Water Striders) of Idaho (Heteroptera)

Total Page:16

File Type:pdf, Size:1020Kb

Water Striders) of Idaho (Heteroptera) Great Basin Naturalist Volume 49 Number 2 Article 14 4-30-1989 Gerridae (water striders) of Idaho (Heteroptera) R. C. Biggam University of Idaho, Moscow M. A. Brusven University of Idaho, Moscow Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Biggam, R. C. and Brusven, M. A. (1989) "Gerridae (water striders) of Idaho (Heteroptera)," Great Basin Naturalist: Vol. 49 : No. 2 , Article 14. Available at: https://scholarsarchive.byu.edu/gbn/vol49/iss2/14 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. GERRIDAE (WATER STRIDERS) OF IDAHO (HETEROPTERA) 1 R. C. Biggam" and M. A. Brusven" Abstract. —A biosystematic study on the Gerridae of Idaho was undertaken to clarify and describe the taxonomy, species distribution, and biology of this aquatic hemipteran family. Three genera and 7 species were collected in the state. Keys to three genera and 10 species are provided. General descriptions, diagnoses, and distributional ranges are given for species occurring within and adjacent to Idaho. Special interest in aquatic and subaquatic (Scudder 1969, 1971), brackish coastal waters Heteroptera by the authors and recently pub- (Vepsalainen 1973, Andersen 1975, Cobben lished papers on the Gerridae of Montana 1960), and the open ocean (Andersen and Pol- (Roemhild 1976) and Oregon and Washington hemus 1976). Five species of the genus Halo- (Stonedahl and Lattin 1982) prompted this bates have been collected hundreds of miles taxonomic study on the Gerridae of Idaho. from the nearest land (Cheng 1974), making The ubiquitous nature, conspicuous habits, them one of the few insects to successfully predaceous activities, and nutritive value of occupy the open ocean. Vepsalainen (1973), gerrids to higher trophic levels make them an Calabrese (1977), and Spence and Scudder important group in aquatic and semiaquatic (1980) found that gerrids display habitat pref- ecosystems. erences. Strict habitat association is the most The purposes of this study were to deter- important factor in ecological species separa- mine the distributions of species occurring in tion and coexistence (Spence and Scudder Idaho, clarify taxonomic differences between 1980, Spence 1983). related species occurring in or adjacent to the state, provide a diagnostic key for the identifi- Biology and Life History cation of species, and provide information on habitat affinities. Three genera and seven spe- Gerrids are opportunistic predators (Jamie- cies of Gerridae are recorded in the state. son and Scudder 1977) on other insects of the neuston community and terrestrial inverte- brates that fall into the water. They are also Classification and Distribution known to feed on fruits and berries (Riley Approximately 488 species of Gerridae in 1918). Live prey are preferred, but scaveng- 55 genera occur throughout the world (An- ing and cannibalism are probably necessary dersen 1982). Five subfamilies were recog- for some to survive. Coastal gerrids may feed nized by Hungerford and Matsuda (1960) and on windblown terrestrial insects found on the eight by Andersen (1975, 1982); two occur in sea (Andersen and Polhemus 1976). Ocean- Idaho and the Pacific Northwest (Gerrinae going Halobates feed on coelenterates (Savi- and Trepobatinae). lov 1967). Cannibalism occurs in most species The family Gerridae is worldwide in distri- and is usually the result of overcrowding, food bution except for the polar regions. Gerrids shortage, or vulnerability during molting (Ri- live on the surfaces of rivers, mountain ley 1922a, 1922b, 1925, Stonedahl and Lattin streams, and warm ponds (Fairbairn 1985a), 1982). Gerrids detect their prey and mates by lakes, reservoirs, irrigation canals, and hot orientation to surface waves caused by the springs (Calabrese and Tallerico 1982), road object of intent (Murphy 1971a, 1971b, 1971c, puddles, ditches, sinkhole ponds, marshes, Weber 1930, Wilcox 1972, 1979, Lawry 1973). and swamps (Herring 1950, 1951), saline lakes The prey is quickly grasped by the raptorial 'Approved by the director of the Idaho Agricultural Experiment Station as Research Paper #8876 2 Department of Plant. Soil and Entomological Sciences. University of Idaho, Moscow. Idaho 83843. 259 260 Great Basin Naturalist Vol. 49, No. 2 forelegs, after which the cutting, mandibular 1961, 1963, Vepsaliiinen 1971a, 1971b, 1974a, stylets of the forward-extended rostrum are 1974b, Andersen 1973, Jarvinen 1976, Jar- inserted into the prey (Cobben 1978). These vinen and Vepsaliiinen 1976) where apterous stylets also serve in the transfer of enzymatic to macropterous forms can occur. Apterous secretions into the prey and the extraction of populations usually indicate a stable popula- the prey's body fluids (Cheng 1967a, 1974). tion and habitat. Macropterous populations Gerrids have hemimetabolous or gradual are common in unstable or confined habitats development; the immature stage is a nymph. such as ponds or lakes. In populations with Eggs are attached to submerged vegetation or multiple generations, early apterous genera- other substrates either singly or in clusters tions often produce macropterous individuals (Hungerford 1920, Cobben 1968, Andersen for population dispersion (Brinkhurst 1963). and Polhemus 1976). One European species, Macropterous forms usually overwinter as Gerris najas De Geer, attaches its eggs to lake adults and reproduce the following season. bottom substrates (Brinkhurst 1960), whereas Occasionally, brachypterous and micropter- of the subfamily Bhagadotarsinae members ous forms of the same species may occur to- insert their eggs directly into plant tissue (Sil- gether, the result of population density, cli- vey 1931). The eggs, usually white when laid, matic changes, and/or habitat instability. turn to amber with age and range in size from Vepsaliiinen (1971a, 1971b) observed that an 1.0 X 0.33 to 1.6 X 0.5 (Herring mm mm environmental switching mechanism caused 1961). The eggs usually hatch within 14 days by day length, temperature, and illumination (Torre-Bueno 1917a, 1917b, Hungerford rhythm is the probable cause of the varying 1920, Hoffman 1924, Bobb 1951, Herring wing lengths from one generation to the next 1961, Cheng 1967b). An egg burster is used in bivoltine or trivoltine populations. by the first instar nymph to escape from the Gerrid flight activity has been reported by chorion (Hungerford 1920, Cobben 1968). Biley (1920), Leech (1970), Callahan (1974), The newly hatched nymphs make their way to and Spence and Scudder (1980). Biley (1925) the surface, break the surface tension, and lists food deficiency, drought, and overcrowd- begin life on the waters surface. Depending ing as important factors influencing flight. on environmental factors, one to six genera- also result in compensa- tions per year have been noted (Torre-Bueno Overcrowding can 1917a, Hoffman 1924, Cheng 1967b, Cheng tory upstream dispersal (Fairbairn 1985b). and Fernando 1970, Bobb 1974, Vepsaliiinen Shortened day lengths during larval develop- 1974b, 1974c, Callahan 1974, Polhemus and ment induce diapause (Vepsaliiinen 1971b, Chapman 1979, Spence and Scudder 1980). 1974a, 1974d). Lee et al. (1975) reported that The nymphs have five instars or molts and triglycerides were metabolized during hiber- require 21 to 44 days to achieve adulthood nation in G. remigis Say. (Penn and Goldsmith 1950, Bobb 1951, Her- Gerrids are fed upon by frogs (Drake 1914, ring 1961). Torre-Bueno 1917b, Biley 1925, Callahan Spence et al. (1980b) reported that temper- 1974), fish and Dytiscus beetles (Biley 1925), ature is very important in development. They ducks (McAtee 1918, Mabbot 1920, Anderson observed several species basking underwater 1932), shorebirds (Wetmore 1925), swallows during low air temperatures, presumably to (Beal 1918), trout (Callahan 1974), and hedge- increase gonad development (1980a). The hogs (Obrtel and Holisova 1981). The senior nymphs are similar in appearance to the author observed Grylloblatta campodeifor- adults except in size, body proportion, near mis Walker (Orthoptera: Grylloblattidae) absence of external genitalic structures, lack feeding on Gerris remigis Say. Cooper (1984), of scent glands, and presence of only one although never observing trout actually feed- tarsal segment per leg. After ecdysis via a ing on gerrids in the wild, reported fish read- Y-shaped suture on the thorax (Cheng 1967b), ily taking experimentally disabled specimens. the adults remain teneral for several days, Some gerrids will attempt to escape predation thus leaving themselves vulnerable to preda- by feigning death (Essenberg 1915, Biley tion and cannibalism (Andersen 1973). 1921, Callahan 1974). Gerrids can inflict a Wing polymorphism in the adult stage is painful bite with their beak, and the pain can prevalent in most species (Brinkhurst 1959, be long lasting. April 1989 Biggam, Brusven: Idaho Water Striders 261 Table 1. The taxa, habitats, trophic relationships, and seasonal occurrences ol the Gerridae of Idaho. Taxa 262 Great Basin Naturalist Vol. 49, No. 2 A general overview of habitat, trophic rela- exceeds the apex of the abdomen. Also, the tionships, and seasonal occurrence for the middle legs are attached much closer to the Idaho species is given in Table 1. General hind legs in the gerrids;
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • A Bug on the Ocean Waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at A bug on the ocean waves (Heteroptera, Gerridae, Halobates ESCHSCHOLTZ)1 L. CHENG Abstract: Five species of Halobates are the only insects known to live on the open ocean. Here is a brief description of what they are, where to find them, some of their special adaptations and their origins. Key words: Gerridae, Halobates, Heteroptera, marine, ocean. Introduction scribed species (ANDERSEN & WEIR 2004). Most of the known gerrid species are fresh- Insects are ubiquitous on land but they water in habitat and can be found on ponds, are commonly thought to be completely ab- lakes, streams, rivers, waterfalls and even sent from the sea, which covers more than temporary rain-filled pools. However, some 70 % of the earth’s surface. This is actually 80 species are considered marine. These be- not quite true. A large variety of insects do long to 11 genera in 3 subfamilies: Trepo- occur in various marine environments batinae, Rhagadotarsinae, and Halobatinae, (CHENG 1976). In fact, marine representa- to which Halobates belongs. tives can be found in at least 20 orders of the Insecta (CHENG 2003), the most important The genus Halobates was created in 1822 being the Collembola, Heteroptera, Coleo- by ESCHSCHOLTZ for 3 insect species collect- ptera and Diptera (CHENG & FRANK 1993). ed during a circumnavigation expedition. Among the Gerromorpha (Heteroptera), Many new species were added during the marine species can be found in five of the subsequent years, some from major ocean six known families: Gerridae, Hebridae, basins and others from various near-shore Hermatobatidae, Mesoveliidae and Veli- habitats.
    [Show full text]
  • Antagonistic Coevolution Between the Sexes in a Group of Insects
    letters to nature Acknowledgements a central process of evolution, with the potential to shape various We thank the authorities in Madagascar and the Seychelles for permission to conduct interactions between the sexes2,5,6 and their gametes7±8, as well as ®eldwork. We thank J. Brown, T. Peterson, R. Prum, O. Rieppel, L. Trueb and E. Wiley for diversi®cation9, speciation and extinction rates10±12. At the core of comments. C.J.R. and R.A.N. were supported by the National Geographic Society and the this coevolutionary interaction is an arms race between the sexes National Science Foundation, Washington. that can include periods of both escalation and de-escalation of arms13±15. Competing interests statement Theory suggests, however, that the outcome of antagonistic The authors declare that they have no competing ®nancial interests. male±female interactions should remain relatively unchanged Correspondence and requests for materials should be addressed to C.J.R. during an arms race because the build-up of arms in one sex may (e-mail: [email protected]). Sequences are deposited of GenBank under accession numbers be balanced by a build-up in the other (Fig. 1a, 1±2). The AF443224±AF443275. consequences of such arms races on sexual interactions may thus be undetectable, which makes sexually antagonistic coevolution inherently dif®cult to show1±4. Perhaps for this reason, we have no direct empirical evidence for a primary role of arms races in the ................................................................. evolution of sexual interactions in natural systems. Despite an expectation of some evolutionary balance in the level Antagonistic coevolution between of arms between the sexes, one sex may at least temporarily evolve a greater quantity of arms relative to the other (refs 13±15; and Fig.
    [Show full text]
  • A Check List of Gerromorpha (Hemiptera) from India
    Rec. zool. Surv. India: 100 (Part 1-2) : 55-97, 2002 A CHECK LIST OF GERROMORPHA (HEMIPTERA) FROM INDIA G. THIRUMALAI Zoological Survey of India, Southern Regional Station, Chennai 600 028. INTRODUCflON The Infraorder Gerromorpha comprises of semi-aquatic bugs characterised by long conspicuous antennae, longer than head and inserted in front of eyes. They are distributed in all kinds of climatic zones, except the coldest and driest parts. This infraorder contains 8 families namely, Gerridae, Veliidae, Hydrometridae, Mesoveliidae, Hebridae, Macroveliidae, Paraphrynoveliidae and Hennatobatidae (Andersen, 1982a). Knowledge of Indian semi-aquatic Hemiptera is limited to the taxonomic preliminaries, recording species from different parts of the country. (Distant, 1903a; 1910 a&b; Annandale, 1919; Bergroth, 1915a; Paiva, 1919a & b; Dover, 1928; Hafiz & Mathai, 1938; Hafiz & Riberio, 1939; Hafiz & Pradhan, 1947; Pradhan, 1950a, b& 1975; Gupta, 1981; Selvanayagam, 1981; Roy et al. 1988; Ghosh et al. 1989; Polhenlus & Starmuhlner, 1990; Bal & Basu, 1994 & 1997; Chen & Zettel, 1999). The revisionary work of Andersen (1975, 1980, 1990 & 1993); Den Boer (1969); Hungerford & Matsuda (1958a & b, 1960, 1962b & 1965); Herring (1961); Polhemus & Andersen (1984); Andersen & Foster (1992); Andersen & Chen (1993); Chen & Nieser (1993a & b); Polhemus & Karunaratne (1993); Polhemus (1994); Polhemus & Polhemus (1994 & 1995a) on a few genera of Gerridae; Lundblad (1936) on the genera Rhagovelia Mayr and Tetraripis Lundblad; Andersen (1981 b, 1983 & 1989); Polhemus
    [Show full text]
  • NOTES on WATER BUGS from SOUTH EAST ASIA and AUSTRALIA (Heteroptera: Nepomorpha & Gerromorpha)
    F. M. BUZZETTI, N. NIESER & J. DAMGAARD: Notes on water bugs ... 31 FILIPPO MARIA BUZZETTI, NICO NIESER & JAKOB DAMGAARD NOTES ON WATER BUGS FROM SOUTH EAST ASIA AND AUSTRALIA (Heteroptera: Nepomorpha & Gerromorpha) ABSTRACT - BUZZETTI F.M., NIESER N. & DAMGAARD J., 2006 - Notes on water bugs from South East Asia and Australia (Heteroptera: Nepomorpha & Gerromorpha). Atti Acc. Rov. Agiati, a. 256, 2006, ser. VIII, vol. VI, B: 31-45. Faunistical data on some Nepomorpha and Gerromorpha from South East Asia and Australia are given. Hydrometra greeni Kirk., Limnogonus (Limnogonoides) pecto- ralis Mayr and Halobates sp. are reported as new records for Myanmar. KEY WORDS - Faunistics. RIASSUNTO - BUZZETTI F.M., NIESER N. & DAMGAARD J., 2006 - Su alcuni Emitteri acquatici del Sud Est Asiatico e dellAustralia (Heteroptera: Nepomorpha & Gerro- morpha). Si riportano alcuni dati faunistici relativi a Nepomorfi e Gerromorfi dal Sud Est Asiatico e dallAustralia. Hydrometra greeni Kirk., Limnogonus (Limnogonoides) pecto- ralis Mayr e Halobates sp. sono per la prima volta citati per il Myanmar. PAROLE CHIAVE - Faunistica. INTRODUCTION In this publication the Nepomorpha and Gerromorpha from South East Asia and Australia presently in the F. M. B. private collection are reported. Some specimens transferred to the Nieser collection are indi- cated NCTN. Other data from the collection of the Zoological Muse- um of Copenhagen University are indicated as ZMUC. Some synony- my is abbraviated but can be found in the publications cited under the various species. When given, measurements are in mm. The collecting localities from Myanmar are shown in Map 1. 32 Atti Acc. Rov. Agiati, a. 256, 2006, ser.
    [Show full text]
  • Gen. Nov., Sp. Nov.: a New Water Strider from the Colombian Pacific Region (Insecta, Hemiptera, Gerridae)
    ZooKeys 1043: 87–102 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1043.58548 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Telmatometropsis fredyi gen. nov., sp. nov.: a new water strider from the Colombian Pacific region (Insecta, Hemiptera, Gerridae) Silvia P. Mondragón-F.1, Irina Morales1, Felipe F. F. Moreira2 1 Laboratorio de Entomología, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-155, Tunja, BY, Colombia 2 Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365, Pavilhão Mourisco, sala 214. Manguinhos, Rio de Janeiro, RJ, Brazil Corresponding author: Irina Morales ([email protected]) Academic editor: L. Livermore | Received 11 September 2020 | Accepted 22 March 2021 | Published 11 June 2021 http://zoobank.org/0286F2B8-0E1E-4DC6-B8B0-71652BF1A39D Citation: Mondragón-F SP, Morales I, Moreira FFF (2021) Telmatometropsis fredyi gen. nov., sp. nov.: a new water strider from the Colombian Pacific region (Insecta, Hemiptera, Gerridae). ZooKeys 1043: 87–102.https://doi. org/10.3897/zookeys.1044.58548 Abstract A new genus of Gerridae (Insecta, Hemiptera, Heteroptera) in the subfamily Trepobatinae, Telmatome- tropsis gen. nov., with a single included species, T. fredyi sp. nov., is described from the Colombian Pacific region. Representatives of the new genus were collected in mangrove lagoons of Buenaventura Bay, Valle del Cauca Department. The new genus can be diagnosed by the relative proportions of the antennomeres, the shape of the male fore tarsus, and by the black markings on the head, thorax and abdomen. Keywords Aquatic insects, Gerromorpha, Neotropical Region, taxonomy Introduction Gerridae comprises over 750 described species in more than sixty genera and eight subfamilies, of which almost 150 species have been recorded from the Neotropical Region (Polhemus and Polhemus 2008).
    [Show full text]
  • Heteroptera: Gerromorpha) in Central Europe
    Shortened web version University of South Bohemia in České Budějovice Faculty of Science Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe RNDr. Tomáš Ditrich Ph.D. Thesis Supervisor: Prof. RNDr. Miroslav Papáček, CSc. University of South Bohemia, Faculty of Education České Budějovice 2010 Shortened web version Ditrich, T., 2010: Ecology of Veliidae and Mesoveliidae (Heteroptera: Gerromorpha) in Central Europe. Ph.D. Thesis, in English. – 85 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic. Annotation Ecology of Veliidae and Mesoveliidae (Hemiptera: Heteroptera: Gerromorpha) was studied in selected European species. The research of these non-gerrid semiaquatic bugs was especially focused on voltinism, overwintering with physiological consequences and wing polymorphism with dispersal pattern. Hypotheses based on data from field surveys were tested by laboratory, mesocosm and field experiments. New data on life history traits and their ecophysiological consequences are discussed in seven original research papers (four papers published in peer-reviewed journals, one paper accepted to publication, one submitted paper and one communication in a conference proceedings), creating core of this thesis. Keywords Insects, semiaquatic bugs, life history, overwintering, voltinism, dispersion, wing polymorphism. Financial support This thesis was mainly supported by grant of The Ministry of Education, Youth and Sports of the Czech Republic No. MSM 6007665801, partially by grant of the Grant Agency of the University of South Bohemia No. GAJU 6/2007/P-PřF, by The Research Council of Norway: The YGGDRASIL mobility program No. 195759/V11 and by Czech Science Foundation grant No. 206/07/0269. Shortened web version Declaration I hereby declare that I worked out this Ph.D.
    [Show full text]
  • Sexually Antagonistic Coevolution in a Mating System
    Sexually Antagonistic Coevolution in a Mating System: Combining Experimental and Comparative Approaches to Address Evolutionary Processes Author(s): Locke Rowe and Göran Arnqvist Reviewed work(s): Source: Evolution, Vol. 56, No. 4 (Apr., 2002), pp. 754-767 Published by: Society for the Study of Evolution Stable URL: http://www.jstor.org/stable/3061658 . Accessed: 01/10/2012 15:38 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Society for the Study of Evolution is collaborating with JSTOR to digitize, preserve and extend access to Evolution. http://www.jstor.org Evoluition, 56(4), 2002, pp. 754-767 SEXUALLY ANTAGONISTIC COEVOLUTION IN A MATING SYSTEM: COMBINING EXPERIMENTAL AND COMPARATIVE APPROACHES TO ADDRESS EVOLUTIONARY PROCESSES LOCKE ROWE"223 AND GORAN ARNQVIST4 'Department of Zoology, University of Toronto, Toronto, Ontario M5S 3G5, Canada 2Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Ontario M5S 2C6 Canada 3E-mail: [email protected] 4Department of Animal Ecology, Evolutionary Biology Centre, University of Uppsala, Norbyvagen 18d, SE-752 36 Uppsala, Sweden Abstract.-We combined experimental and comparative techniques to study the evolution of mating behaviors within in a clade of 15 water striders (Gerris spp.).
    [Show full text]
  • A Comparison of the External Morphology and Functions of Labial Tip Sensilla in Semiaquatic Bugs (Hemiptera: Heteroptera: Gerromorpha)
    Eur. J. Entomol. 111(2): 275–297, 2014 doi: 10.14411/eje.2014.033 ISSN 1210-5759 (print), 1802-8829 (online) A comparison of the external morphology and functions of labial tip sensilla in semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha) 1 2 JOLANTA BROŻeK and HERBERT ZeTTeL 1 Department of Zoology, Faculty of Biology and environmental Protection, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland; e-mail: [email protected] 2 Natural History Museum, entomological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected] Key words. Heteroptera, Gerromorpha, labial tip sensilla, pattern, morphology, function, apomorphic characters Abstract. The present study provides new data on the morphology and distribution of the labial tip sensilla of 41 species of 20 gerro- morphan (sub)families (Heteroptera: Gerromorpha) obtained using a scanning electron microscope. There are eleven morphologically distinct types of sensilla on the tip of the labium: four types of basiconic uniporous sensilla, two types of plate sensilla, one type of peg uniporous sensilla, peg-in-pit sensilla, dome-shaped sensilla, placoid multiporous sensilla and elongated placoid multiporous sub- apical sensilla. Based on their external structure, it is likely that these sensilla are thermo-hygrosensitive, chemosensitive and mechano- chemosensitive. There are three different designs of sensilla in the Gerromorpha: the basic design occurs in Mesoveliidae and Hebridae; the intermediate one is typical of Hydrometridae and Hermatobatidae, and the most specialized design in Macroveliidae, Veliidae and Gerridae. No new synapomorphies for Gerromorpha were identified in terms of the labial tip sensilla, multi-peg structures and shape of the labial tip, but eleven new diagnostic characters are recorded for clades currently recognized in this infraorder.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Allozyme Survey and Relationships of Limnoporus St& Species
    ALLOZYME SURVEY AND RELATIONSHIPS OF LIMNOPORUS ST& SPECIES (HETEROPTERA: GERRIDAE) F. A.H. SPERLING'and J.R. SPENCE Department of Entomology, University of Alberta, Edmonton, Alberta, Canada T6G 2E3 Abstract Can. Ent. 122: 2942 (1990) Five species of Limnoporus Sdl (L. canalicuhtus [Say], L. dissortis [Drake and Harris], L. nearcticus [Kelton], L. notabilis [Drake and Hottes], and L. rufoscutellatus [Latreille]) were each sampled at 20 electrophoretic loci. Twofold differences among species in mean heterozygosity appear to be unrelated to presence of wing dimorphism. Low heterozygosity in some populations within species may reflect geographic isola- tion. There were substantial differences in allele frequency among, but not within, species. Limnoporus rufoscutellatus from western Europe and L. nearcticus from Alaska were the most similar pair of species, with a Nei's standard genetic identity that is generally found only between populations of the same species. Limnoporus canaliculatus was the most divergent species, and the relationship among L. dissortis, L. notabilis, and the L. rufoscutellatus - L. nearcticus pair is resolved as a trichotomy. Cinq espkces de Limnoporus Sdl (L. canaliculatus [Say], L. dissortis [Drake et Harris], L. nearcticus [Kelton], L. notabilis [Drake et Hottes] et L. rufoscutellatus [Latreille]) ont 6t6 tchantillonn&s B 20 loci. Des diffkrences interspkcifiques de l'ordre du double existant au niveau de l'hCt6ozygosit6 n'ont pas pu 6tre imput6es au dimorphisme alaire. Au niveau intraspikifique, I'isolation g6ographique de certaines populations pourrait expliquer leur faible degr6 d'h6t6rozygosit6. On a not6 des diffkrences substantielles concernant la fr6quence de certains alEles au niveau interspkifique, mais pas au niveau intrasp6cifique.
    [Show full text]