PGBSDM Development and Application
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Root Zone Salinity Modeling Within Kalaat El Andalous Irrigated District (Tunisia) Using Saltmod Model
Root zone salinity modeling within Kalaat El Andalous irrigated district (Tunisia) using SaltMod model Ahmed Saidi 1*, Moncef Hammami 2, Hedi Daghari 3, Hedi Ben Ali4, Amor Boughdiri 5 1,3 Carthage University, National Agronomic Institute of Tunis, 43 Charles Nicolle Street, Mahrajene City, 1082 Tunis, Tunisia 2,5 Carthage University, Higher Agronomic School of Mateur, Road of Tabarka, 7030 Mateur, Tunisia 4Agency of agricultural investment promotion, 6000 Gabes, Tunisia Abstract—SaltMod simulations indicate a slight change of root zone salinity remaining between 3 and 6 dS/m and do not causes risks to forage and cereal crops. However, such salinity is causing a yield decrease of 10 to 20% for tomato crop. During the next 10 years, groundwater water table depth will range between 1.33 and 1.76 m. and remains lower than that of the root zone (0.6 m). Therefore, groundwater table will not pose problems as long as we keep the same management conditions during this period. Moreover, the simulation of drainage system depth variation impacts on root zone salinity indicates that a decrease of drainage lines depth does not affect root zone salinity which remains constant (4.94 dS/m and 3.68 dS/m respectively during the first season and the second season). Regarding groundwater table depth, it is noted that there is a variation for each drainage lines depth variation and groundwater level is ranging from 1.26 to 0.26 m and 1.76 to 0.76 m during the first season and the second season respectively. Thus, optimum drainage lines depth corresponds to that for which salinity and groundwater level have acceptable values not threatening crops and generating minimum drainage flow. -
Land Use Change, Modelling of Soil Salinity And
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA LAND USE CHANGE, MODELLING OF SOIL SALINITY AND HOUSEHOLDS’ DECISIONS UNDER CLIMATE CHANGE SCENARIOS IN THE COASTAL AGRICULTURAL AREA OF SENEGAL BY Sophie THIAM (BSc. Natural Sciences, MSc. Natural Resources Management and Sustainable Development) A Thesis submitted to the Department of Civil Engineering, College of Engineering in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Climate Change and Land Use June, 2019 DECLARATION I hereby declare that this submission is my own work towards the PhD in Climate Change and Land Use and that, to the best of my knowledge, it contains no material previously published by another person, nor material which has been accepted for the award of any other degree of the University, except where due acknowledgment has been made in the text. Sophie Thiam (PG7281816) Signature…………………Date………………... Certified by: Prof. Nicholas Kyei-Baffour Signature…………….…….Date……………… Department of Agricultural and Biosystems Engineering Kwame Nkrumah University of Science and Technology (Supervisor) Dr. François Matty Signature................................Date………… Institut des Sciences De l’Environnement University Cheikh Anta Diop of Dakar (Supervisor) Dr. Grace B.Villamor Signature………………….Date…………… Centre for Resilience Communities University of Idaho (Supervisor) Prof. Samuel Nii Odai Signature………………..Date………………. Head of Department of Civil Engineering i ABSTRACT Soil salinity remains one of the most severe environmental problems in the coastal agricultural areas in Senegal. It reduces crop yields thereby endangering smallholder farmers’ livelihood. To support effective land management, especially in coastal areas where impacts of climate change have induced soil salinity and food insecurity, this study investigated the patterns and impacts of soil salinity in a coastal agricultural landscape by developing an Agent-Based Model (ABM) for Djilor District, Fatick Region, Senegal. -
Salinity Management and Soil Amendments for Southwestern Pecan Orchards J.L
ARIZONA COOPERATIVE E TENSION College of Agriculture and Life Sciences AZ1411 Revised 10/11 SALINITY MANAGEMENT AND SOIL AMENDMENTS FOR SOUTHWESTERN PECAN ORCHARDS J.L. Walworth Introduction Managing salts in Southwestern pecan orchards can be a major 1.0 challenge for growers, due to limited soil permeability and/or 1219721972 low-quality irrigation water. However, effective, long-term salt 1319631963 management is essential for maintaining productivity of pecan 0.8 1219721972 orchards. The challenge is to effectively manage soil salinity and sodium (Na) in a cost-effective manner, using appropriate combinations of irrigation management, soil management, and 0.6 soil amendments. Formation of Soil Salinity 0.4 Many arid region soils naturally contain high concentrations of soluble salts, because soil weathering processes dependent 0.2 upon precipitation have not been sufficiently intense to leach RTD = -0.095 x ECe –1.09 salts out of soils. Irrigation water and fertilizers contain salts R = -0.89** that may contribute further to the problem. Poor soil drainage due to the presence of compacted layers (hardpans, plowpans, 0.0 caliche, and clay lenses), heavy clay texture, or sodium problems 0022446688 may prevent downward movement of water and salts, making implementation of soil salinity control measures difficult. ECe (dS/m) Adequate soil drainage, needed to allow leaching of water and salts below the root zone of the trees, is absolutely essential for Figure 1. Reduction in pecan relative trunk diameter with increasing soil effective management of soil salinity. salt concentrations. After Miyamoto, et al., Irrig. Sci. (1986) 7:83-95. The risk of soil salinity formation is always greater in fine- textured (heavy) soils than in coarse-textured soils. -
Pages 406 To
397 SOIL SALINITY CONTROL UNDER BARLEY CULTIVATION USING A LABORATORY DRY DRAINAGE MODEL Shahab Ansari 1,*, Behrouz Mostafazadeh-Fard 2, Jahangir Abedi Koupai3 Abstract The drainage of agricultural fields is carried out in order to control soil salinity and the water table. Conventional drainage methods such as lateral drainage and interceptor drains have been used for many years. These methods increase agriculture production; but they are expensive and often cause environmental contaminations. One of the inexpensive and more environmental friendly methods that can be used in arid and semi-arid regions to remove excess salts from irrigated lands to non- irrigated or fallow lands is dry drainage. In the dry drainage method, natural soil system and the evaporation of fallow land is used to control soil salinity and the water table of irrigated land. There are few studies about dry drainage concepts. it is also important to study soil salt changes over time because of salt movements from irrigated areas to non-irrigated areas especially under plant cultivation. In this study a laboratory model which is able to simulate dry drainage was used to investigate soil salts transport under barley cultivation. The model was studied during the barley growing season and for a constant water table. During the growing season soil salinities of irrigated and non-irrigated areas were measured at different time. The Results showed that dry drainage can control the soil salinity of an irrigated area. The excess salts leached from an irrigated area and accumulated in the non-irrigated area and the leaching rate changed over time. -
Sediment Transport Model for a Surface Irrigation System
Hindawi Publishing Corporation Applied and Environmental Soil Science Volume 2013, Article ID 957956, 10 pages http://dx.doi.org/10.1155/2013/957956 Research Article Sediment Transport Model for a Surface Irrigation System Damodhara R. Mailapalli,1 Narendra S. Raghuwanshi,2 and Rajendra Singh2 1 BiologicalSystemsEngineering,UniversityofWisconsin,Madison,WI53706,USA 2 Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, India Correspondence should be addressed to Damodhara R. Mailapalli; [email protected] Received 16 March 2013; Revised 25 June 2013; Accepted 11 July 2013 Academic Editor: Keith Smettem Copyright © 2013 Damodhara R. Mailapalli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model wasevaluatedforbareandcroppedfurrowfields.Theresultsindicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. -
Downloaded 10/02/21 08:25 AM UTC
15 NOVEMBER 2006 A R O R A A N D B O E R 5875 The Temporal Variability of Soil Moisture and Surface Hydrological Quantities in a Climate Model VIVEK K. ARORA AND GEORGE J. BOER Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada, University of Victoria, Victoria, British Columbia, Canada (Manuscript received 4 October 2005, in final form 8 February 2006) ABSTRACT The variance budget of land surface hydrological quantities is analyzed in the second Atmospheric Model Intercomparison Project (AMIP2) simulation made with the Canadian Centre for Climate Modelling and Analysis (CCCma) third-generation general circulation model (AGCM3). The land surface parameteriza- tion in this model is the comparatively sophisticated Canadian Land Surface Scheme (CLASS). Second- order statistics, namely variances and covariances, are evaluated, and simulated variances are compared with observationally based estimates. The soil moisture variance is related to second-order statistics of surface hydrological quantities. The persistence time scale of soil moisture anomalies is also evaluated. Model values of precipitation and evapotranspiration variability compare reasonably well with observa- tionally based and reanalysis estimates. Soil moisture variability is compared with that simulated by the Variable Infiltration Capacity-2 Layer (VIC-2L) hydrological model driven with observed meteorological data. An equation is developed linking the variances and covariances of precipitation, evapotranspiration, and runoff to soil moisture variance via a transfer function. The transfer function is connected to soil moisture persistence in terms of lagged autocorrelation. Soil moisture persistence time scales are shorter in the Tropics and longer at high latitudes as is consistent with the relationship between soil moisture persis- tence and the latitudinal structure of potential evaporation found in earlier studies. -
Landscape Irrigation Best Management Practices
IRRIGATION ASSOCIATION & AMERICAN SOCIETY OF IRRIGATION CONSULTANTS Landscape Irrigation Best Management Practices May 2014 Prepared by the Irrigation Association and American Society of Irrigation Consultants Chairman: John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Editor: Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Committee Contributors (in alphabetical order): James Barrett, FASIC, CID, CLIA, James Barrett Associates LLC, Roseland, New Jersey Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Carol Colein, American Society of Irrigation Consultants, East Lansing, Michigan David D. Davis, FASIC, David D. Davis and Associates, Crestline, California Brent Q. Mecham, CAIS, CGIA, CIC, CID, CLIA, CLWM, Irrigation Association, Falls Church, Virginia John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Dennis Pittenger, Cooperative Extension, U.C. Riverside, Riverside, California Corbin Schneider, ASIC, RLA, CLIA, Verde Design, Inc., Santa Clara, California The Irrigation Association and the American Society of Irrigation Consultants have developed the Landscape Irrigation Best Management Practices for landscape and irrigation professionals and policy makers who must preserve and extend the water supply while protecting water quality. The BMPs will aid key stakeholders (policy makers, water purveyors, designers, installation and maintenance contractors, and consumers) to develop and implement appropriate -
Subsurface Drip Irrigation (Sdi) Systems
NETAFIM USA SUBSURFACE DRIP IRRIGATION (SDI) SYSTEMS ADVANCED DRIP/MICRO IRRIGATION TECHNOLOGIES SUBSURFACE DRIP IRRIGATION QUALITY AND DEPENDABILITY FROM THE LEADERS IN DRIP IRRIGATION For over 50 years, growers world-wide have counted on Netafim for the most reliable, cost-effective and efficient ways to deliver water, nutrients and chemicals to their crops. This tradition continues with subsurface drip irrigation (SDI), the most advanced method for irrigating agricultural crops. With proper management of water and nutrients, a subsurface drip irrigation system can deliver maximum yields and optimal water use efficiencies. Drip irrigation, whether surface or subsurface, often results in increased production and yields as well as increased quality and uniformity. It provides more efficient use of the applied water resulting in substantial water savings. The flexibility of drip irrigation increases a grower’s ability to farm marginal land. WHAT IS SUBSURFACE DRIP IRRIGATION (SDI)? Subsurface drip irrigation is a variation on traditional drip irrigation where the dripline (tubing and drippers) is buried beneath the soil surface, rather than laid on the ground, supplying water directly to the roots. The depth and distance the dripline is placed depends on the soil type and the plant’s root structure. SDI is more than an irrigation system, it is a root zone management tool. Fertilizer can be applied to the root zone in a quantity when it will be most beneficial - resulting in greater use efficiencies and better crop performance. SUBSURFACE DRIP IRRIGATION (SDI) ADVANTAGES The key benefit of a surface micro-irrigation system is to apply low volumes of water and nutrients uniformly to every plant across the entire field. -
Why Do We Have So Many Different Hydrological Models?
Why do we have so many different hydrological models? A review based on the case of Switzerland Pascal Horton*1, Bettina Schaefli1, and Martina Kauzlaric1 1Institute of Geography & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland ([email protected]) This is a preprint of a manuscript submitted to WIREs Water. 1 Abstract Hydrology plays a central role in applied as well as fundamental environmental sciences, but it is well known to suffer from an overwhelming diversity of models, in particular to simulate streamflow. Based on Switzerland's example, we discuss here in detail how such diversity did arise even at the scale of such a small country. The case study's relevance stems from the fact that Switzerland shows a relatively high density of academic and research institutes active in the field of hydrology, which led to an evolution of hydrological models that stands exemplarily for the diversification that arose at a larger scale. Our analysis summarizes the main driving forces behind this evolution, discusses drawbacks and advantages of model diversity and depicts possible future evolutions. Although convenience seems to be the main driver so far, we see potential change in the future with the advent of facilitated collaboration through open sourcing and code sharing platforms. We anticipate that this review, in particular, helps researchers from other fields to understand better why hydrologists have so many different models. 1 Introduction Hydrological models are essential tools for hydrologists, be it for operational flood forecasting, water resource management or the assessment of land use and climate change impacts. -
Water Balances
On website waterlog.info Agricultural hydrology is the study of water balance components intervening in agricultural water management, especially in irrigation and drainage/ Illustration of some water balance components in the soil Contents • 1. Water balance components • 1.1 Surface water balance 1.2 Root zone water balance 1.3 Transition zone water balance 1.4 Aquifer water balance • 2. Speficic water balances 2.1 Combined balances 2.2 Water table outside transition zone 2.3 Reduced number of zones 2.4 Net and excess values 2.5 Salt Balances • 3. Irrigation and drainage requirements • 4. References • 5. Internet hyper links Water balance components The water balance components can be grouped into components corresponding to zones in a vertical cross-section in the soil forming reservoirs with inflow, outflow and storage of water: 1. the surface reservoir (S) 2. the root zone or unsaturated (vadose zone) (R) with mainly vertical flows 3. the aquifer (Q) with mainly horizontal flows 4. a transition zone (T) in which vertical and horizontal flows are converted The general water balance reads: • inflow = outflow + change of storage and it is applicable to each of the reservoirs or a combination thereof. In the following balances it is assumed that the water table is inside the transition zone. If not, adjustments must be made. Surface water balance The incoming water balance components into the surface reservoir (S) are: 1. Rai - Vertically incoming water to the surface e.g.: precipitation (including snow), rainfall, sprinkler irrigation 2. Isu - Horizontally incoming surface water. This can consist of natural inundation or surface irrigation The outgoing water balance components from the surface reservoir (S) are: 1. -
Basic Elements of Ground-Water Hydrology with Reference to Conditions in North Carolina by Ralph C Heath
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Basic Elements of Ground-Water Hydrology With Reference to Conditions in North Carolina By Ralph C Heath U.S. Geological Survey Water-Resources Investigations Open-File Report 80-44 Prepared in cooperation with the North Carolina Department of Natural^ Resources and Community Development Raleigh, North Carolina 1980 United States Department of the Interior CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. W. Menard, Director For Additional Information Write to: Copies of this report may be purchased from: GEOLOGICAL SURVEY U.S. GEOLOGICAL SURVEY Open-File Services Section Post Office Box 2857 Branch of Distribution Box 25425, Federal Center Raleigh, North Carolina 27602 Denver, Colorado 80225 Preface Ground water is one of North Carolina's This report was prepared as an aid to most valuable natural resources. It is the developing a better understanding of the primary source-of water supplies in rural areas ground-water resources of the State. It and is also widely used by industries and consists of 46 essays grouped into five parts. municipalities, especially in the Coastal Plain. The topics covered by these essays range from However, its use is not increasing in proportion the most basic aspects of ground-water to the growth of the State's population and hydrology to the identification and correction economy. Instead, the present emphasis in of problems that affect the operation of supply water-supply development is on large regional wells. The essays were designed both for self systems based on reservoirs on large streams. study and for use in workshops on ground- The value of ground water as a resource not water hydrology and on the development and only depends on its widespread occurrence operation of ground-water supplies. -
Modelisation by SALTMOD of Leaching Fraction and Crops Rotation As Relevant Tools for Salinity Management in the Irrigated Area of Dyiar Al- Hujjej,Tunisia
International Journal of Computer and Information Technology (ISSN: 2279 – 0764) Volume 03 – Issue 04, July 2014 Modelisation by SALTMOD of Leaching Fraction and Crops Rotation as Relevant Tools for Salinity Management in the Irrigated area of Dyiar Al- Hujjej,Tunisia Issam Daghari Ali Gharbi Agronomic National Institute of Tunisia High School of Agriculture Engineering (INAT), 43 Avenue Charles Nicolle, 1082, Medjez-EL Bab, Tunis, Tunisia Béja, Tunisia Abstract---- Irrigated agriculture faces serious problems of economical factors relating to the interaction between land soil salinization in the arid and semi-arid regions of the attribution and irrigated area management and study the world. Tunisian saline soils occupy about 25% of the total feasibility of the water desalination for agriculture irrigated area. In this study, the irrigated area of “Diyar particularly for crops of high added value. El Hujjaj” in Tunisia was considered when sea water intrusion and a salinisation of the aquifer were observed. Keywords--component; sea water intrusion, salinisation, As a result, many pumping wells and farms have been Mixture water, Leaching fraction, Crops rotation, Saltmod, abandoned. An expensive surface fresh water transfer Tunisia. from more than 100 Km was done and a mixture between aquifer salty water and surface water is common practice. I. INTRODUCTION In this paper, SaltMod model was used to simulate Tunisia has more than 400,000 hectares of irrigated and analyze the soil salinity evolution under several water land, 25% are affected by salinization (Hamrouni and Daghari, management scenarios. The first one was a new practice 2010). In Tunisia, the main source of salinization of irrigated (simultaneously growth of strawberry and pepper).