Geosci. Model Dev., 10, 765–789, 2017 www.geosci-model-dev.net/10/765/2017/ doi:10.5194/gmd-10-765-2017 © Author(s) 2017. CC Attribution 3.0 License. The Finite-volumE Sea ice–Ocean Model (FESOM2) Sergey Danilov1,2, Dmitry Sidorenko1, Qiang Wang1, and Thomas Jung1 1Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 2A. M. Obukhov Institute of Atmospheric Physics RAS, Moscow, Russia Correspondence to: Sergey Danilov (
[email protected]) Received: 7 October 2016 – Discussion started: 24 October 2016 Revised: 20 December 2016 – Accepted: 21 December 2016 – Published: 17 February 2017 Abstract. Version 2 of the unstructured-mesh Finite-Element erle et al., 2016) indicate that the multi-resolution approach Sea ice–Ocean circulation Model (FESOM) is presented. It advocated by FESOM is successful and allows one to explore builds upon FESOM1.4 (Wang et al., 2014) but differs by its the impact of local processes on the global ocean with mod- dynamical core (finite volumes instead of finite elements), erate computational effort (see Sein et al., 2016). Other new and is formulated using the arbitrary Lagrangian Eulerian global multi-resolution models are appearing (see Ringler (ALE) vertical coordinate, which increases model flexibility. et al., 2013), and new knowledge on unstructured-mesh mod- The model inherits the framework and sea ice model from the eling has accumulated (for a review, see Danilov, 2013). Al- previous version, which minimizes the efforts needed from a though FESOM1.4 (Wang et al., 2014) already offers a very user to switch from one version to the other. The ocean states competitive throughput compared to structured-mesh mod- simulated with FESOM1.4 and FESOM2.0 driven by CORE- els in massively parallel applications (Sein et al., 2016), we II forcing are compared on a mesh used for the CORE-II in- continue to explore the ways to further increase the numeri- tercomparison project.