Conductive Polymer Capacitors Guidelines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shape-Memory Polymeric Artificial Muscles Stress That Is Applied to the Polymer [8,70]
molecules Review Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges 1, 1, 1, , 1 2 2 Yujie Chen y , Chi Chen y, Hafeez Ur Rehman * y, Xu Zheng , Hua Li , Hezhou Liu and Mikael S. Hedenqvist 3,* 1 State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (Y.C.); [email protected] (C.C.); [email protected] (X.Z.) 2 Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (H.L.); [email protected] (H.L.) 3 Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden * Correspondence: [email protected] (H.U.R.); [email protected] (M.S.H.) These authors contributed equally to this work. y Academic Editor: Laura Peponi Received: 7 July 2020; Accepted: 3 September 2020; Published: 16 September 2020 Abstract: Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. -
Introduction What Is a Polymer Capacitor?
ECAS series (polymer-type aluminum electrolytic capacitor) No. C2T2CPS-063 Introduction If you take a look at the main board of an electronic device such as a personal computer, you’re likely to see some of the six types of capacitors shown below (Fig. 1). Common types of capacitors include tantalum electrolytic capacitors (MnO2 type and polymer type), aluminum electrolytic capacitors (electrolyte can type, polymer can type, and chip type), and MLCC. Figure 1. Main Types of Capacitors What Is a Polymer Capacitor? There are many other types of capacitors, such as film capacitors and niobium capacitors, but here we will describe polymer capacitors, a type of capacitor produced by Murata among others. In both tantalum electrolytic capacitors and aluminum electrolytic capacitors, a polymer capacitor is a type of electrolytic capacitor in which a conductive polymer is used as the cathode. In a polymer-type aluminum electrolytic capacitor, the anode is made of aluminum foil and the cathode is made of a conductive polymer. In a polymer-type tantalum electrolytic capacitor, the anode is made of the metal tantalum and the cathode is made of a conductive polymer. Figure 2 shows an example of this structure. Figure 2. Example of Structure of Conductive Polymer Aluminum Capacitor In conventional electrolytic capacitors, an electrolyte (electrolytic solution) or manganese dioxide (MnO2) was used as the cathode. Using a conductive polymer instead provides many advantages, making it possible to achieve a lower equivalent series resistance (ESR), more stable thermal characteristics, improved safety, and longer service life. As can be seen in Fig. 1, polymer capacitors have lower ESR than conventional electrolytic Copyright © muRata Manufacturing Co., Ltd. -
Review of Technologies and Materials Used in High-Voltage Film Capacitors
polymers Review Review of Technologies and Materials Used in High-Voltage Film Capacitors Olatoundji Georges Gnonhoue 1,*, Amanda Velazquez-Salazar 1 , Éric David 1 and Ioana Preda 2 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC H3C 1K3, Canada; [email protected] (A.V.-S.); [email protected] (É.D.) 2 Energy Institute—HEIA Fribourg, University of Applied Sciences of Western Switzerland, 3960 Sierre, Switzerland; [email protected] * Correspondence: [email protected] Abstract: High-voltage capacitors are key components for circuit breakers and monitoring and protection devices, and are important elements used to improve the efficiency and reliability of the grid. Different technologies are used in high-voltage capacitor manufacturing process, and at all stages of this process polymeric films must be used, along with an encapsulating material, which can be either liquid, solid or gaseous. These materials play major roles in the lifespan and reliability of components. In this paper, we present a review of the different technologies used to manufacture high-voltage capacitors, as well as the different materials used in fabricating high-voltage film capacitors, with a view to establishing a bibliographic database that will allow a comparison of the different technologies Keywords: high-voltage capacitors; resin; dielectric film Citation: Gnonhoue, O.G.; Velazquez-Salazar, A.; David, É.; Preda, I. Review of Technologies and 1. Introduction Materials Used in High-Voltage Film High-voltage films capacitors are important components for networks and various Capacitors. Polymers 2021, 13, 766. electrical devices. They are used to transport and distribute high-voltage electrical energy https://doi.org/10.3390/ either for voltage distribution, coupling or capacitive voltage dividers; in electrical sub- polym13050766 stations, circuit breakers, monitoring and protection devices; as well as to improve grid efficiency and reliability. -
Aluminum Electrolytic Vs. Polymer – Two Technologies – Various Opportunities
Aluminum Electrolytic vs. Polymer – Two Technologies – Various Opportunities By Pierre Lohrber BU Manager Capacitors Wurth Electronics @APEC 2017 2017 WE eiCap @ APEC PSMA 1 Agenda Electrical Parameter Technology Comparison Application 2017 WE eiCap @ APEC PSMA 2 ESR – How to Calculate? ESR – Equivalent Series Resistance ESR causes heat generation within the capacitor when AC ripple is applied to the capacitor Maximum ESR is normally specified @ 120Hz or 100kHz, @20°C ESR can be calculated like below: ͕ͨ͢ 1 1 ͍̿͌ Ɣ Ɣ ͕ͨ͢ ∗ ͒ ͒ Ɣ Ɣ 2 ∗ ∗ ͚ ∗ ̽ 2 ∗ ∗ ͚ ∗ ̽ ! ∗ ̽ 2017 WE eiCap @ APEC PSMA 3 ESR – Temperature Characteristics Electrolytic Polymer Ta Polymer Al Ceramics 2017 WE eiCap @ APEC PSMA 4 Electrolytic Conductivity Aluminum Electrolytic – Caused by the liquid electrolyte the conductance response is deeply affected – Rated up to 0.04 S/cm Aluminum Polymer – Solid Polymer pushes the conductance response to much higher limits – Rated up to 4 S/cm 2017 WE eiCap @ APEC PSMA 5 Electrical Values – Who’s Best in Class? Aluminum Electrolytic ESR approx. 85m Ω Tantalum Polymer Ripple Current rating approx. ESR approx. 200m Ω 630mA Ripple Current rating approx. 1,900mA Aluminum Polymer ESR approx. 11m Ω Ripple Current rating approx. 5,500mA 2017 WE eiCap @ APEC PSMA 6 Ripple Current >> Temperature Rise Ripple current is the AC component of an applied source (SMPS) Ripple current causes heat inside the capacitor due to the dielectric losses Caused by the changing field strength and the current flow through the capacitor 2017 WE eiCap @ APEC PSMA 7 Impedance Z ͦ 1 ͔ Ɣ ͍̿͌ ͦ + (͒ −͒ )ͦ Ɣ ͍̿͌ ͦ + 2 ∗ ∗ ͚ ∗ ͍̿͆ − 2 ∗ ∗ ͚ ∗ ̽ 2017 WE eiCap @ APEC PSMA 8 Impedance Z Impedance over frequency added with ESR ratio 2017 WE eiCap @ APEC PSMA 9 Impedance @ High Frequencies Aluminum Polymer Capacitors have excellent high frequency characteristics ESR value is ultra low compared to Electrolytic’s and Tantalum’s within 100KHz~1MHz E.g. -
Technical Notes for Electrolytic Capacitor
TECHNICAL NOTES FOR EL ECTROLYTIC CAPACITOR 2. MANUFACTURE OF ALUMINUM ELECTROLYTIC CAPACITOR Raw Aluminum Foil (1) Etching To obtain higher capacitance, surface area of aluminum foil for electrolytic capacitor increases through etching process. In etching process, aluminum foil is applied with DC or Etched Aluminum Foil AC current in a chloride solution to preferentially dissolve the surface. Surface area is increased by 60-150 times for low voltage foils and 10-30 times for high voltage foils. (2) Anodization(Formation of Dielectric Layer) Aluminum foil for electrolytic capacitor is further formed with anodic oxide film (Al2O3) on the surface as dielectric layer. Etched aluminum foil is immersed into a solution Formed Foil including ammonium salt of boric acid or phosphoric acid and applied with DC voltage so that the foil Aluminum Oxide becomes positive and the solution becomes negative. Then aluminum oxide film is formed on the surface in proportion to the applied voltage. The anodic oxide film, having the thickness of 13-15 angstrom/V (1.3-1.5 nm/V), is extremely thin, compact and highly Aluminum Substrate insulating. RUBYCON CORPORATION 2 TECHNICAL NOTES FOR EL ECTROLYTIC CAPACITOR Slitting (3) Slitting Process Etching and Forming are processed with wide roll of master foil. Then the master roll is slitted into individual rolls with specified width as per the specification. Stitching & Winding (4) Stitching and Winding Slit anode and cathode foils after slitting process are stitched with lead tabs and wound into cylindrical element together with spacer paper. Spacer paper is to contain liquid electrolyte that works as real cathode and restores damaged dielectric film, as well as maintaining the distance between anode and cathode foils constant to prevent short circuit. -
Conductive Nanocomposite Fabrication by Graphene Enriched Polypropylene Master Batch
© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939 Conductive Nanocomposite fabrication by Graphene enriched Polypropylene Master Batch 1M.Naushad Ali, 2H.Alamri, 3Abdul Wahab 1 Bottom Up Technologies Corporation, Jharkhand, India 2Physics Deptt, Umm Al-Qura University, Makkah, KSA 3Engineering Grad Trainee, Jharkhand Rai UniversitSy, Ranchi, India ________________________________________________________________________________________________________ Abstract - The nanocomposites are the most attentive topic of the study currently in the material science world which is likely to bring the industrial revolution. Graphene reinforced polypropylene nanocomposite was fabricated in the balanced formulation of filler & carrier additives through melt mixing process at the trend of industrial practices. The concept of molecular arrangement was hypothesized and executed out practically. The master batch was prepared as the primary preparatory work using Twin Screw Extruder and the finished product was obtained by using the same master batch through injection molding. The percolation threshold was considered to be 5% wt. Graphene in finished product which has been proved as the innovative product line. A series of destructive and non-destructive tests and characterization techniques were conducted, analyzed and presented. First time the entire range of properties has been explored including electrical, thermal, gas barrier & mechanical properties. The resulted product has proven to be used at the industrial scale immediately and has opened the new directions in making use of other class of polymers innovatively. Key words - Nanocomposite, Electrical conductivity, Graphene, Polypropylene, Industrial applications, Nanotechnology I. Introduction Nanomaterials own the Quantum confinement which consequences the exceptional outstanding properties and lead to the enormous range of revolutionary applications. In this regard, the discovery of graphene and graphene-based polymer nanocomposites is playing a vital role in modern science and technology [1]. -
With Flexxon Power Loss Protection Features Dram
What is Power Loss Protection (PLP)? Need to secure your data against unexpected power shutdowns? Your wait is over - Flexxon’s SSD Power Loss protection offers the best-in-class data security with NEVER LOSE YOUR DATA AGAIN! DRAM-less design, reliable supercapacitors, and standalone tantalum capacitor array that lasts for WITH FLEXXON POWER LOSS decades. PROTECTION FEATURES High-performance data storage devices are available at affordable prices in the market, but with a major drawback. The problem is that they are unable to protect data during power failure. That’s where Flexxon SSDs come to the rescue. During SSD operation, data is temporarily stored in DRAM for improved performance. But DRAM needs an external power supply to function. So, in case of sudden power failure, power to DRAM is cut abruptly and critical data is lost. DRAM-less Design Capacitor provide power to the DRAM during sudden power External DRAM puts in-flight data at risk. failure, making it possible to flush data from DRAM to NAND memory. How Does PLP protect my data? The data is temporarily stored in DRAM for better performance. But DRAM functions on external power, so data can be lost during sudden power failure. Flexxon Supercapacitor Technology Power Loss Protection provides a time window to quickly More efficient than industrial batteries, secure data by flushing it from DRAM to NAND memory. supercapacitors offset risks from power loss. This is achieved because of power loss solutions added that power up the DRAM so that data flushing to NAND is complete. As a result, you no longer have to worry about power losses Tantalum Capacitor Array Protect data in the write cache with capacitors that last for decades. -
Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity
polymers Article Non-Covalent Interactions on Polymer-Graphene Nanocomposites and Their Effects on the Electrical Conductivity Jorge Luis Apátiga 1, Roxana Mitzayé del Castillo 1 , Luis Felipe del Castillo 2, Alipio G. Calles 1, Raúl Espejel-Morales 1, José F. Favela 3 and Vicente Compañ 4,* 1 Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] (J.L.A.); [email protected] or [email protected] (R.M.d.C.); [email protected] (A.G.C.); [email protected] (R.E.-M.) 2 Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] 3 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Interior s/n, Ciudad Universitaria, Mexico City 04510, Mexico; [email protected] 4 Departamento de Termodinámica Aplicada, Escuela Técnica Superior de Ingenieros Industriales (ETSII), Campus de Vera s/n, Universitat Politécnica de Valencia, 46020 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-879-328 Abstract: It is well known that a small number of graphene nanoparticles embedded in polymers enhance the electrical conductivity; the polymer changes from being an insulator to a conductor. The Citation: Apátiga, J.L.; del Castillo, graphene nanoparticles induce several quantum effects, non-covalent interactions, so the percola- R.M.; del Castillo, L.F.; Calles, A.G.; tion threshold is accelerated. We studied five of the most widely used polymers embedded with Espejel-Morales, R.; Favela, J.F.; graphene nanoparticles: polystyrene, polyethylene-terephthalate, polyether-ketone, polypropylene, Compañ, V. -
Template-Assisted Electrochemical Synthesis of Cdse Quantum Dots—Polypyrrole Composite Nanorods
applied sciences Article Template-Assisted Electrochemical Synthesis of CdSe Quantum Dots—Polypyrrole Composite Nanorods Won-Seok Kang 1, Taegon Oh 2, Gwang-Hyeon Nam 1, Hyo-Sop Kim 1, Ki-Suk Kim 3, Sun-Hyun Park 3, Jae-Ho Kim 1,* and Jae-Hyeok Lee 3,* 1 Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; [email protected] (W.-S.K.); [email protected] (G.-H.N.); [email protected] (H.-S.K.) 2 Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea; [email protected] 3 R&D Center for Advanced Pharmaceuticals & Evaluation, Korea Institute of Toxicology, Daejeon 34114, Korea; [email protected] (K.-S.K.); [email protected] (S.-H.P.) * Correspondence: [email protected] (J.-H.K.); [email protected] (J.-H.L.); Tel.: +82-31-219-2517 (J.-H.K.); +82-42-610-8338 (J.-H.L.) Received: 26 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: Luminescent nanoparticles have reached a high level of maturity in materials and spectral tunability for optics and optoelectronics. However, the lack of facile methodology for heterojunction formation of the nanoparticles provides many challenges for scalability. In this paper we demonstrate a simple procedure to synthesize a nanoparticle-embedded polymer nanorod hybrid structure via a template-based electrochemical method using anodic aluminum oxide membranes. This method enables the formation of interactive nanostructures wherein the interface area between the two components is maximized. As a proof of concept, semiconducting CdSe nanoparticles were embedded in polypyrrole nanorods with dimensions that can be finely tuned. -
Reliability of Tantalum Capacitors
NASA Electronic Parts and Packaging Program (NEPP) Reliability of Tantalum Capacitors Effect of Inductance and Requirements for Surge Current Testing of Tantalum Capacitors Alexander Teverovsky QSS Group, Inc. Code 562, NASA GSFC, Greenbelt, MD 20771 [email protected] October 2005 Abstract. Surge current testing is considered one of the most important techniques to evaluate reliability and/or screen out potentially defective tantalum capacitors for low- impedance applications. Analysis of this test, as it is described in the MIL-PRF-55365 document, shows that it does not address several issues that are important to assure adequate and reproducible testing. This work investigates the effect of inductance of the test circuit on voltage and current transients and analyzes requirements for the elements of the circuit, in particular, resistance of the circuit, inductance of wires and resistors, type of switching devices, and characteristics of energy storage bank capacitors. Simple equations to estimate maximum inductance of the circuit to prevent voltage overshooting and minimum duration of charging/discharging cycles to avoid decreasing of the effective voltage and overheating of the parts during surge current testing are suggested. I. Introduction. High current spikes caused by power supply transients might result in short-circuit failures of tantalum capacitors and cause catastrophic consequences for electronic systems, including igniting the system. The probability of this type of failure is especially high for low-impedance circuits when inrush currents are limited mostly by the impedance of the capacitor itself [1]. Recently, these problems have gained yet more importance due to proliferation of distributed- power architecture systems and low-voltage DC-DC converters. -
Understanding Polymer and Hybrid Capacitors Advanced Capacitors Based on Conductive Polymers Maximize Performance and Reliability
WHITE PAPER Understanding Polymer and Hybrid Capacitors Advanced capacitors based on conductive polymers maximize performance and reliability The various polymer and hybrid capacitors have distinct sweet spots in terms of their ideal voltages, frequency characteristics, environmental conditions and other application requirements. In this paper, we’ll show you how to identify the best uses for each type of advanced capacitor. We’ll also highlight specific applications in which a polymer or hybrid capacitor will outperform traditional electrolytic or even ceramic capacitors. POLYMER CAPACITOR VARIETIES Polymer capacitors come in four main varieties, including the hybrid. Each type has different electrolytic and electrode Hybrid capacitor technology combines the performance benefits of materials, packaging and application targets: electrolytic and polymer capacitors. • Layered polymer aluminum capacitors use conductive Capacitors may seem simple enough, but specifying them has polymer as the electrolyte and have an aluminum cathode actually grown more complex in recent years. The reason why (see Figure 1). Depending on the specific model, these comes down to freedom of choice. The universe of capacitors capacitors cover a voltage range from 2-25V and offer has expanded greatly over the past few years, in large part capacitances between 2.2-560µF. The distinguishing because of capacitor designs that take advantage of advances electrical characteristic of these polymer capacitors is in conductive polymers. their extremely low equivalent series resistance (ESR). For example, some of our SP-Cap™ polymer capacitors have These advanced capacitors sometimes use conductive polymers ESR values as low as 3mΩ, which is among the lowest in to form the entire electrolyte. Or the conductive polymers can be used in conjunction with a liquid electrolyte in a design known as a hybrid capacitor. -
Failure Mechanisms in Wet Tantalum Capacitors
Electrocomponent Science and Technology (C) Gordon and Breach Science Publishers Ltd. 1976, Vol. 2, pp. 249--257 Printed in Great Britain FAILURE MECHANISMS IN WET TANTALUM CAPACITORS The Plessey Company Limited, Northants, U.K. (R eceived May 13, 19 75, in final form June 1 7, 19 75) The wet tantalum capacitor is well established in both power supply smoothing and timing applications and has a well proven high reliability. This paper reviews the mechanisms of the possible failures arising from mis-application or over-stressing. The effect of over voltage on the anodic oxide is considered and the influence of cathode structure on reverse voltage and ripple current capability is discussed. The silver cathode allows migration of silver ions through the electrolyte under appropriate conditions and hence produces a failure mechanism not present in the tantalum cathode device. The life of a wet tantalum unit is eventually limited by loss of water vapour leading to open-circuit. Results are presented for button style capacitors which suggest that this is in fact not a practical limitation. 1 INTRODUCTION whole is assembled in a suitable case. The two main types of construction are shown in Figure 1. In both In these days of advanced integrated circuitry, it is instances a high capacitance is required at the easy to overlook the intricacies of an apparently electrolyte to case interface in order that the capacit- simple component such as a capacitor. Electrolytic ance of the overall device is controlled essentially by capacitors in particular have a technology of their the anode film. For the silver case this is usually own and it is useful to tmderstand the basic principles achieved by applying a black platinum layer over the involved.