444 4Hi 2 4^44 42 (Modified from Lee and Kang, 1964) ...... 17 32 6 #2-424 34 §1 4^451 42...... 18 32 7 y@4 45. 27| 44 E'(a), OHC(b) 2 Al(c) 2s4 244* 343 ESR 444 4437|4°| 44(d)...... 21

32 8 4#4 4^ @7| 54 E'(a)4 Ai(b) 224 2 242 3E|zl ESR 244 4437144 44(c)...... 22 32 9 4#4 MS 27| 64 E'(a)4 Al(b) *34 2242 3E|3 ESR 244 4437144 44(c)...... 23 32 10 y#4 MS @7| 74 E'(a)4 Al(b) *34 2242 3E|3 ESR 2 44 4437144 44(c)...... 24 32 11 ye4 MS *7| 84 E'(a)4 Al(b) *34 *44* 3E|3 ESR 2 44 2437J44 44(c)...... 25 32 12 42y#4o|| 2-3*-* %il 471 y#4 ESR 244 *42 ...... -32 32 13 4140-160 22 2 222 4244 2e##4 242 *3 ■ -33 32 14 4110-120 22 2 224 4#44 2e##4 442 *3- -34 32 15 4 80 22 2 224 4##4 2e##4 442 ...... -35 32 16 4 65-70 22 2 224 4##4 2e##4 442 #4 -36 U-.E. hd 01 32 17 4 50 22 2 224 C3 CD T~ '—I ye##4442 -37 32 18 4 40 22 2 224 y-424 ye *#4442 #3 - -38 3 2 19 4 30 22 2 224 2# #4 y#*44442 44 - -39

ix - ziW 20 %il 47| ESR A|7}a 45 Zl^ 21 20 2 @-^5 ^#^^1 ^...... 46 zz.#! 22 10 S ...... 47 Zl^ 23 ^ (Modified from Kee et. al., 2003)...... 51 Zl#j 24 W#Ef# Wqfoil ^l 47| ESR ...... 52 Z1W 25 ^cH^I A|gs 5U A|g (Modified from Kee et. al., 2003)...... 56 ZL#j 26 A{| 47| Ef#^l ESR azta ^...... 57 Zl#j 27 #a^M x|@ ...... 60 Zl#| 28 Sj ...... 61 ZL#| 29 xi| 47|o|| g-gfsoll (After Choi et al., 2002) ...... 66 Zl^l 30 %|| 47| ^ #a (Modified from Choi et at., 2002)...... 66 Zl%| 31 ?$fo|# Ete^l (After Mount and Suppe, 1987)...... 67 Zl#j 32 sf 140-160 3 y-#^oi|A-j ^2} Et#-g#s| gaaf ^ §tj gi-8=:aM M ...... 68 ZlW 33 110-120 S ^#-^oi|A-j #Ay& ^g^.o| ^ ^ 69 Zi#| 34 sf 80 a Ef#e#s| #aa ^ 5U @aEf#cH^I ^?f| ...... 70 zi#| 35 iM-oj-HaflOl-^ tiAl-a-S^ZLBl ^[|joj|A-jo| C* A|-X| xj ji[ x| #g1^7j|# (After Lettis and Hanson, 1991) ...... 71 ziW 36 ^ 65 -70 a W-#-^o||A-1 Ef#e#s| okAj. o, wr»kzto| gj.^1 ...... yg 37 50 a W-#^oi|Al Ef#g#a| gU #AfEf#i4|s| M ...... 73 zt#| 38 4= 40 SJ-'j S W-#-^ot|Ai Ef#e#2| #7fa

x &I- 33 #33#33 #333 g-?j| ...... 74 zi# 39 3 so #5 3 3#s ^#^oj|A-i #^3 3#e#3 333 3 33 sj #33@33 #333 3+7j| ...... 75 zlH 40 91 = 20 3^ 3 3#S ##^o||A-l #^3 3#e#3 335 3 3fc5 3 S53S33 #343 331 ...... 76 41 4 10 33 3 533 #5¥3|Aj #3 3 3@3#3 533 55£ 4 35 3 #53#3 5 #3=343 33 ...... 77

xi e n

1 SeSRI R1S ESR S R1745. §y 14...... 26 2

10 SiSS ^ qh<41 gitg 41 471 S#a| 41## #7| ...... 58

- xm - 41 1 ^ A-i ^

#44## 4##4^-g- XI] 47M 4###4 #44 4#Ag_ 4444 (Kasahara, 1981). 4 4 4 444 Xj] 47] 4 #44 4a13: ##o] # 4 4 51 44 #51 #4# 4# 7]^& #4- #44#4 #7]-# #7]-^#4^ # #/HM7]# 4#4 # ^XM 4^#o] 4 # #, 4#, 3.^51& # f #4# #44#4 #4 44447}4 # ^-4 X}&# 4 #44- #44#4 #44 ## ^ 444 ^E|]6|] C|]# 4& 4 444^444 2]^# #4 #4 o}^ 444X11 ^o]7|] 44. 444 4444 #4x] 444 7]]## 44 ^ 4^4 ## #4^] 4]% 47|], 44x], 4 #4 #44#47]- 7]]#^ # 447M 44 #7]-# 444 $14 4 4^-44. 19704 4444 4444 ^4 # 4444x] 44^ 44 7]]4# #44 44 444 4xM4 ^ 4444 4#4 4-8 -444. zz.%44 4 4#x}## 444 4x}44 ^ 4444 4#4 4-8-44 #44## 47]-#^ 4# # ^xi]44 $143. 444#4. 44 4e 4#^ #444 4##4 47]- 4xl #4444 ^ 4##4 444# 4#44 44 5i44#4 x}&# #444 ##4#4 44 47]-# 4^#5i $14. x]##-x}## 444 ^44# ## 7]^4 #44 ?]-4 7]f# 44-44 4 # 7}&# 4444 44##4 q]4

1 34444 4#& #44 4444# ### 44# #27} e 44# $)4. ## 4# #24 44# #44^4# 444433 44 ## #47} € 44 e #^#2 ^ 4#4 44# 444# #7} §1# 444. 44## #4 444 #2 4 44 44# 44 #4444 #3#, 44# 444 #4&# 4444 44 ^# 2# 4444 #44 444 44#2 # 44 444 ##444 4 4. 3.4444 #4# 44 44-4 44 #44 #44 444 #43 444 4 4. ##4?} ### 4 44#444 44444 4# 444 4442: # 44 44 #4# #44 #44 44, ####33 #4 444 4## 44 444 44#2 # 4444 #4# 444 #44 44. ###, 4&4# 44# #, #4, ###4 ## ##4 #4#4 444# ##4 44 ##4 #3 44 4 a# # ##4 #44 #44 44# #44 #4 44. ##4 #4#4 444 # ##44# ##444 # #4# 4444 ### #4# 4&#, #4 ## #4# a%#4, 4##4, &4# 44# #3 #4-4 ^43 ####. 4# # 4, 4-4, 4##, #44 44# 3# 44# ## 4## ##4 ####4 4 4 #7]g 444 4## 441 #4# 34## #44 #43 ###4. ##4 # ###4 # ##44 #3 44 4&# 2# ##4 ##4 #4# ### 4##2 # 4#4 #4# #4##4 #2# #44## 44433 4## # #4(McCalpin, 1996). Knipe(1989)# ##### ### 3# ##4##- 4 4)3 #44# 7}43 # 3# ##### 434 ## #4# 7}43 #43 334##. #4 44## ###4 ##2:* ##44 ####4 #44# #444# ##* 424^3 # (White et al., 1986; Blenkinsop et al., 1988), #4 44## #4 44 # #2 4444 43# ##44 ####4 #44# M ##4#4(Mckee et al., 1984; Bell and Katzer, 1990). ##433 4444## ### 4414 3## 4 #44 #4 #4 #4# 3# 4^ ## 43# 444# 4#4 ### #44# ####4 44# ##41 #44, ##4 2# ####4 #4 #4# #4- # # ## #### 444# #4 #4# # # ####44 ##4# 344# #### 44# 4##4. 4##4 #4-#2(layer)4 44# #44#4 ##4 # #4# 14C, Fission track (FT), Thermoluminescence(TL), Optically stimulated luminescence(OSL), Electron spin resonance(ESR), K-Ar 3#3

- 2 - U-series 4^ #4 $14(314 1). 4 #44 #4 *#^4 #44 4 47] #4 ^44 4#*4 *4 #4* ##4*4 7}4 #44 4^ # 4444. ^C

3 # ESR ### 4#44 #4# # 44. 4444# #44w4 4#4^ ## ## 4#4(Buhay et al., 1992), #44^4] ## 444 ^4#A ##4 4 #4 4 4 #4 44(Schwarcz and Grun, 1992). 91 #4 A#4 ^# 4 ESR #^7} #4#^47} #44 #44 ESR 4^7]- 44 ^7]-4# 4 44 444 4444 4444# 44444 4## # 44(Tanaka and Shidahara, 1985). 3:44 OSL 444 ##& 4 44# 7]4 4-§-44 4 3! 4 4. 44 47% 4#4, 4444 ##2:4 44 444 4 (surface textures and weathering rinds)7} 4444# #4444 44# 4 44(Kanaori et al., 1980, 1985; Colman and Pierce, 1981). 4 #4# ^4444 44 4^4 4&# ## 4, #4444 #44 444 4444 #7}#4. 4^### ^4 #4 4 ##444 3:44-7] #4# #44 ##4 444 ## 44# #444# A1 £.7} #44- Hailwood et al.,(1992)# North Wales 4 Anglesey 4 4# Porthy-pistyll ##44 44# ##444 J1 # 4 4 (high - coerci vity) 4 4 4 4 (reverse polarity) 4## 444 ##4-7] (chemical remanent magnetization) 4A m#4#4. 4 444 ##7}7]# ##4 444 ## 44 4#4 ### #4 4# #4M 4^1 444w& 444 ##7} 7] #4 47]# ##4 ## 47]# 4444 ##. 44# 444 44## 4# #4#4#44# 4444 H4 (calibration)# #4 4# #444 44. ##447i 7]] 4 4 #4# 4#44 44# 44 7] 4 4^4 ^ 47]# # 44 # $14. K-Ar 44 Rb-Sr #4#4#4## 4#44 #### 4#4 4 4# 4###4 #4 44# 44 # m #4(Kralik et al., 1987, 1992). Scholz et al.(1979)# #### #4 4##4 44 W# #4 ## 4^-#(Ar) 7^7]- 4 ^1444# 7]-4 44, K-Ar ### 4#44 ##44471 #4# 4#.## 4 44# #4 444. ##W4 #444 #4 # (fission track dating method)# 4#44 #### 44 44# 4#4(epidote)4 4# 44# #4444(Bar et al., 1974). Tagami et al.(1988)# #### #4 4## 4 44 #44 (apatite) 4 4# 4#^44 w# 28444431 ##444. Eyal et al.(1992)# #4#

44# #4 44 #4 h (uranium series dating)# 4 #44 ###4 A1 4 4 4 #4## 2.## camotite 4 tyuyamunite4 ## A]7]# #44#4. ^1 #4#

4 *$144 44 44 #A}4 #*44 4# 4^ 44^1^ ### 4-444 A]# 4 44-4 44 444-#* 4* ##* 4*4* 444. 4*4# ESR #4 94 4 *# *#* ### Ikeya et al.,(1982)4 #4 4# *7% 4 $124, Lee and Schwarcz(1994, 1995, 1996, 2001)4 #4 4# ###4 -#--§-444 4 44. ESR #4 44 ## ### 4# #* 44 2 AMI# 44 4 $1* 44# 4-43. 44. *4 4*#2*## ##4 44# 4#44 4# 4 #444 444 4## ##(44)# 444 #4. #*# #* 44# #44# 4## 44 444 44# #* 444 $1#4, 2.# 444 444 4&# #44 4#44 7}*4 44(4, #**#** 44; 4 544)# 4444 #4. 4 44 4 4#4 #44- 4 4442. 4#*#4 4 4 24# 4*4 4444 ##444, 4**#** 4#44 OSL #444* # #^2* 4 4*# 44# ##44 4*# #* 44# ### # $14. 2 44 44 #44444 44 *4# 4#44# *** #4 ^# 444. 44 4 4 44*22 *##* 444 444 4444 #4# 4## 4*# **7} ^4 ###$124, 44 4*# #* 44# 4# 4*4 ESR #444 *#44 4 4## # $14. 4 44 444 44444- ##42. 4*# 444 ##44 71- #444 41*, 4*# #* #4* ##44 #4H* 444 4### 44 # #4444 44-. 4#4 ##444# 7%#* 444 ^37 4*444# 4# 4*4# 44 444 4*#*4 444 4*# **7} 444$14(4, 444 *, #44*, 4444# *). ESR #4# 444471- 44444 7H ##4 4 4# 444#4 4## # $14 4 4444 44 44 4### 44* ## # # $14. *4 ESR #444 #4 44# 4 44 44#4 $1# 444 44 4 444 444 4444 $1# 4*44# #*44# ##4*4 ## 444 4. 44*# 4**4* #71-4442# 4*4 4# 444##4 4444 $14. 444*471- 44*# 4**4 #442. $12*2 444*4# 44-444 #*4 4# #** 4 4## 44444# #7M}*4 *24 7}2# 4*44. 4 4*471* 4*44 4444247I *44 a.* ESR #44# 4&* *4 44 444*4# *44 44* 4**4 *44* 4*## #*44* *# 42 4*## 4444 *4 ^ 4* 4##*2** #4 #444 4*##

5 U fir 41 ojtl # Itijo _ok, M ok M. Jim 44 -?

:on.

tmin

ionic

apatite. lavFu;

ai

’ hocks"

ayslo!

m Atccn.

nan-

-adicUon.

in

Ic dsiton

'V ; o:

chotges Itoiw nont-ci

?;> recks

have

=r«

tit Method

hack.

of eUs-clions carnage

o: o( decay

■ nudities

ori tacks. ’ Phs-cn che?r,tc\

Basis in

iauti

d

T..2CC0.

AccumuWono(9*ecJ:on)ficrv»lQtk*ticAdeteci& Accurndalt nudities co5;*?oyeiMc dal.-.-tg

Oumiim.

-1. day.

&

lesononce

sills

\w, series,

sands,

is

s

Eieoltanapln

p

Fiuvkii

Uranium d

a" 2000.

depoW \< day.

PVfOCiauHi

2000.

& H-K.

tits, d'Mi Materials slits: ?.U

wl Leo. x coNocj

Ku, ot vr

Anti fctMdWwou#

3.

.vonds.

\1v H..

. Regionol Modne

Eol-on Schwatcv

6. K-ArandAi-Aj

etroij

? (yrs) U$nr,e. --

(

-o range geodwanolygy.

Resolution

Age < nuciiaes.

limfne^cence

0. : 2fX

Cosm-o^enic

1999,

Lappa-',.. Status

f-.M..

And

.

J

Phillips.

Picaon, And

;

™U-="*Th L.

$

M.P

Method ?-etio, Rxmon.

. U-series: Electron-spin Luminescence Fission-track: i 5.

6. 3. of

Type Method

of

Result Type v, U Xi 4x nSi 4> ^ 4 (A fte rNoller et al. n\ 2 9 esr 7i-a a! aai

ESR #4 44 #4 44# 4-§-#4 4444 ##47]# #44^ #4^ 4## #4. ESR #^(signal)4 414# 47}*# #4$1# #&# #44 #7} # 43)47) ###, 4#4#4 #4# 44 4 7} #4 #7}#(defects)# #4# # #&4 * 5} (paramagnetic centers)-4 #7}# # 7} x} 7] #4 4] (ESR spectrometer) 4 44 4## 4" $14. 4### ## 4# #4 $)7}4 $147} A] 5, 4 #4 7] 47) (frictional sliding) 7] 4 4 4 444 47}4###(local heating and local lattice deformation) 0)] 4 4) 47}## 4491 4 #3-4 447} 47}#o_3.#E) 444^.7] ### ESR 4^4 47)7} 4^3. #4 #4 ESR 4

JL# 7)4 4a) 4 4 44(zeroing of ESR signal). 4### ### 4# #4# 4aE44 444#4(^& U, Th, K)4 44-4444 44) #&4 44# 4 47}## 44 447)144 ESR 4^:7} 44 44-7)1 44. 4 44 44 ESR 4^4 4)7)4 ^44 44 4444 414 (dose rate)# 4444 4### 4f- 4 444 44# #4-7)1 44. ESR #4 44 #44$)# 4#44 4*4 444 ##44# #44# 4# 7] #4— S. 2444 44°) #-S-4r}i 7}) 4-7}2:4-4 (additive dose method)# 4#4 #7}4 ^(equivalent dose; De; 44, Gy) #4 4) 444^4^4 #44 # 4#4 &4-#(dose rate; #4, Gy/year) #4. #7}### &7}#& 44## 444 4# ## 4#4 4#(ESR 44)# ## # 47)1 #4. ESR #444 #44# 4#44 4*4 444 ## 44# #444 4#4 # ESR #±7} 4### #4 #44 40] s)4## 7}4 4 #-8.44(zL4 2, Fukuchi, 1988; Schwarcz et al., 1998; Lee and Schwarcz, 1994). #4 Lee and Schwarcz(1994)* 4### #4 47}#4 4# 4215)44 44 47}44## 4 4444 44 44-4444 4# ESR 4^7} 44 #43. #4444. Toyoda and Schwarcz(1996)* 44 44# #4) 4 4$)7} 4 #7) 4 ESR #44 #3E# 2:7}4^4. 0)7} 431* 44# # ESR 4^.4 4)7)7} 44# 444-Ji Lee and Schwarcz(1994)4 #4# 444 444. Rink et al.(1999)# 4iLtil7]3

7 #4 #4# 44 44# 44#4 OSL 4&4 #-#4 4## 4 4 #37] 7} #& ## ^7}## 44431 Lee and Schwarcz(1994)4 ^44 ### #4444. Lee and Schwarcz(200D# ESR 44# 44^# 7]e#& 4 3#3& 4^f 44(3%4 3). 0)4], 4 444 ESR 44(Mu%p/g pZateou ESJ? aggj# # 7}# 444 ESR #3(4, E' 4 A1 43)4 44 ESR 447]- 44 4#37]7} 44- ### 4^44 441 44^.7] 4444 ##4 44 #44# &4 4. #4, 4 #4 ESR 44 ## 44 #4# ESR 44(MuZ^pZg ESI? age and/or Single plateau ESR age)/ 4 7}x] 444 ESR 444] 4 4 ESR 44 7]- #44(4- 44 ESR 44), 44^ #44 43# 44 #44# &44(44 #44 ESR 44). 44, 44 ESR 44(Max;'mum ESE ag-g)# ESR 447]- 4 4-3.7]7]- #4#4 44 4MM3& 4444 ^44 ESR 444 44 #444 #4#4 ^#4. ## # 7}4 43# 4##4 #4 447} 4 & 44# 4 a}#4. 4 4# 7}# #-# 44&jf-# #4 ESR 444 4###4 #444 # 4444. 44 4#4, 4#44 444 4##- 44# ESR 44444 #4 4 ## 4 # 7}## 4 #4. 4#4# #4 ESR 43.7} 4 4 4# 7] #4 ESR 4"444#44 ### #444# Lee and Schwarcz(1994) 4 444(1999)4 ##4 4444 44. Fault movement

Time (ka) zi^ 2. 7]^^ 6]^r#4-§-4 ^ 47} 4^1 ^7} ^^-6]] tM ^ Ll^:^ 4717} cM 51-i- nQ S-^jS. (After Lee and Schwarcz, 1994).

9 3.

ESR ESR age (ka) 2000

0

Ihwa Won Grain Grain

40 40 3 1

size size

(micrometer) (micrometer) 60 80 120

4 120 Samples

(After 160

10 Lee to LU tr ro 1000

600 800 200 400 200 300 500 100 and 0

- - - - 0 Won ------

Won d)

Schwarcz, , ------Grain Grain

40 5 10 , ------

size size , ------

(micrometer) (micrometr) 80

, ------

2001). , ------Al 120 r

Signals — signal

— . ------160 3 # ESR 4=^1 W

4#44 ESR #444 #4 44# 4#4 #4(:%4 4).

(1) 4#43144 #a# 4 ##2: a.2:# &# #444. 4#4 ## ^44# 4#### 4444. 5z## 4#4 4#a 4444# 44. 4#44 44 44(Type I, n, m, IV)# #444. Type I, E, IV(4#447l- #4)4 4444 444 #4444 444 4#4# 4&4& 4444. 4&44 444 4 a# 4444 44 ##4 #4# 444 44. (2) #444 5144444 4#44 44 ## #4 ##44# ##44. 49# 4 ### ^4# #4# 444 4 #431 #44 4 80g44 ##44. (3) 444 4#4 4 a# 7}^ 31 ## # 44(12M)4 #4(12M)# 4444 4 444 #4# 4## 44 ^#4. 44(12M)4 #4(12M)# 4444 44 4 44# 44 ### #4 2-3431 4#44. 4#4aa 444 #4# 1 : 2a 4# # 44 ### 44 44 4## 4444 44# 3144 444 4## 31444. (4) #444 #4# 4## 3144 4a# 4(44, #4) 4#4 314# 444 #a 4#4 31444. (5) 4# 444 4 a# 31# 4#44 4 44a4(25pm44, 25-45/an, 45-75/an, 75-100/an, 100-150/an, 150-250/an)#a 44# #444. (6) #44 44# 4a444. (7) #2:44 44# 44 31# 4#44 (4)4 44# 4#44. (8 ) 44444 (Frantz isodynamic magnetic separatee)# 4 #44 44 4 4 # 4 ##(#3- 444 44)## ##31 44. (9) Fluoboric acid(HBF 4, 1M)# 4#44 444 4a4# ## 44 SM4. # #4314 4 (ultrasonic cleaner)# 4#44 4 44 #4 4# #### 314 4 4. (10) 444 4a4## 44 ^4 4a# #a4 # (7)4 (8)4 44# 4#4

11 4. (11) Jeol JES-TE200 ESR spectrometer# 4 #4-4 44-4 4# ESR # 3:# #444. (12) #44 ESR #54: 4"3 4# #44 4# ESR #57} 3# 44# 4)7} 4 (9), (10), (11)4 4-4# ###4. (13) 4 44-34^3 107M lOOmg 44 4&# #4##. 44 25-45/an a.7]4 43.3.4-4 107H4 100rng4&# #444. 44 44# 4444 & # ^4^7] 3.^-4 107H4 lOOmg 44 43.# #4 #4. (14) **Co# 4#44 444# #4^3- ^44. 4# #4 ^Co3 #44 444 &444# &444 4 443.44 I00mg4&4 100Gy4 44444# # 4. 44 44# 44-44 44 4 4800-6400Gy44 4 44344 lOOmg 4&4 44#& 44444# #4. (15) 444# 4&4 4# 170E44 15# #4 7}4#4. (16) Jeol JES-TE200 ESR spectrometer# 4 #44 4 100mg(507l)4 4# #7} 344 44444 a.43. #44 43)44 43-4 44 ESR 45# 4# 4. 4#44# E'4 OHC 45# #444, A14 Ti 45# 4444# 4 #44 4# #3(77K)44 #444. (17) # 712:4-4(additive dose method)# 4#44 ESR 45.7} 4# 44|3#4 713.7} #7lj 7}43L ESR 454 414& #7}#7l 4#| 43# 444(#7}4^; Ds)# ##4. # ESR 454 414 3 44I# 4#44 ESR 44# #444 ^44 #44 4444 ^4(unit: Gy)3 4 #4 4 <4=4 #4. ESR #57} 3E#44 ^# 44# &7}g 44^14714

°cM #7}#4 44 ESR 454 4|7)# 5L5}4#44 #4.(single saturated exponential curve)# 44 444. 4441 4#4 414 #44 4^}4 &4 3344 #4414 44# #4#^41 444# ^4# 4, ESR 454 41 4# ^7}4 44011447} #7}#^# 444 ESR 454 4171, ESR #5 4144 44# #7}, ESR 45 4144 4-#, ESR 45 4144 3344# 4# #4 #4# 344. (18 ) #4#^4&4#4 #433 4#4 #4 U, Th, K4 ### #444. 4 414 44# U, Th, K4 ## #4 # 4 4-3# 7}##4 34^5

- 12 44 44. zl 44 4.^4 #4, a-312]-, #;E A. 3 (attenuation f actor) ## ^4444 #4. (19) 4 #4 AAA^(ESR-DATA)# 4 #44 4 44-3.44 ESR 44# #4 #3 ESR 44 4 44344 zt4^# 34 44^4:44 #4# #44: 4. 44#44 44 ESR 444 #^-# 444 3 4444 444 ##4 47} #4. s# 4& 4# ESR 4^# 4444 4# ESR 444- 444 44 #444. (20) 3# ESR 44# 4#A4 #4 #3 4#42: A3S# 43 #444 4##

#4 #44 ### &4#4. 444 3^A4 a# ESR 44# &4 #3. ##44 ^ #444# 444-3. ^#3(dustering)43# #4#4.

- 13 - B0CH Of ^Af# B#^OI A^ #@ Ala %Hf| c d@ gj%i gal AimB 70g2| gf #§ @GH ____@6! @@H ....

sj%}3:isa :i@2i " T°| Ugf #d %t-^@:Ts es.i 3k#mA||a!]|S gB| ot A|gg 0.1g Ol Of: B#Sf A 2| Th 'S

DV 0)d 2EA) B#& K§f 170°C 15g 7iW Esn dm #§ 3EAig Sid

^id^ )||d 2AH 3 Xi (gSR@W?§)

ZL^ 4. 4^3 (Modified from Lee and Schwarcz, 1994).

14 *11 4 ^ ^ ESR

4-1. #4 44

44 44# 444& 444 #4# 4-4 4 zM 4444(44 35°26'25.7", o 4 129°07'56.6"). -5-# 44# S444 4444^A}^.oM]A^ 444 #4# 4 4=4 444^(4 4 #4 444, 2003)#& #44# ^43- 4444(zL4 5). 4 44444 44444 4^4471 #44 44. 4#44 #4=4 44# N28°E/80°NW44, ##44# ### #44 #4 4. 4 4## 4=44^44 4 ^94 ### #44 H4444 4444 44 ^#& 4444. 4#hz#4 44 44# 44444, 444 ^4^- 4#444^.& 4#44 $14(^4 6). 4#4 444 444 4 20-60cm°l 4, 44444 44444 44##4& 44 4^4, 7}# #4# #444 #^11# 4 70cm44. 4#44444# 44 44 4 444#4 444-4 44. 27# 4#444(##4 4#4^-&f4 4 5cm°1 44 444 444 4#444, 4#44 4 444 Y-4444 4444 4# 4#444)7} 4444 44. ESR 44#4# 44 47M14 4#4 4& 44 i(Bp 1), #444 4#4 4& 44 2(Bp 2)# 7]]f|4^4. y-#^#^]^ 4444^- 4#& 4m# 4#4444 #4 #444. ESR 444 44 4# 4444 44 4# 4 4& 44 23_#4 4#444# 444 4 120cm 444 4444 4#4 4& #4 3(Bp 3)# 444^4. 4#444 4#4 4 447} 4444 4# #44 4#4 4& ^4 4(Bp 4)# 4414534. 4#^# 44# 37M 4#444(#^Ag_44 4444 ##44 4# 444 4#44 4, ##444 4444 44#4 Y-4444 4444 4# 4#444, 4# 444 4#44444 ^4 #4 4444 4# 4#444)7} 4444 44. 4 # 44 44 44 7)14^4 ##& 4444. ESR 44444 44 4 3;H4 4 4#4 4& 44 5(Bp 5), 44 6(Bp 6), 44 7(Bp 7)4 7^4^ 4. 44444# 44 444 P-4444 4444 44. 4444 444 4# 4 4 a #7] g(Bp 8)4 4#|#

15 14 4444. 444 4^4^ 44444 A}o]^ #444 4 20-30cm4 4^444^ #45] 4 $)4 #4. 8 ;M 4& ^ 37H 4&^ ESR 4^444#44 4&4%l_o4(KEPRI ^.^4; 2004), ZL 44^ 4&4 #4.

^7l KBp 1) : 400±50 ka ^4 2(Bp 2) : 400±30 ka ^4 3(Bp 3) : 370+60 ka

- 16 - and =1^

tygui.ai Kang, 5.

1964). 17 AliiX] ^

A] LEGEND

Seoul Unconformity Intrusion Intrusion (Modified i

Bulqnqsa Alluvium Hayaag Sampling Fault

group

granitic from

location

rocks

Lee Fault plane N28 'E/80'NW 370+60 ka \ Fault i \ Fault Fault >1 y gouge/1 Andesite Andesite Catadasite Fault breccia gouge P-shear surface B&1; Y-shear band • Western — Eastern boundary boundary Shear band Shear band

[BpTl / I Bp 8 Bp8 I Bp 5! 35^7013 &5S&0

18 #4 #4# 47]] 4&oj] 4# ESR 4444 7]-&4 a 14 4444 ##. ### 4& #7] 7S#4 44& #4# #4 #7]a.7]7]- 150/# #4 # 44# ESR #444 #44 #S# ### -43-2] 4=# 44 ##4#. ### 4& #7] 4S#4 ^44 444 E' 4 OHC 4±# s# #7]- a?]4 4 #4 a=4€ 444M44 44 #7]-### ESR 4^4 ##4#7]] # 7}#4(ZL^ 7a, 7b). A1 4^# S# 4 7} 3.7] 4 4 #4 ESR 4^4 ^]]7]7]- 2: 7}4 44 4444 44 #7} 4-4 44 ^44f4^r# 44^i #44sa. #7} #4(3# 7c). ESR 44 4 44-3.4 a4^44 100/# 44 47}a444 44 444# S#4, 4# ESR 44# 400+40 ka44(3# 7d). ##4 4s. #7l 5S44 #-44 444 E' 4s:# #7}a7]7]- 75/# #4 # 444- A1 #^L# 150-250/#4 44 ESR 4^4 7^]7]7} o]n] ^4^4 ESR 4 4# 44# 4 &S4-, E' 4^# 75/# 444 A1 4^:# 150/# 444 #7}a ?M4 ^7}^ 4-4 447]# 40] iM4M 44 ESR 4^4 447]- #44s s ^7}44(^4 8a, 8b). ESR 44 4 44-a4 34^47] <34-7]- 444## ESR 447)- 4-^44 444# #44 ^#4(34 8 c). 44-7] E' 4 A] 4## 4#44 444 4 44 ESR 44# 370+50 ka44. ### 4g. #7] e#s#4 #44 444 E' 4## #7]-a7]7} 100/# #4 e 4#4 A1 4## 45-75/#4- 150-250/#4 4# ESR 4#4 447]- 44 #4

44 ESR 44# #4# # glS4-, E' 4## 100/# 444 A1 4## 25-45/#, 70-100/# a4a 100-150/# #7]-a7]4A] 2:7} 4 4-4 4444 4=4 ^7}#4 4-4- ESR 4#4 447} #44#s #7]-44(a^ 9a, 9b). ESR 44 4 44- a4 a4#4]7] E' 4## 4] #7}a44 444 44444# #44, A1 4#

# 25-45/#, 70-100/# 44a7]o)]7] 44444# #44(3# 9c). 44-7] E' 4

A1 4## 4#44 #4# 4 44 ESR 44# 600+40 ka44. ### 4a #7] ys#4 #4# 4 44 E' 4## ## 47} a#4 444 #7}^ #4447]# 4=4 #7}#4# ESR 4#4 447]- ##447]] #7]-44 (34 10a). A1 4## #7}a7]7} 100-150/## 4# ESR 4^4 447]- 0)4 ^ #44 ESR 44# #4# # ^#4, 444 4 #7}a7]4 4#4 ESR 4^4 4 7] 7]- 2:7}^ #-n} 444# #4 #7}#4 #4 ^E#4#### 44-7^ if 3]^ #s #7]-44-(a# 10b). ESR 44 4 #7}a7] o] 4 ^7}a7]47^

- 19 - 44344* #44, 34 ESR 449 480±70 ka44(ZL# 10c). 434 #7i ga3-4 #4# 343 E' 499 a# 4 7} a.7Ml 434 a^}# 444444 44 97}#9# ESR 494 47]7} *943711 97}#4 (zi# lla). A1 499 ^7}a.7]7l- lOO^m #4 *39 ESR 494 4717} ^l# #344 ESR 44* 33# 4 §194, 444 4 44-a7M 444 ESR 49 4 4717} a3# 44 4444 44 #7}#4 44 ##44#4* 444 if 33aa *7}44(zi# lib). ESR 44 4 44-3.4 314 = 44 ^i 4 ^43.4 44 44343* #44, 3# ESR 449 490±70 ka44(zz.# lie).

44 434 4# #99 4444 4#444 3494 444 4*4944 4 7H4* 4a(Bp 1: 400±50; Bp 2: 400±30: Bp 3: 370+60; Bp 4: 400±40)3 4 #a#94 4= 9m 444 4-# 344 4444- #344 4-44 ### 4414 4444 493 43.(Bp 5: 370+50)4 ESR 447} #334 444 44 33. 3*4444 94, *7}4# 94 3*4# #9 -4-3 4= 9m #44 $1 9 ###4 ESR 447} 44339 4# ESR 397} 3*#9 #4 44 4 *4 a 4-4# 9 43. #43*4 **a 4444 #4434 #44 9349 3*4 3*34 44-43# 9*33 3#4 44. 4 6044 44 44444 3*4 4344/14 /H##4434, 4 5044 44 4 3*4 4#93#a4 4443 3*4 441 44347} 4 444 4414 # 3*44* ##4^3. 3 49 4 4044 44 4 3*4 444 4## # 4 3*34 4444 KType I faulting mode)4 431 9* 33431 3*4^147} 434#4. 49# #44# o] 4= 6044 4, 5044 4 zisla 4044 444 44a 34 43 43944 9a Type 19 4344 44434 44 43443 931* 9 7}4^4 9 #a 4444, 4044 4 4949 97}43 3*#94 §144 4a a 313# 9 44.

20 - E1 signal

600 -

400 -

200 -

200 -

Signals Signals

-4000 0 4000 -4000 0 4000 Added dose(Gy) Added dose(Gy)

Ai signal Al signal 3000 -

600 - -J 2500-

2000 - of 400 - 1500 -

1000 - Signals 200 -

500 -

-4000 0 4000 50 100 150 2 Added dose(Gy) Grain size(micrometer) 3^ 7. ### 43. ^4 44 E'(a), OHC(b) ^ Al(c) #34 ESR #44- 44-3.44-4 #4(d).

21 E* signal Ai signal

1200-

800 - c 800- 600 -

400 - 400 - Signals

200 -

-4000 0 4000 -4000 0 4000 Added dose(Gy) Added dose(Gy)

800 -

600 -

400 -

200 - Signals —S— E' —*—ai

0 40 80 120 160 200 Grain size(micrometer) 8 . E'(a)4 Al(b) ESR

22 A1 signal 2000 -

; 1600 -

800 - c 1200-

800 -

Signals Signals 400 -

-4000 0 4000 -4000 0 4000 Added dose(Gy) Added dose(Gy)

1200 -

600 -

Signals

40 80 120 1 Grain size(micrometer) 9. ### ^7| 6^1 E'(a)4 Al(b) zis|3i ESR 4

23 A1 signal

2000 -

800 - 1500 -

1000 - 400 -

Signals 500- Signals

-4000 0 4000 0 4000 8000 Added dose(Gy) Added dose(Gy)

Al signal

800 -

600 -

400 -

200-

40 80 120 1 Grain size(micrometer) 10. ^7] 72] E'(a)# Al(b) #3:2] ^SR 4 ^#37)#-^ #7)](c).

24 - E' signal Ai signal

1600 - 1600-

1200- 1200 -

800 — 800 -

Signals Signals 400 - 400 -

-4000 0 4000 -4000 0 4000 Added dose(Gy) Added dose(Gy)

1000 AI signal

800 -

600 —

400 -

200 -

40 80 120 1 Grain size(micrometer) 3 4 11. 43. 44 84 E'(a)4 Al(b) 4^4 44-44 34^1 ESR 4- 44-3.44-4 4:4(c).

25 a i. 43} ESR ^ ^4. Grain size Dose rate ESR age Sample Center De(Gy) U(ppm) Th(ppm) K(%) (/an) (liGy/yr) (ka) Bp 4B 25-45 A1 630H0O 0.4410.05 1.1H0.34 1.6710.06 15G0±150 400180 Bp 4C 45-75 A1 590170 0.44±0.05 1.11±0.34 1.6710.06 1550H40 380160 Bp 4D 75-100 A1 640±80 0.44±0.05 1.11±0.34 1.6710.06 15401140 420170 Bp 4E 100-150 A1 740±160 0.4410.05 1.1H0.34 1.6710.06 15201140 490H20 Bp 4F 150-250 A1 660±200 0.4410.05 1.11+0.34 1.6710.06 1490H40 4501140 Bp SB 25-45 E' 710±100 2.85±0.04 2.68±0.20 1.43±0.05 1950H70 370160 Bp SB 25-45 A1 750±140 2.85±0.04 2.6810.20 1.43±0.05 19501170 390180 Bp SC 45-75 E' 1100H80 2.8510.04 2.6810.20 1.43±0.05 1940+170 570H00 Bp SC 45-75 A1 840170 2.8510.04 2.6810.20 1.43±0.05 1940+170 440150 BP 5D 75-100 A1 1090±170 2.8510.04 2.6810.20 1.4310.05 1920+100 5701100 Bp 5E 100-150 A1 12001310 2.8510.04 2.6810.20 1.4310.05 19001160 630+170 Bp 6B 25-45 E' 840H70 0.8210.06 1.6010.44 1.1810.06 12601120 660H50 Bp 6B 25-45 A1 760170 0.8210.06 1.6010.44 1.1810.06 12601120 600180 Bp 6C 45-75 E' 890H20 0.82±0.0G 1.60±0.44 1.1810.06 12501120 7101120 Bp 6D 75-100 E' 770H30 0.82±0.06 1.6010.44 1.1810.06 12401120 6201120 Bp 6D 75-100 A1 660170 0.82±0.06 1.60±0.44 1.1810.06 1240H20 540170 Bp 6E 100-150 A1 1450±210 0.8210.06 1.60±0.44 1.1810.06 1230H20 11801200 Bp 7B 25-45 A1 630±80 0.5310.06 1.69±0.41 1.3H0.06 1320H20 480170 Bp 7C 45-75 A1 730±70 0.5310.06 1.6910.41 1.31±0.06 13101120 560180 Bp 7D 75-100 A1 660±90 0.5310.06 1.6910.41 1.3H0.06 13001120 510180 Bp 8B 25-45 A1 8601210 0.8510.03 5.2210.20 1.43±0.05 17101150 500H30 Bp 8C 45-75 A1 830±170 0.8510.03 5.22±0.20 1.43±0.05 1690H50 490+110 Bp 8D 75-100 A1 830±240 0.8510.03 5.2210.20 1.43i0.% 16801140 5001150

26 41 5 ^ A| . gzM ## ^EH

444#44 444 4#4A& #444 44 ^21 ##*1 -n-4# 4##o] zi#4 4^* 44# 444 4A& 4&^4. 444#44 4# 4 ##4 13 71] 4^a# # 517# ### 4&# 7## 4&4 4# ESR 4 4# #4444. 4 137# 44 # 37H 44(44, 44 4 44 44)471# 4 44 44-o] 444 44444 444 444^ ##o] 4447]] #444. ESR 44# 4444 444444 4 -444 #444# #444 4#4 #4(zi4 12-19, & 2-4). #&t## ESR 44444 44 444 4 200-30044 4 4:Mi 444 4 #444 ESR 444 77# ##444 4#43. 44(:%4 12-19, & 2-4). 4 #4 44 44 I, n 4 r# 4#4# # 4 4#o] 4#444 ##44# 4 4# # 4^-4, 4#4 44 44 n# 4# 4#444 ESR 44# 444 # #44# 4444 zi 4^-4 ##44# a# 444 # # §14 4#4 ^ 200-30044 44 ##4## 4## 444 4A& 4444. ESR 44#4 4 44# #4& # 4 444## 4# 4### o]^^- #^-3)- #o] # 44. 4 14044 4(##44 A; l,390±90ka)4 4 11044 4(##44 B; l,140+50ka)4 444#44 7]-# 14444 4###o] #444(^4 13, 14). 4 8044 4(##44 C; 820±20ka)4# 444#^] 4 44(7}#4, #4, 44, 44, 7]-4 2 4 2:4 44)44 4###4 ^44^4 (^4 15), ##0^^ ##*14 o#s} 4#^ ^-#o] 4444. 4 6544 4(##44 D; 640±20ka)4 4 5044 4(##44 E; 480±20kaM# 444#44 ##(##, 44, #4 4 44)4 4#(44 4 #4 44)44 4###o] 4444(^- 4 16, 17). 4#44# ##o]^cl.& ##o] o_/##o_4, #^ollA^ 4## # #0] #4444. 4 4044 4(##44 F; 400+10ka)4# 444#44 ##(4 # 4 47]] 44)4 4#(#4 44) 4 444#4 a#4# /Ml6]] 444 #4 444 <#4#(a#44)44 4###4 4444(^4 18). 4 3044 4(## 47] G; 320+20ka)4# 444#44 44(444 a# 44) 4 4 44#(a#4

27 4M4 4##*4 #444(3^ 19). 4 110-14044 44# 444*4 4#43l *44 #4*^3 ##44#4, # 80-5044 44# 444*43 4#44# *44*4*4, ##44# ^4#^- 4*^3 444-733 4*444. 4 4 4044 4 3044 44# *44*4*4 4 44*4 4*44 44^-444. 4314 4&7} ## ##473 D*4 #*473 G444 4&# #443 *4, 4 44*47} 4 44 4*4^ 4 1044 44 15444 **73* 7}43 44" 4 #* ^4 43g. 4444(3^ 16-19, & 4). *44*4 **44, 4#^r4, #*4 *4 44 ESR 443-4 3M 44# 4&4 444 #444 #443 # *37} 44. 14044 44- 4044 4 444 44 44 ESR #444 3l#4 77334 event#4 4#4#4, 4# event## 4 44 3#4 44 3 444 #43* 444 4444. 4# ##44 4*4 4 #* 444 444 44 44 4 #44 444 *3 43, ESR #444 44 444# 43144 #4 (#4 444 #4447} # - I0^yr44, 4# event## # 44 4*4 3& 4733 444# #4 *)4 44# 44# #5. 44. 444 ESR #444 at# *4*. 73344# 4### #4# #44:# 4# #4444 44 ##43& 3@7}4# 4# 44 $1# 4^7} % ** 44. 344 444# 4 #* 4#4 733## #73* 444.0 & 44443. # ** g!34, 4# 7}#

4 444434# ESR #4444 #444* 4 #4 43., 4*444 4*44 #^* 473-4# * 444*4 **#* ^ 4*44 44 444 #*4*73- & 2. ^4^ 4 47] ##2] ESR ^

Sample Measured ESR Dating Sample Confidence Reference location signals age(ka) signals KyodongGd 5 E', A1 >3,000 Saturated 33-4 3(2003) Gd 6 E', A1 310±20 Multiple E', A1 Gd 8 E', A1 380±60 Maximum E' Dabang Db 132 E', A1 >3,000 Saturated 33-4 3(2003) Beopgi Bp 1 E', A1 400±50 Multiple E', Al 33-3 3(2004) Bp 2 E', A1 400±30 Multiple plateau E', Al Bp 3 E', A1 370±60 Multiple plateau E', Al Bp 4 E% OHC, A1 400±40 Single plateau Al Bp 5 E', A1 370+50 Multiple E', Al Bp 6 E', A1 600±40 Multiple plateau E\ Al Bp 7 E', A1 480±70 Single plateau Al Bp 8 E', A1 490±70 Single plateau Al Joil Joil 1 E', A1 800±100 Multiple plateau E', Al 34% 3(2004) jon 2 E\ A1 830±190 Single plateau E' Kachon Ka 1-1 E', Al, Ti 1,010±190 Single Plateau Ti 34% 3(2004) Ka 1-2 E% Al, Ti 1,000±260 Maximum Ti Ka 1-3 E% Al, Ti 1,290±250 Single Plateau Ti Ka 1-4 E', Al, Ti >3,000 Saturated Ka 1-5 E', Al, Ti >3,000 Saturated Ka T-l E', Al, Ti 1,400±100 Single Plateau Ti Ka T-2 E', Al, Ti 1,150±70 Single Plateau Ti Ka T-3 E', Al, Ti 1,150±110 Single Plateau Ti Ka T-4 E', Al, Ti >3,000 Saturated Ka T-5 E', Al, Ti 1,160±110 Single Plateau Ti Kachon 2 Ka 2-1 E', OHC, Al 750±90 Single plateau E' 34% 3(2004) Ka 2-2 E', OHC 830±130 Maximum E' Sangchon Sang 1 E', OHC >3,000 Saturated 33% 3(1998a) Sang 2 E', OHC 850±240 Maximum E' Sang 3 E', OHC 630±150 Maximum E' Sang 4 E', OHC, Al, Ti 520±50 Multiple Al, Ti Sang 5 E', OHC, Al, Ti 660±60 Multiple Al, Ti Sang 6 E', OHC, Al, Ti 540±60 Single plateau Ti Sang 7 E', OHC, Al, Ti 480±40 Single plateau Ti Sang 8 E', OHC, Al, Ti 340±30 Single plateau Ti

29 & 3. 471 ESR ^4^ Sample Measured Dating Sample ESR age(ka) Confidence Reference location signals signals Byuggye Byug 1 E', OHC, A1 420±30 Single plateau E' 33"4 3(2003) Byug 2 E', OHC, A1 400±20 Single plateau E' Byug 3 E', A1 870±70 Single plateau E' Bangog Bg 1 E% Al, Ti 640±60 Maximum Ti 33"4 4] (2003) Yugye Yg 1 E', Al 520±50 Single plateau E' 33-4 3(2003) Yg 2 E', Al 590±50 Single plateau E' Yggl E', Al 800±30 Single plateau E' Ygg2 Al 850±110 Single plateau Al Ygg3 E% Al 460±20 Multiple E', Al Deoggog Ydgm E', Al 660±30 Multiple plateau E', Al Ydgt E', Al 650±80 Multiple plateau E% Al Jabuteo Jbt S-l E', Al 920±90 Single plateau E' 34^ 3(2004) Jbt S-4 E', Al 850±80 Single plateau E' Jbt N-l E', Al 890±120 Single plateau E' Jbt N-ll E', Al 920±90 Maximum E' Pyeonghae Ph 1 E', OHC, Al 500±70 Single plateau E' 33-4 3(2004) Ph 2 E', OHC, Al 420±70 Maximum E'

30 a. 4. ^ 47l ^7].

Weighted Weighted mean Average Period Site ESR age(ka) mean(ka) within the period(ka) interval (ka) Period A Kachon 1 1,290+250 1,400+100 1,390+90 1,390+90 Period B Kachon 1 1,000+260 1,150+70 1,140+50 1,140+50 250 1,010+190 1,150+110 1,160+110 Period C Jabuteo 850+80 920+90 890+50 820+20 350 Yugye 800+30 850+110 800+30 Byeoggye 870+70 870+70 Sangchon 850+240 850+240 Kachon 2 750+90 830+130 780+70 Joil 800+100 830+190 810+90 Period D Deoggog 660+30 650+30 660+20 640+20 150 Yugye 590+50 590+50 Bangog 640+60 640+60 Sangchon 630+150 660+60 660+60 Ungsang 600+40 600+40 Period E Pyeonghae 500+70 500+70 480+20 150 Yugye 520+50 460+20 470+20 Sangchon 480+40 520+50 510+30 540+60 Ungsang 480+70 490+70 490+50 Period F Ungsang 400+50 400+40 390+20 400+10 100 400+30 370+50 370+60 Gyodong 380+60 380+60 Pyeonghae 420+70 420+70 Byeonggye400+20 420+30 410+20 Period G Gyodong 310+20 310+20 320+20 100 Sangchon 340+30 340+30

31 Aver.

40 —

1200 ESR age(ka)

Active period A------Active period B ------Active period C —------Active period D ------— Active period E ------Active period F Active period G ———— Gd, Gyodong; Us, Ungsang; Ji, Joil; Sc, Sangchon; Gc2, Gachon2; Bk, Byeoggye; Bg, Bangog; Yg, Yugye; Dg, Deoggog; Jb, Jabuteo; Ph, Pyeonghae; Aver., Average.

12. ^ 47] eSR

- 32 - 130"

:Thrust fault .■Strike - slip fault 13. 4 140-160 llti y y-yiE 4^4-4 0**^4 -g-y-4 S-S.

33 - 34 - 127"30" 128" 130"

East sea

Jabuteo 890±50ka

Yugye 800±30 ka Byeoggye 870d##% 36" Oeosa 760±50 ka

Madong 1 820±90 ka Janghangr 780±60 ka Suryum i 770±100 ka Sangchon 850±240ka

Gachon 2 780±70ka

Joil 810±90ka

35" :Thrust fault J :Strike-slip fault 15. 4 80 M.

35 - 15 km

Deoggog 660±20 ka

Yugye 590±20ka Bangog /X 640±60 ka

Madong 2 640±180 ka

Wonwonsa 710=1=50 ka

i Sangchon 660±60 ka

Ungsang 600±40 ka

Thrust fault :Strike - slip fault 15 km

470±20 ka

Wangsan 580±40 ka

Malbang 500±70 ka

Wonwonsa 480±30ka

Ungsang 490±50ka

Thrust fault :Strike - slip fault

37 - 18. 4 40 ^d ^ ^T&.

38 - - 39

. Aj-CLl-^. 7}^ m 6 g 1__ 1 I__ _ CZ5 cH o ~r5-X| o=j °l A|

#44#4 ##4 44 #44 4444 4 7]# ^4 4 ##4 #^]oj]7] ## € 4#44#(4# 2, 44, #4, 4 7]]# 144)4 ESR 4M# 3E#44 $1 4 4#444 444 ##47]# 7l]# # # 4^4, 44^ 200-30044 44 444 ##o] #o]# ^55 #444. 4#444 ESR 44#44 71]# CM# 4 20044 4 4#^1 444 4#4 44 ESR 44# 97]]4 ##444 4#4Ji #4(Z1# 12-22, & 5, 6). 4 160 44 4(##44 A; l,630±80ka)4 12044 4(##44 B; l,200±80ka)^l #4 4#44 44, 44 4 44 4444 4###4 4444(zi^ 13, 14). 4 80 4x1 4(##47] C; 780±40ka)4# ^-44, 4# 1 4 44 4444 #44 #4 #(## 44) ^ 44#(#44 4 4# 144) ##4 444A_4(^-^ 15), 4= 7044 4(4-5-44 D; 680±40ka)4]# #44#44 ##44(44, 4-5- 2, 44 4)44 ##4#4# ##4 44# ##4 #4] 4444(^4 16). 444 4 12044 444 7044 444 47]](##44 A~D)4 ##444 #44#4# ##4- 44# ##4 44 444## 4 # 44. 4 5044 4(##44 E; 510+20ka)4# #44#4 ##4 44 44#(#4, 444 4 44 44)#4 # #%%4(zi4 17). 4 4044 4(##47] F; 390+10ka)4# -&44#4 ##44 4 4# 4 44# 4444 4###4 4444(^-4 18). 4 3044 4(##4 7] G; 310±10ka)4# #44#4## 444 4# 4 4# 144414 4###4 4444(214 19 ). 4 2044 4 (##44 H; 190±4ka)4# 44, 444 4 4 44(4#) 4444 4###4 4444(^ 21). 4 1044 4(##44 I; 130±10ka)4# 4444 #4 4444 4###4 4444(zi^ 22.). 4 504 4 4 4##4# -&44#4 ##4 444 44# ##4 #447]] 4444. ##44 A #4 ##44 l 444 4&* #4^1 M.4, #44#4 ##44 4 4## 4 4 44 4 #4:s 4 1044 44 20444 ##7]# 7}4ji 4# 7]] ## 44 4A& 4444. #4 ##44 E4 4 50444 4#4]# 4 1044 4 #4* 7}45 4###4 4#4A5 4444(zi4 20, # 6).

41 ti & 5. all 44 ESR Sample Measured ESR age Dating Sample Conbdence Reference location signals (ka) signals Ihwa Ihwa 1 E', Al 660±50 Multiple E', Al Lee & Schwarcz(2001) Ihwa 2 E', Al 1,350±140 Multiple E', Al Ihwa 3 E', Al >3,000 Saturated Ihwa 8 E', Al >3,000 Saturated Ipshil Ip 1 E' 1,600±190 Single plateau E' 44% 4 (1998a) Ip 2 E' 1,550±120 Single plateau E' Ip 3 Er 1,720±240 Single plateau E' Ip 4 E' >3,000 Saturated Ip 5 E' 1,940±320 Single plateau Al Ip 6 E' 2,230±710 Maximum E' Ip 7 E' 1,130±100 Single plateau E' Gaegog Gog 1-1 E', Al, Ti >3,000 Saturated 4%4 4(2003) Malbang Mb 1 E% OHC 160±30 Maximum OHC 44% 4(1998a) Mb 2 E', OHC 180+60 Maximum OHC Mb 3 E% OHC 500±70 Multiple E', OHC Mb 4 E', OHC, Al, Ti 180±5 Multiple plateau OHC, Ti Mb 9 E', OHC, Al, Ti 210±10 Maximum Ti Wonwonsa Won 3 E' 130±10 Single plateau E' Lee & Schwarcz(2001) Won 4 E' 200±30 Maximum E' Won 5 E', Al 400±20 Multiple E% Al Won 7 E', Al 460±50 Single plateau Al Won 10 E% Al 230±60 Maximum Al Won 11 E% Al >3,000 Saturated Won 12 E', Al 710±50 Single plateau Al Won 15 E', Al 480±30 Single plateau Al Wangsan Ws 2 E', Al 590±50 Multiple plateau E', Al Lee & Yang (2003) Ws 3 E', Al 600±70 Multiple plateau E% Al Ws 6 E', Al 570±120 Single plateau Al Ws 7 E', Al 520±140 Single plateau Al Ws 2A E', Al 510±210 Maximum Al Ws 2B E% Al 520±110 Maximum Al

42 5. 314. Sample Measured ESR age Dating Sample Confidence Reference location signals (ka) signals Hwalsung Hs 1 E', A1 >3,000 Saturated 3 #43(2004) Guereung Kw 1 E', Al, Ti 240±20 Multiple Al, Ti 3(2003) Kw 2 E', Al, Ti 320±20 Single plateau Ti Kw 3 E', Al, Ti 370±20 Single plateau Ti Kw 4 E', Al, Ti 320±20 Single plateau Ti Kw 5 E', Al, Ti 300±10 Single plateau Ti Shingye Sg 3 Al 1,600±230 Maximum Al 33-3 3(2004) Sg 4 Al >3,000 Saturated Al Janghang Jh 1 E', Al 760±80 Multiple E', Al 3 #43(2003) Jh 2 E', Al 800±100 Multiple E', Al Madong 1 Md 1 E', Al, Ti 320±30 Single plateau Ti 33-4 3(2003) Md 2 E% Al, Ti 820±90 Multiple Al, Ti Madong 2 Md 2-1 E', Al >3,000 Saturated 33-3 3(2004) Md 2-2 E', Al 640±180 Maximum Al Oeosa Oe 1 E'. OHC, Al 760±50 Single plateau E' 33-4 3(2003)

43 6. o ^ Oj] ^ 47] 3]|: -JE- 5=- 7 ], Weighted mean Average Weighted Period Site ESR age(ka) within the interval mean(ka) period (ka) (ka) Period A Shingye 1,600±230 1,600±230 1,630±80 Ipshil 1,550±120 1,720±240 1,630±90 1,600±190 1,940±320 2,230±710 Period B Ipshil 1,130±100 1,130±100 1,200±80 400 Ihwa 1,350±140 1,350±140 Period C Oeosa 760±50 760±50 780±40 400 Madong 1 820±90 820±90 Janghang 760±80 800±100 780±60 Period D Ihaw 660±50 660±50 680±40 100 Madong 2 640±180 640±180 Wonwonsa 710±50 710±50 Period E Wangsan 510+210 570±120 580±40 510±20 200 520±110 590±50 520±140 600±70 Wonwonsa 460±50 480±30 480±30 Malbang 500±70 500±70 Period F Guereung 370±20 370±20 390±10 100 Wonwonsa 400±20 400±20 Period G Guereung 300±10 320±20 310±10 310±10 100 320±20 Madong 1 320±30 320±30 Period H Malbang 180±60 180±5 190±4 190±4 100 210±10 Wonwonsa 200±30 230±60 210±30 Guereung 240±20 240±20 Period I Wonwonsa 130±10 130+10 130±10 100 Malbang 160±30 160±30

44 - 50 N Aver.

40 - IH Oe

Ws

Md1

30- Md2 Jh

CD Kw o c CQ Mb <0 b Wws ilh

400 800 1200 1600 ESR age(ka)

Active period B----——- Active period C ------Active period D------Active period E ------—- Active period F —------Active period G Active period H------Active period I ------Ih, Ihwa; Wws, Wonwonsa; Mb, Malbang; Kw, Guereung; Jh, Janghang; Md2, Madong2; Md1, Madongl; Ws, Wangsan; Oe, Oeosa; Aver., Average. 2o. ^i ^ 47] esr ytfls] ^

45 - 127'30' 128' 130'

II] :Thrust fault 3.^ 21. 4 20 W ^

- 46 127'30' 128 130"

:Thrust fault 22. 4 10 Tg-id 4 ^r&.

- 47 n 7 s- usa-s Et-e@#si a| . ##

Sb[|

aw** 7 ]M}aa a aa^i 44 4* 44* naa-. 4a ^j-a-s- 49)471# 444 999#& 9444 94 93 #94 #7} 9 99#4 3 #9 94# 4 #4 9#9 9#^ ^}&g4. 949# #49(494 # 3 #4 9)4]7l^ 99499, 99#447} ##44 #3, 3 ^4 99#4 3## ^ 4# 49-4 ##44 #34(944 4, 2003, 4494 994, 2005), ##4# 4 #9# 9 49 29P44 4-4 44 444 944 4444. 44444 444- 4444 44 9^9 402:4 4:44447 } #444 #3 4, 4jz4 949 2?M 4944444 44# 4:9444 ESR #37} ^#4 ##3 44 #94:94 444 #9471?} 2-3444 933# 44# 9 #4 (3.4 23, 24, & 7, 8 ). 49 444 4:94449 4# 444 ##!&# 7}##4 #34 4-44 4 382:4 494444 #944# #44 9#4 4944. ## 494 4-94444^19 44 #^9 257H4 4:94 ##44 #34(949 4, 2003), 4 9(414 7}9 949(4 15 cm) 4:944444 71149 49444 #9 449 4 544:4 444(34 23, 24). 2^4=44449 3944 #47} 4944 #4# #444 994-4 #4 # 7H4 494 4 4 & 9444 #94# 4 #4 4-44-4 4494, 4 4?H4 49 444 #9449 44 2-3499 4, 1309 4 9, 12094 944(3# 23, 24). #999471 ESR 4499# #49 7/H4 43 944 47%# 2-3499 4 4444, 37H9 44 4 13099 4, 12094 4, 5094 444. 4471 ##99# 447] 444 44 4 #34, 3 #47} 4 12094 4 49, 4 5094 9 9# 443^9 4 #99 #33 47]94(3 9 23, 24). ##99 #94 ## 71^ 13} 4^) 2494 99## 49# ##994 # 494 34-34 97}## 7}4 994# 9933 9994. 7i^a 149471# 44949# #3194 4 187H4 994447} 4 70 m 94 9944 ##4 4 #4. 444 99444 7}4o]]4^. 49999#4 94# #4 494. 9

49 44 7]# 244#7]^ #44# 4 Il7%4 4#44#7} 4 4 40 m4 4#4 4 4444 4^-4, 4#44# ^4#^ 444#4 4#4444- 4##7% 4 4447]#, 4#4 44# ^_4# 4##4#7} #&## 44. 14 2 4^44 #44 47%4 7]g. JE# 3E#44 %M& 2-3444 44] 444 4# 4#4 go]\4 ^o_g_ ^^^4. 4^ 1444]^ 4 IS;# 0.1-20 cm #4 4# 4447} 4444 44 43-4] 4&44# 44 4# 444 157%4 4^444 #4 444 ###7]^ 4 # 44. 44 2444]^ 4 40 m ## Il7%4 44 4^94 4:^4447} 4444 4^-4, zi # 17%4 4^444414 4&# 7%^| 444. 44-^1 444 107%4 4^4444 444 ## 44^ 4 # @14. # 4 1444]4^ 4 6344 4, 4 9644 4, 4 11644 44] 4###4 444 4(zz_4 24). #4 24 4 4]71 414] 4 4#444 ESR 4^## , 44 4 ^444 47]4 #^4?]# 44 4 # ^^-4, 44^ 2-3444 44] 444 ##4 ^44 #444. 444# #4# 7] ESR 44#4# 44^ 117% 4 7]& #47] 87 %# 2-3444 4 4444, 37%4 44 4 12044 4, 1004 4 4, 6044 444(^4 24). 44 4-444# #444 #444 4#4 44. 444# 4 zi ^4 4 44 71 7% ^4 187%4 4^. ^o%7i 127%4 4^.7]- ^#44 4^4, 67%4 4&o%4 ESR 44# #4 # 444. 4# #44 4&4 1/34 ^] 47]# 444 ### M## 7]A]44. 4 2-3#44 4 444 4#### 4# 444# 4 #44 4##4 4444 120-13044 4, 10044 4, 6044 44 5044 4# 444# 4 zz. 4^44 ### 444- ##444 4##4 4#7l ## 44s 4 4 7%##4 #444(zi4 23, 24).

- 50 2003).

m 23. ,,00/Suse /2:z.se MMDoya2j>3^00l2_mgm

:

'

'^./a _ .

./a va

1-3: 1-1: 1-2:

>3.000 1.2601110 1,1801160 129"

ka

5'

ka ka OO*

L f &*"

'

^

F2 F2-1-4: F2-1-3: F2-1-2: i - 2-1-1:

— ■' 51 1

— 5:

>3,0^ 630170 96011 >3,000 1 _ Hwajeo'Kj ,16s ______

-

"C ka 3Km

."'W ka

(Modified 1 44NF9-1-2: 18s ISs i i as

Seosaeng I

3: I

Hwaj

. lcheonrl(Ulsan) Fine-grained Hornblende Extrusion Docile Biotite LEGEND Felslc UncortsoWdafed ...... >3,000 InWon from . Jlnbm .....

>3......

.... Porphyry

Granite

eong and ------000 000

ka. Ilkwang Subsidiary .

Andesitic Kee

Granite

AM

ka" ka

Formation 2

halm Deposits

Fault

Granite

A

et. Fault

Tuff

al., Average

Hwajeong 1

Jwadong

400 600 800 1000 1200 1400 ESR age(ka) 24. 47l ESR

- 52 - & 7. 4 47] ESR

Sample Measured E S _ Dating Sample ,, . Confidence Reference location signals age(ka) signals Jangan Lg 1 E', OHC, A1 >3,000 Saturated 3 #44(2004) Eg 2 E', OHC, A1 >3,000 Saturated Jwadong Trc 1 E', A1 540+60 Multiple plateau E', Al Doya Doya 1-1 E', A1 1,260±11C> Single Plateau Al Doya 1-2 E', Al, Ti >3,000 Saturated Doya 1-3 E', Al 1,180+160 Maximum Al Doya 2 E\ Al, Ti >3,000 Saturated Seosaeng 1 Ss 1 E', Al, Ti >3,000 Saturated 4(2003) Ss 2 E', Al, Ti >3,000 Saturated Ss 3 E', Al, Ti >3,000 Saturated Seosaeng 2 Ss 4 E', Al, Ti >3,000 Saturated 4 #44(2003) Hwajeong 1 F2-1-1 E', OHC, Al 960±110 Single Plateau E' 44-4 4(2004) P2-1-2 E', OHC, Al 630±70 Maximum Al P2-1-3 E', OHC, Al >3,000 Saturated F2-1-4 E', OHC, Al >3,000 Saturated F2-1-5 E', OHC, Al 1,160±200 Maximum Al Hwajeong 2 F3-1-1 E', Al >3,000 Saturated 444 4(2004) F3-1-2 E', Al >3,000 Saturated

(44JS4- 4=^4, 2005.)

& 8.

(4 4 €4 #m4, 2005.)

53

A El aa A da rE [ll|o oE 4% A rE t» A rtr rE 4 ^E da M. * da , o&i' A A A M , t + + jo cE A rE A oE °V u A 4i£ _a » % A 00 X djo A -E A 4H 5 rE A A A JL, rE ^ A 4 > 3 (# [U|o rE rE ob A ~ XJ H|o A A rE SE A A j|a rE w rE <# rE E; 4>i, A oV o|X' A # 4> A rE rE 41 A [U|o EL, u|o rjo A A d|o |U||U ^ o |o A a A rE aa nE Ob ox rE ojfl J> A ffijo A Hu A ,-Ojl _X ox A x o|E rE # ^ jN o rE o, A r-jn: da Ox O’ H=i J£ A o A A rE iE E A >E JZ, o[fl ofa' o|> jE aa Jt, d£ # oN' dE ^ A A !o oK A _o do A ttl° , Hi 4H A A _2 o[fl A A A n& m b- to U A rE A A 41 A ^oji s A |o offl A jOli jE dE «2 * rE 4W A JO ^2 A I# |o dE rE _oV, _E %a -E co r|o oE J A dp 5 » | 0^1 qi. P1 A A # # o|f| A A E x. rE _0|| d|o A A A rti <# _£ (o A £ti A 4> :*6 A 4o A rE oE 0|X' rl° a, _ L ^£ rlH > 4! ^ 5 8 A fcl A 41 8 rE rE X, FjO b, -1& o, rE CD o|\)i I njo _a A cn rE rE A 0K1 in da A rE ^ Ox 8 i i i A rE 0. jo aa wE 4°t' x JO ^ A ^K, rE o|> O _a rE A A tND rE JE ^ A 4 A rjo rE rE rE r'r A Ox rE rE ojfl A aE rE |o XJ^ .2, JE A ox EL cn aa d$L rE # oE A jt-y A _> A 4 da rE aE co rjo ax rE jS A ot>K ofn A A A XI Hu A A El 8 ojfl A rE W d£ A Mfl 6 A rE A A rE : k° t ± v, A rE A Jjd Of-J rE A CO rE _o M rE A A dlo 8 a CO oE rE A _ rE. x 4-i °t' x X A 0^ rE A I? rE rE ^ 4 rE A rE o|> A -E 5 4iu rE A A' jb A 4Y ~jj d£ nijo ^ H. j£ A A a \j dE A rjo JSL ^ rE rE y o|d rE W A X CO ox A A # 0|0 A o|)l' aa rE op rE o|)l' A 41 co JE It, rE A nr o Off! o M rE oj> A rE jE rE nE co ^ a c# _ok rE d2 _E A JE rE A O X rE I m i# A 02!: 8 dE A A |o ^£ da jffi oE A o|o o[n 4J ax A A m rE J2, Ejn; (flj A A aa 8 oE dE oE (A A t4 # A rE A ^ -W A A dO oE A 8 A jE A A o|n ofn a A 8 4)i A oE 411 rE da M 4^ rE o|k A rE A A A f29*28*33*

- LEGEND-

nn ALLUVIUM O — (acorn**? — &_| COASTAL TERRACE 2 r%l COASTAL TERRACE 3 RER COASTAL TERRACE 4 gg COASTAL TERRACES

—~ UNCONFORMITY ~~~ H Siil AKOESITE/BA'SAUIOBASE0R1 VOLCANIC AKOESITE ("Thbl HASEOR! BASALT — INTRUSION/ERUPTION — m DACITE O INTRUSION (5 Ka SEDIMENTARY ROCK

o SampHnolocaWon Fault

25. (Modified from Kee et. al., 2003).

- 56 - Average HH MM MM HH

Eupchon HH

Undongjang Mogjang

1——i----r

400 800 1200 1600 2000 2400 ESR age(ka) 26. ^ 47l ESR ^4

57 - 9. 4] 47] ^#a] ESR ^4 ^ Sample Measured Dating Sample ESR age(ka) Confidence Reference location signals signals Eupchon Up 13 E', Al, Ti 1,300±80 Single plateau Al 44# 4(2000) Up 15 E% Al 2,010±110 Single plateau Al Up 16 E', Al, Ti 780±60 Plateau Al, Ti Up 17 E', Al, Ti 940±70 Single plateau Ti Up 18 E', Al, Ti 1,060±80 Single plateau Ti Uj 1 E', Al, Ti 600±120 Maximum Al 444(2005) Uj 2 E', Ohc, Al, Ti 1,090±200 Maximum Ohc Mj 1 E', Al 530±120 Maximum Al 444(2005) Mj 2 E', Ohc, Al 720±130 Maximum Al Suryum Su 1 E', Al, Ti 380±30 Single plateau Ti 44# 4(2000) Su 7 E% Al 280±20 Single plateau Al Su 1A E% Al 770±100 Maximum Al

a 10. #&;

44 4 44# 44, 44, 44 # #4##4 ^}##4 #^-s|4 #34, #4# 4 4 47] 444 #444 #4 4 #4(44 #4 # 4#)4 4 44# 4,. 4444 ##4#^44 44# ESR

4 ##34, #4 ##4 444144 4 40#4 4, 44 4 44 #44 ###44# 4 20 44 3044 44], 3.43. 44 #4 #44 #444 4 5## #4 4### g-4 #o] &44##(34 27). #4444 44 #4# 4&4 ###47} #4 #4 4^4 #3, 44 #&4 #4 $144

4-4# #4 $15134, #4 44 4441 4# #4 3}4 # 7M 44 %M

4# #4 # 4 444 #### 444 4443 # 7}#4# # 4# $1

#. 4# 44-4-4 44-4 4444 3# 447} #3##.

59 3 4 ?l Qa] eaiem AIM joinij Qa]

260 ±30 ka 320 ±90 ka >2000 ka 320 ±40 ka >2000 ka

5 km

- 60 - 19 -

'kk k ta tx tottlfo ko k/ ^ & '82

.00*00 ,tt ,93 1 ,00*00,13,58

UBjBSdd

A!>|

@HK ,/ l_r ^ - :':p‘' —- 1 0S ? 08 1 : £ °

0#00##h i mm:;## 13 000000000#MM m 00 WWM 00B 00# UBiBsed - #00 w r%l nw g_g_gg_ggggg_—__^_g00 Mgr

0F wH* -RB5K- 0000N00g#0000r^ > ,oo*oe .S3 «ss ,00*98 .S3 ,56 ,00*06,83,931 .00*00 ,»3,93l

'-kkk #"5"#: k k-ak kkl^ -=?fokkk ^vkk kk^ irkk^ k^ la -W k"gkkk kk{/^ ^kkk kkk #k '(82 kk^k# kk pL{k02 k kit?## -& -k 'k"o^k #kk asa ^ #kk&k kk 4^ ^kkkk kk

HaS

H# k-Rg Iy |o* lo Ha f& k> Iy# lx 01 Ik

41 11 s- *ti 47 1 e[# e#

4*3 4**4 **49 >11 47] 4**4 *#*#* 444*44- ** ^4 *** ^44 *44*44- ^^4 4*44*4 4444. 4444 44

7} 3*-* 499 444 944*4*4 4444, 444 444 4 44 44 4 44 444 444 4444 4*33 4444. 444 4(2002)4 4 44 4*93 444 4444 ***-444 44 ** 4-4 444 44 9*4 4 444 444 4444 4*9434 , 444-44

4 444 4*4 343 4-4 444 4444 4 47] *44 9^933 ** 444-3 33444(34 29). ***-444 444 4**4 444 443 4 ** 3493 %A_4, 7]-&#oiiA^ 44* 44 9* 4*43 44443 33444(Jun, 1991; 444 4, 2002; 3^ 29a, 30). 44 4 4(2002)9 444-444 444 4444 444 44442:4444 7]%] 4 4^443. ^44^34, 444-444 444 444444 444 444 4**4 444-3. 44 444. 4-4 #*44 44^4 444 4 492 : 4 44 4444 444 4*^4 443 444#4. 0144- 99 949 9999 44 3#4 4^# * 933 444 4444* 444 4-433. 4*44 37H 4 442:44& 4*44 433 444.4. Mount and Suppe(1987)9 444 44344— 4*4 44 944*4*4 3 4334*4 44 4^44 W* 444 *4 4*4*4 4*4* 7M443 4, 449*4*4 443^143 4*4 4*9 44 44 444* 33444. 3#* 944*4* 944 444*4 **44 44*44 *4 *4 #44 9 High drag-distributed shear 3*(3* 31a)3* 44 4 4*43 4444 Low drag-decoupled shear 3#(3^ 31 b)* 44444. 4 *3 51143 4* 4, 4 7H34# 4*4, #3ril44 943* 4*4*44 4 44 39^4 4 4444 44* ** 3&133 999 214 44 9^9 *4019990 ] 494

4 7) * #*4 44 33* *4(Mount and Suppe, 1987; Lee and Schwarcz, 1996; Mount and Suppe, 1992; Lettis and Hanson, 1991).

63 ESR %4#4& #44 ## ####44# 4#4 ###4-4 4a#4#4 %#2 ###44444 4 44 ## #%4 ##& #44 &# ### ## #44 7}###. 4 65-70#% ##44% ####44 ####4 ##4 4 ## 444 #4 JE ### 4444 ##4# ###4- 4#4 44 #^% 4## ## 444 ####4 #4 ## ###(2# 13, 14, 15). 4 44 ##4 #444 44-4: ###-4 #4 ### ###^##% ####44 ####4 4^4 J%#(# 52°)_o& 4-0-##4-(zL# 32, 33, 34). 444 %#J& ###4 4-0-% 4 4% High drag - distributed shear S.4^ Low drag-decoupled shear 4 7]-4wr 4—S. # & # #(Mount and Suppe, 1987; Lee and Schwarcz, 1996; Mount and Suppe, 1992; Lettis and Handon, 1991; 2 4 31b). Lettis and Hanson(1991)% r1rt4 4# ##244— ##444 %#4 # ####, #### # w###4 44444 #4 #4% #& n 3.4.^4-. 2## ##2442: #^47} ###4 ^#2:2 ##4# ^ #4 ##24o]-2 ### 7] 4 4 #44-j% ^2###. 44-4 #% 2:9-2: #4 444 ##^4#2: #^4 4444 44# 4444 # 444 24^2## 4- ###4 44 #44 #####& #####(ZL% 35). 4 65-704% 44444 %#& ###44 ##### 44 ##4# ### 4 #^4 44 #####. 4 ##4(2002)% ###-4 #4 # 44-4 ^ ##4 ###%A& 4##4 44#%#. 2%# Lettis and Hanson(1991)4 % #2442% ###444 %9%44- #4 4#4 #### 4%%4 ##4 % # 4##4 #44 e ##& 44 4A.& #&##. 4-44 ##^ ###44 s 4#4 #### 4444 #44 4# ###-4#4 ###4444 ## ### 44 #4% #44###4- ###4 44 ###%2%, 4% #4(2002) 7} ##% ###4& 4]## #A_7} #4-2 44%4. 4 65-70#% #4# %##&#(%#, 2002) #4(###, ##2 44)4- ## ##4 ####(##, #4, 4444)44 4####4 #444 #4#4. 4 ###2:44- ####4 ### 4 4& #% ##4(A ##; indentor)7]- 444 4 #4% 4-A& 4-3.##. ####44- ####4 ##* 442- #% B # #4 444-44% ##4# ##(#%, ##, 44-44)4 #444 ###%#

- 64 - ^ i z ( ft r° W0 41 41 ojn ku ku -$1 ft |o ft dt o|X' 4 ft te rE jRi ft dE offl ft o|k offl o JO 4> -2 mE oj t—1 ft |o O 36). ft to 41 ft 41 J0 Je § 4k ft rir ku ^E [Ujo jfo|' ft 4° r& offl' ft D|o ^ 4°i' 1 [Ujlt] r£ ^ 4 41 ft r|o nk CO _o, $2 ft o ft 41 _ok o 41 J ft J4 r-4 J4 A 41 4 r-ja otn ft Oil u JE 4L lA 41 ft o|k o > rE k> A ov, 41 rfiE _g. 0 ME 41 jE ft offl J4 ft 4 ft r|4 r4 mfa r4 cE ,-p ft (iM 0 offl rE Jffll offl f-ja on ft Oil ft V (U|o 41 t * JX 4a Oft _0[| 41 ft H-1 JE 41 4 nr 4 ft X. rE r-fa oik 411 ft rtr ft JE _o |o 4 ra JE n=: Oil ft 1 g 4^ oS, <>|k 4°!' _EL to r$i XI, ft 4J no ^ 41 rW 4° _o ft 4a 04 rt£ 4* a4 fd j|a & _oli offl 4> _> ft > ft ft 4: rE ft JE jffli A r|r e 4° ft V. 0$, ^ rir ft mp jo ft JE JE o 4> jftu o|n 4> ft _oj o ft 004 -2 ft 04 ofn d£ jo ok, rE ft 4k ^ cn Je 4°i' o|k r-4 cn r$ rE 4 ft ft r4 0=$ ft oii Ja o|}l' 4 ft o (tlE go jM' °lk' oi> °i‘ o|n is ojk 41 ri 4 # j^ n© offl ft 4k' ft r|o J'rk E 4k ok ft 4a offl °lfl o op ri£. >lE r£ j4 14 of4 ft JE ft I# r-E 02 j|m o, m ft 4-1 Je _o, oik f-n o ft [110 rxO4V X to -Tf. Pk rE r0, Je o({l n» nr ft ojfl ft fl0 (UE o|k ME r4 001 offl ft r4 k£ ft _£ ok, ft 4J ft ^4 0|D o|> mjo to 4it o|k r£ 4 k r-fa 0|i na k4 [U|o o|k ft XI jk ft r$i o& m|a je Je o ofn ft ft JJ n<> 4a M [U|o nr ft (110 ok -# o({1 _oj jfa iA _oi< r|o rlk ft ft 4 ft m0 o ^E 4& o)(M s lo > 44 ft ft 4 1° 4: ft o w|a ^ > ^ 4^ > _ok ft 41 [UE S3 4 rE 5 rir 41 rE u£ O W g A Jtm o _2, A 4k- JE JE d& % m0u-r 4k iuE >4 miit _E ai 41 -JZ. >4, cE 4c $ ^ o(fl yi. o# f* ojn to j. m|o CO ft (iM ft r4 o (tljo 4j r|° 5 rtr jj ft -i# 4° ^ offl * # u ofd Je 4 4 ft 4& |o to 4k1 00 JE ''1 ''\ ^^^^v»Eupchecn

* fK

U/seong y

3.^ 29 *fl 47] #^^4] 4-g-# (After Choi et al., 2002).

r't\'ihy*opby toy Tectonic Events Timing cf Related Period Occurrences and inferred Ages Tectonic Movements References > f Cunent tectonic letame O »+ Jun|199 l.1993 | Holocene # ; Eguchl( 1983 | O A ; Pleistocene 2nd rlltlng of Okinawa a & c Trough Sibuel etal. U987 I 3.^ 30. ^ 47] ^]A]]9-^ ^ ^o-g| (Modified from Choi et ah, 2002).

66 a Zone of wrench °] deformation

Fixed

Hiigh Drag -Distributed Shear Oi

Low Drag-Decoupled

ZZ.31. ^#4 2.# (After Mount and Suppe, 1987).

67 32. 4 140-160 ^ ^ 4 <&# ^ ^1.

- 68 - 33. 4 110-120 M

4 <&# ^ ^#4^ &A.

- 69 - 34. 4 80 ^ ^ &S.Q ^ 4 ^ W.

- 70 -

T EXPLANATION

...... x. Historical aarthouakaa along the San '-•••-...." Andreas faui: a ne dering thrus:

suriace or bunmo

.1585 KetUaman Hills Axis of Quaternary

1966 ParkMeld X Strikti-Si:p lauii, arrows show sense o;

SOUTH

Southern 1857 Fori iejon\

;n!a Mari

CENTRAL 1552 Kern County

CALIFORNIA

Earthquake \ ) 5971 San Fernando 64'

30 mi

50 km

ZL%| 35. ##5.3] 4^ #^3)- #3]- ^1-7-3:

^ 5-^)5. (After Lettis and Hanson, 1991).

71 15 km

36. 4 65-70 ## # #&# ## 31 4:##^ 4 ^ #31.

- 72 - 130'

15 km

37. 4 50 44 4 44s 4^-444 M4 ^-44 4 4 4 444^44 4444 44

73 - PL

& ■b'S'-R' lyi^-ET to-^r-o'-irii ia^-fa |-Y|b"n^:-ri laiflis ^ pi{a OP ‘8S ^TT

.OS l ,OG./Zl 127'W 128' 130"

15 km

39. 4 30 M 7l Ms ^-§-^-44 Mtb *9= t): ^

- 75 - 15 km

40. 4 20 3l ^3.4 # tl ^ -i:^^tfl5l ^#2)-^ #7f|.

- 76 - 15 km

^ 41. 4 10 7l fliJ} ^

44 ^ ^-#4^1 ^1.

77

444, 44-^, 44-4, 444, 44#, 2003, 4444 444#44# ^ 4#-44 442:^} 4#(4444). 44447}44 9"4, 50p.

444, 44$, 2:44, 444, 444, 2004, 44^4 443E #44 4444 42:. ^-44^4$, 1999-2-133-002-5, 4$4-4"7)l4.

44#, 444, 444, 444, 444, 44#, 444, 2003, 4444444 — 44&44 44 4 4-4# 4 ^-4. 44444, 39, 211-223.

44, 4414, 444, 2002, 44^ 444 4442:4 44 444 444 44 42:. 44444, 38, 175-197.

444, 1999, 44^ 444 4444 444444 44-4-444 ^444 #4 ^ 444& 44. 44444, 35, 85-98.

444, 2004. 4^4 ESR 44#4 44. KINS/HR-617, 4444-444 4 #4.

444, 2004. 4#44 ESR 4444 #4, 444^4444444, 44444 44.

444, 2005, 444 ESR 44#4 44. KINS/HR-646, 44444444#4.

4^4, 444, 2005, 444#4 ESR 4444. 44W4, 41, 369-384.

444, 2004, 44^-4 44444 44 44 4#7H4. KBSI-2004-1222-0124-

79 0051, #44&4#4##4#, #4#4#4#.

##4 4 150#, 2003, 4#### #7}## 7]#7li#. #4#44###e#, K1NS/GR-255, Vol. 1, 444^4.

4##, eem, #44, 44#, 47#}, #% ##4, 2002, ^#-#4 #% 4# #4. 4##44, 38, 33-50.

44# 4 11#, 2000, #44##^ #4. #44##4^E, N2-01-02-A-01, 4# 7] #4.

44# 4 45#, 1998a, #=##^Nr 3.4# #47ie4#4 7^71. 4M-3.4, 41#, #44##% #4# 4 #4,

Aitken, M.J., and Smith, B.W. (1988). Optical dating: recuperation after bleaching. Quat. Sci. Rev., 7, 387-393.

Bar, M., Kolodny, Y., and Bentor, U.K. (1974). Dating of faults by fission track dating of epidotes - An attempt. Earth and Planet. Sci. Lett., 22, 157-166.

Bartsch-Winkler, S., and Schmoll, H.R. (1992). Utility of radiocarbon-dated stratigraphy in determining late Holocene earthquake recurrence intervals, upper Cook Inlet region, Alaska. Geol. Soc. Am. Bull., 104, 684-694.

Bell, J. W., and Katzer, T. (1990). Timing of late Quaternary faulting in the 1954 Dixie Vally earthquake area, central Nevada: Geology, 18, 622-625.

80 - Blenkinsop, T. G., and Drury, M. R. (1988). Stress estimates and fault history from quartz microstructures : Journal of Structural Geology,

10, 673-684.

Boyer, S. E., and Elliott, D. (1982). Thrust systems: American Association of Petroleum Geologists Bulltim, 66, 1196-1230.

Buhay, W.M., Clifford, P.M., and Schwarcz, H.P. (1992). ESR dating of the Rotoiti breccia, New Zealand. Quat. Sci. Rev., 11, 267-271.

Colman, S.M., and Pierce, K.L. (1981). Weathering rinds on andesitic and basaltic stones as a Quaternary age indicator, western United States. U.S. Geol. Surv. Prof. Pap., 1210, 56 pp.

Eyal, Y., Kaufman, A., and Matthews, M.B. (1992). Use of 230Th/U ages of

striated camotites for dating fault displacements. Geology, 20,

829-832.

Forman, S.L., Machette, M.N., Jackson, M.E., and Maat.P.(1989). An evaluation of thermoluminescence dating of paleoearthquakes on the American Fork segment, Wasatch fault zone, Utah. Journal of Geophysical Research, 96, 595-605.

Fukuchi, T. (1988). Applicability of ESR dating using multiple centres to fault movement _ The case of the Itoigawa_Shizuoka Tectonic Fine, a major fault in Japan. Quat. Sci. Rev., 7, 509-514.

Godfrey-Smith, D.I., Huntley, D.J., and Chen, W.H. (1988). Optical dating studies of quartz and feldspar sediment extracts. Quat. Sci. Rev., 7,

373-380.

81 Hailwood, E.A., Maddock, R.H., Fung, T., and Rutter, E.H. (1992). Palaeomagnetic analysis of fault gouge and dating fault movement, Anglesey, North Wales. J. Geol. Soc. London, 149, 273-284.

Huntley, D.J., Godfrey-Smith, D.I., and Thewalt, M.L.W. (1985). Optical dating of sediments, Nature, 313, 105-107.

Ikeya, M. Miki, T., and Tanaka, K. (1982). Dating of a fault by Electron Spin Resonance on intrafault materials, Science, 215, 1392-1393.

Kanaori, Y., Miyakoshi, K., Kakuta, T., and Satake, Y. (1980). Dating fault activity by surface textures of quartz grains from fault gouges. Eng. Geol., 16, 243-262.

Kanaori, Y., Tanaka, K. and Miyakoshi, K. (1985). Further studies on the use of quartz grains from fault gouges to establish the age of faulting. Eng. geol., 21, 175-194.

Kim, Y.S., Park, J., Y., Kim, J.H., Shin, H.C., and Sanderson, D.J. (2004). Thrust geometries in unconsolidated Quaternary sediments aand evolution of the Eupchon Fault, southeast Korea. The Island Arc, v. 13, 403-415.

Knipe, R.J.,(1989). Deformation mechanism-recognition from natural tectonites: Journal of Structural Geology, v. 11, 127-146.

Kralik, M., Clauer, N., Holnsteiner, R., Huemer, H., and Kappel, F. (1992). Recurrent fault activity in the Grimsel Test Site (GTS, Switzerland): revealed by Rb-Sr, K-Ar and tritium isotope techniques. J. Geol. Soc. London, 149, 293-301.

Kralik, M., Klima, K, and Riedmuller, G. (1987). Dating fault gouges. Nature, 327, 315-317.

Lee, H.K., and Schwarcz, H.P. (1994a). ESR plateau dating of fault gouge. Quat. Sci. Rev., 13, 629-634.

Lee, H.K., and Schwarcz, H.P. (1994b). Criteria for complete zeroing of ESR signals during faulting of the San Gabriel fault zone, Southern California. Tectonophysics, 235, 317-337.

Lee, H.K., and Schwarcz, H.P. (1995). A fractal clustering of fault activity in California. Geology, 23, 377-380.

Lee, H.K., and Schwarcz, H.P. (1996). ESR plateau dating of periodicity of activity on the San Gabriel fault zone, Southern California. Geol. Soc. Am. Bull., 108, 735-746.

Lee, H.K., and Schwarcz, H.P. (2001). ESR dating of the subsidiary faults in the Yangsan fault system, Korea. Quat. Sci. Rev., 20, 999-1003.

Lee, H.K., and Yang, J.S. (2003). ESR dating of the Wangsan fault, South Korea. Quat. Sci. Rev., 22, 1339-1343.

Lettis, W.R. and Hanson, K.L. (1991). Crustal strain partitioning: Implications for seismic-hazard assessment in western California. Geology, 19, 559-562.

McCalpin, J. P., Forman, S.L., and Lowe, M. (1994). Reevaluation of Holocene faulting at the Kaysville site, Weber segment of the Wasatch fault zone, Utah. Tectonics, 13, 1-16.

Mckee, J. W., Jones, N. W., and Long, L. E. (1984). History of recurrent activity along a major fault in northeastern Mexico. Geology, 12, 103-107.

Mount, V.S. and Suppe, J. (1987). State of stress near the San Andreas fault: Implication for wrench tectonics. Geology, 15, 1143-1146.

Mount, V.S. and Suppe, J. (1992). Present-Day Stress Orientations Adjacent to Active strike-Slip Faults: California and Sumatra. J. Geophy. Res. 97, 11,995-12,013.

Porat, N., Amit, R., Zilberman, E., Enzel, Y. (1997). Luminescence Dating of Fault-Related Alluvial Fan Sediments in the Southern Arava Valley, Israel. Quat. Sci. Rev., 16, 397-402.

Porat, N., Wintle, A. G., Amit, R., Enzel, Y. (1996). Late Quaternary Earthquake Chronology from Luminescence Dating of Colluvial and Alluvial Deposits of the Arava Valley, Israel, Quaternary Reserch, 46, 107-117.

Rhodes, E.J. (1988). Methodological considerations in the optical dating of quartz. Quat. Sci. Rev., 7, 395-400.

Rhodes, E.J. (1990). Optical dating of sediment. Unpublished D. Phil thesis, Oxford University.

Rink, W. J., Toyoda, S., Rees-Jones, J. and Schwarcz, H. P. (1999).

- 84 Thermal activation of OSL as a geothermometer for quartz grain heating during fault movements, Radiation Measurements, 30, 97-105.

Scholtz, C.H., Beavan, J., and Hanks, T.C. (1979). Frictional metamorphism, argondepletion, and tectonic stress on the Alpine fault, New Zealand. J. Geophy. Res., 84, 6770-6782.

Schwarcz, H.P. and Lee, H.K. (1998) Electron spin resonance dating. In: Sowers, J.M., Noller, J.S. and Lettis, W.R. (ed's) Dating and Earthquakes: Review of Quaternary Geochronology and Its Application to Paleoseismology. U.S. Nuclear Regulatory Comm., NUREG/CR-5562, 2, 289-304.

Schwarcz, H.P., and Gran, R. (1992). ESR dating and the origin of modern man. Phil. Trans. Roy. Soc. Lon., B 337, 145-148.

Sieh, K.E., Stuiver, M., and Brillinger, D. (1989). A more precise chronology ofEarthquakes produced by the San Andreas fault in Southern California. J. Geophy. Res., 94, 603-623.

Smith, B.W., Aitken, M.J., Rhodes, E.J., Robinson, P.D., and Geldard, D.M.(1986). Optical dating: methodological aspects. Radiation Protection Dosimetry, 17, 229-233.

Smith, B.W., Rhodes, E.J., Stokes, S., Spooner, N.A., and Aitken, M.J. (1990). Optical dating of sediments: initial quartz results from Oxford. Archaometry, 32, 19-31.

Stokes, S. (1991). Quart-based optical dating of Weichselian coversands from the eastern Netherlands. Geologic en Mijnbouw, 70, 327-337.

Tagami, T., Lai, N., Sorkhabi, R.B., and Nishimura, S. (1988). Fission track thermochronologic analysis of the Ryoke belt and the Median Tectonic Line, Southwest Japan. J. Geophy. Res., 93, 13705-13715.

Tanaka, K., and Shidahara, T. (1985). Fracturing, Crushing and grinding effects on ESR signal of quartz. In: Ikeya, M. and Miki, T.(eds), ESR dating and Dosimetry, Ionics, Tokyo, 239-247.

Toyoda, S. and Schwarcz, H. P. (1996). The spatial distribution of ESR in fault gouge revealed by abrading technique. Radiation and Isotopes, 47, 1409-1413.

Van Dissen, R.J., Berryman, K.R., Pettinga, J.R., and Hill, N.L. (1992). Paleoseismicity of the Wellington_Hutt Valley Segment of the Wellington Fault, North Island, New Zealand. J. Geol. Geophys., 35, 165-176.

Vita-Finzi, C. (1992). Radiocarbon dating of late Quaternary fault segments and systems. J. Geol. Soc. London, 149, 257-260.

Weil, J.A. (1984). A review of Electron Spin Spectroscopy and its application to the study of paramagnetic degects in crystalline quartz. Phy. and Chem. Minerals, 10, 149165.

White, S. H., Bretan, P. G., and Rutter, E. H. (1986). Fault zone reactivation: kinematics and mechanism: Royal Society of London Philosophical Transaction, ser. A. 317, 81-97.

86 Wills, C.J., and Borchardt, G. (1993). Holocene slip rate and earthquake recurrence on the Honey Lake fault zone, northeastern California. Geology, 21, 853-856.

Wintle, A.G., Lancaster, N., and Edwards, S.R. (1994). Infrared stimulated luminescence (IRSL) dating of late-Holocene aeolian sands in the Mojave Desert, California, USA. The Holocene, 4, 74-78.

87 I rdl: 4 ^ ^ # XI

KINS/HR-707

4]#/#4l 7)44:44 ^7}7]HI 71^711#/ 4#"4 ESR 44#4 4# 444#44 444 444 (4444) 4 4^1 ^4 4 4^1 ^ ^-4^

4^4 tij-" @7)4 4444^ H>sfl

4 ^1 7) 90 p. ir ( o ), ( ) H 7] 21 x 30 cm. 4#4-4 20054# 47M4f7H#^47l 44 444- #H( O ), 4#7 l)( ) ##4 49-##4 4?4444 4 4 4 & ## (20044 414) ESR 4444^4^# 4#44 44 :44 7^4 4#4 A]&* #44^4. #^14i # 4 200444, 150444, 1004444 4471 4444 #44 4#4444 4371 44#3) 44 44444 44-444 4## 44#4, 4 80 4444# 4471 ^144 4#4^4 ^i 44 41 -4 4## 444. 4 4 4 65444 4 124 544 444 44 4471 4-gM-4 -8-44 4#4^44 434 44-8-3144 44^44 4###4 7H## 4-44. <# #44' 4 4 2044 44 50444 4^4* 714# 4444^ 4###4 44 44## 4444. 4 44^44^1 444 187H4 4a. # 12;H4 ESR 4#7l &444 44 ESR 44# 444 # M4. 444 6;114 ESR 44# 50-13044 44 444 4#4, 50-6044 44 100-13044 44 4#44 4444. #4 4 44^1# 44 4 #4 444 4^#44# 4 60 44 8044 44 444-4§14 4, 4# 444 4^44# 4 4044 4, ## 4 #4 44=4 4## 4^-1# 4 20 44 3044 44, zz.43. 4-4 44 44=4 4^44# 4 7H4 #4 §1444 4= 544 44 4144# #4 §14 #4444(^4 27). 444 444# 4 ;H4 4444# #41 ESR 44# 4# 44#4, 4= 204444 -444# #4§1# 444. #44 4-a)M 47H444# 4#44l, #444 #4- 44 4444 4 47] 4#4 ## 4# 4% 4444## 4444 4&4?l/#44 #7l#4 44# 3.4# 4 ESR 44#4 4 4-71 4-^444 4# ## ^t#4 4%HH^r7i ## 444## %lAi4437. 4 44 §14. 44, 4 44444 44## #47] 444# ESR #4444 #44^1# 4#44#, #4 4# 444 ##4#7l 4 4##44 44## #4# 344. =4144 4 #(1044 44)

44, 4#4, 4#44, ESR 4444 =4, 4“ BIBLIOGRAPHIC INFORMATION SHEET Performing Org. Sponsoring Org. Report No. Report No. KINS/HR-707

Title/Subtitle Development of Seismic Safety Evaluation Technology 7 ESR dating of the fault rocks Sponsoring Org. Project and Project Manager Researcher and Dep't Hee-Kwon Lee(Department of Geology)

Pub. Place Chunchon Pub. Org. Kangwon National Univ. Pub. Date January, 2006

Page 90 p. II. and Tab. Yes ( O ), No ( ) Size 21 x 30 cm. Note

Classified Unclassified( O ), Classified( ) Report Type Research Report Korea Institute of Nuclear Sponsoring Org. Contract No. Safety (KINS) Abstract (About 200 Words) We carried out ESR dating of fault rocks collected near the nuclear reactor. The Upcheon fault zone is exposed close to the Weolsong nuclear reactor. The space-time pattern of fault activity on the Upcheon fault deduced from ESR dating of fault gouge can be summarised as follows: this fault zone was reactivated between fault breccia derived from Cretaceous sandstone and Tertiary volcanic sedimentary rocks about 2Ma, 1.5Ma and IMa ago. After those movements, the Upcheon fault was reactivated between Cretaceous sandstone and fault breccia zone about 800ka ago. This fault zone was reactivated again between fault breccia derived from Cretaceous sandstone and Tertiary volcanic sedimentary rocks about 650ka and after 125ka ago. These data suggest that the long-term(200-500k.y.) cyclic fault activity of the Upcheon fault zone continued into the Pleistocene. Twelve out of eighteen samples collected from the Illkwang fault zone were found to be in ESR saturation. ESR dates of six samples from the main strand and subsidiary faults of the Illkwang fault zone rang from 1,300 to 500ka. The dates show temporal clustering into 1,300-1,OOOka and 600-500ka. In the Uljin area, ESR dates from the faults trending NW and EW, NE and EW, and NS range between 800ka and 600ka BP, 200ka and 300ka BP, and 400ka and 50ka BP, respectively. One ESR date in the Youngkwang area is 200ka BP. Concerning the inherent error ranges and applicability margins of ESR method, and limited number and distribution of the fault and fault gouge samples, a further study is necessary to improve the credibility of these ESR results. Subject Keywords (About 10 Words) Nuclear reactor, Fault rocks, Fault gouge, ESR dating, Fault activity

- 90 -