BLOCK ADJUSTMENT on PERSONAL COMPUTERS Dipl.-Math
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tom Kearney Object Name: Sun Sparcstation IPX Vintage: C.1991 Synopsis: Sun Sparcstation IPX
AccessionIndex: TCD-SCSS-T.20121208.075 Accession Date: 8-Dec-2012 Accession By: Tom Kearney Object name: Sun Sparcstation IPX Vintage: c.1991 Synopsis: Sun Sparcstation IPX. S/N: 600-2791-04 213M1236. Description: The Sun Sparcstation IPX is a workstation introduced by Sun Microsystems in 1991. It was designed to be an entry-level networked workstation. It is based on the SUN4C architecture, enclosed in a lunchbox chassis. It uses a Fujitsu MB86903 or Weitek W8701 40 MHz processor. Weitek provided 80MHz after-market "SPARC POWERuP!" (2000A-080 GCD) processors which worked well in an IPX but required a ROM update to v2.9. It has four 72-pin SIMM slots for memory expansion. The memory uses parity Fast Page Memory (FPM) SIMM's with speeds of 50-80ns. Slots can be filled individually giving a maximum of 64MB memory. Paired memory modules decrease access times via "bank interleaving" resulting in faster memory and overall system performance. Additional 32 and 64MB SBUS "Above Board" RAM expanders will fit and work in the IPX using the 8-pin J101 header which contains additional power and clock signals next to the DMA/Cache controller. The Sparcstation IPX also includes an on-board AMD Lance Ethernet chipset providing 10BaseT networking as standard and 10Base2 and 10Base5 via an AUI transceiver. The OpenBoot ROM is able to boot from network, using RARP and TFTP. Like all other SPARCstation systems, it holds system information such as MAC address and serial number in NVRAM. If the battery on this chip dies, then the system will not be able to boot. -
Fortran Reference Guide
FORTRAN REFERENCE GUIDE Version 2018 TABLE OF CONTENTS Preface............................................................................................................ xv Audience Description......................................................................................... xv Compatibility and Conformance to Standards............................................................ xv Organization................................................................................................... xvi Hardware and Software Constraints...................................................................... xvii Conventions................................................................................................... xvii Related Publications........................................................................................ xviii Chapter 1. Language Overview............................................................................... 1 1.1. Elements of a Fortran Program Unit.................................................................. 1 1.1.1. Fortran Statements................................................................................. 1 1.1.2. Free and Fixed Source............................................................................. 2 1.1.3. Statement Ordering................................................................................. 2 1.2. The Fortran Character Set.............................................................................. 3 1.3. Free Form Formatting.................................................................................. -
SPSS to Orthosim File Conversion Utility Helpfile V.1.4
SPSS to Orthosim File Conversion Utility Helpfile v.1.4 Paul Barrett Advanced Projects R&D Ltd. Auckland New Zealand email: [email protected] Web: www.pbarrett.net 30th December, 2019 Contents 3 Table of Contents Part I Introduction 5 1 Installation Details ................................................................................................................................... 7 2 Extracting Matrices from SPSS - Cut and Paste ................................................................................................................................... 8 3 Extracting Matrices from SPSS: Orthogonal Factors - E.x..c..e..l. .E..x..p..o..r.t................................................................................................................. 17 4 Extracting Matrices from SPSS: Oblique Factors - Exce.l. .E..x..p..o..r..t...................................................................................................................... 24 5 Creating Orthogonal Factor Orthosim Files ................................................................................................................................... 32 6 Creating Oblique Factor Orthosim Files ................................................................................................................................... 41 3 Paul Barrett Part I 6 SPSS to Orthosim File Conversion Utility Helpfile v.1.4 1 Introduction SPSS-to-Orthosim converts SPSS 11/12/13/14 factor loading and factor correlation matrices into the fixed-format .vf (simple ASCII text) files -
· Welter ABACUS 3170 FLOATING·POINT COPROCESSOR for SPARC PRELIMINARY DATA May 1989
· WElTER ABACUS 3170 FLOATING·POINT COPROCESSOR FOR SPARC PRELIMINARY DATA May 1989 The Abac:us 3170 Is a single-c:hip noating-point c:oproc:essor for the Fujitsu 5-20/5-25 and LSI Logic L64801 implementations of the SPARC architec:ture. It inc:orporates a noating-point datapath and a noating point c:ontroUer. The Abac:us 3170 provides direc:t interfac:e to the integer unit and memory. It is available in speed grades of 20 and 25 MHz. Related product The Abacus 3171 single chip Ooating-point coproc:eaor forCypress 7C601 implementation of SPARe architecture. ( Contents Features 1 Desc:ription System Considerations 8 Spec:ific:ations 10 Pin Configuration IS Physical Dimensions 16 ( Ordering Information 16 Sales Offices back cover USING THIS DATA SHEET In the writing of this data sheet, it was assumed that the user is familiar with the SPARC architecture, as well as the hardware details of its implementation. This data sheet does not cover details that are explained in the following and other related literature: The SPARe Architecture MtD'IUIll, by Sun Microsystems SPARe MB86901 (S-25) High PerjOl7l'lQTlCe 32-Bit RIse Processor, by Fujitsu Microelectronics, Inc. L64801 Hzgh PerjOl7l'lQTlCe Open Architecture RIse Mu:roprocessor, by LSI Logic Corporation. WEITEK Abacus 3170 Floating-Point Coprocessor for SPARC May, 1989 Copyright © WEITEK Corporation 1989 1060 East Arques Avenue Sunnyvale, California 94086 Telephone (408) 738-8400 All rights reserved . WEITEK is a registered trademark of WEITEK Corporation SPARC is a trademark of Sun Microsystems, Inc. WEITEK reserves the right to make changes to these specifications at any time Printed in the United States of America 9089 65432 1 DOC 89XX ("~. -
ILE C/C++ Programmer's Guide
IBM i 7.2 Programming IBM Rational Development Studio for i ILE C/C++ Programmer's Guide IBM SC09-2712-07 Note Before using this information and the product it supports, read the information in “Notices” on page 441. This edition applies to version 7, release 2, modification 0 of IBM Rational Development Studio for i (product number 5770-WDS) and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models. This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is licensed to you under the terms of the IBM License Agreement for Machine Code. © Copyright International Business Machines Corporation 1993, 2013. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents ILE C/C++ Programmer’s Guide..............................................................................1 PDF file for ILE C/C++ Programmer’s Guide............................................................................................... 3 About ILE C/C++ Programmer's Guide........................................................................................................5 Install Licensed Program Information................................................................................................... 5 Notes About Examples.......................................................................................................................... -
Developing Embedded SQL Applications
IBM DB2 10.1 for Linux, UNIX, and Windows Developing Embedded SQL Applications SC27-3874-00 IBM DB2 10.1 for Linux, UNIX, and Windows Developing Embedded SQL Applications SC27-3874-00 Note Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on page 209. Edition Notice This document contains proprietary information of IBM. It is provided under a license agreement and is protected by copyright law. The information contained in this publication does not include any product warranties, and any statements provided in this manual should not be interpreted as such. You can order IBM publications online or through your local IBM representative. v To order publications online, go to the IBM Publications Center at http://www.ibm.com/shop/publications/ order v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at http://www.ibm.com/ planetwide/ To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU (426-4968). When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. © Copyright IBM Corporation 1993, 2012. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Chapter 1. Introduction to embedded Include files for COBOL embedded SQL SQL................1 applications .............29 Embedding SQL statements -
The UCSD P-System STATUT ORIL Y EX E:M PT
DOCfi!D(ov~ by NSA on 12-01-2011, Transparency Case# 5335]UNCLASSIFIED The UCSD p-System STATUT ORIL Y EX E:M PT This paper discusses the UCSD p-System, an operating system for small computers developed at the University of California at San Diego. The discussion includes the overall system, file managing, editing, and programming in Pascal on the system. INTRODUCTION The UCSD p-System was developed at the University of California at San Diego to support Pascal programming on microcomputers. Similar to MS-DOS, the p-System is an operating system for small computers but is, in many ways, very different. The p-System is written in Pascal and now supports not only Pascal, but also FORTRAN, COBOL, BASIC, and Modula-2. The concept was to have an operating system that, once it was implemented on a machine, allowed any program written under that operating system to be truly transportable from computer to computer. That is to say, the p-System compiler would not actually translate the program into a language that was specific for, say, an 8088 chip on the IBM-PC, but rather would translate it into a "pseudo" language that, when used with an operating system designed for the PC, would run correctly. Similarly, if the operating system were implemented on a Digital Equipment Corporation (DEC) computer, this same pseudo code would still work properly with no modifications. The particular version of UCSD p-System tested was written for the IBM-PC and requires two single-sided double-density disk drives and at least 128K of memory. -
A FORTRAN 77 Program for a Nonparametric Item Response Model: the Mokken Scale Analysis
BehaviorResearch Methods, Instruments, & Computers 1988, 20 (5), 471-480 A FORTRAN 77 program for a nonparametric item response model: The Mokken scale analysis JOHANNES KINGMA University of Utah, Salt Lake City, Utah and TERRY TAERUM University ofAlberta, Edmonton, Alberta, Canada A nonparametric item response theory model-the Mokken scale analysis (a stochastic elabo ration of the deterministic Guttman scale}-and a computer program that performs this analysis are described. Three procedures of scaling are distinguished: a search procedure, an evaluation of the whole set of items, and an extension of an existing scale. All procedures provide a coeffi cient of scalability for all items that meet the criteria of the Mokken model and an item coeffi cient of scalability for every item. Four different types of reliability coefficient are computed both for the entire set of items and for the scalable items. A test of robustness of the found scale can be performed to analyze whether the scale is invariant across different subgroups or samples. This robustness test serves as a goodness offit test for the established scale. The program is writ ten in FORTRAN 77. Two versions are available, an SPSS-X procedure program (which can be used with the SPSS-X mainframe package) and a stand-alone program suitable for both main frame and microcomputers. The Mokken scale model is a stochastic elaboration of which both mainframe and MS-DOS versions are avail the well-known deterministic Guttman scale (Mokken, able. These programs, both named Mokscal, perform the 1971; Mokken & Lewis, 1982; Mokken, Lewis, & Mokken scale analysis. Before presenting a review of the Sytsma, 1986). -
IBM 1401 System Summary
File No. 1401-00 Form A24-1401-1 Systems Reference Library IBM 1401 System Summary This reference publication contains brief descriptions of the machine features, components, configurations, and special features. Also included is a section on pro grams and programming systems. Publications providing detailed information on sub jects discussed in this summary are listed in IB~I 1401 and 1460 Bibliography, Form A24-1495. Major Revision (September 1964) This publication, Form A24-1401-1, is a major revision of and obsoletes Form A24-1401-0. Significant changes have been made throughout the publication. Reprinted April 1966 Copies of this and other IBM publications can be obtained through IBM Branch Offices. Address comments concerning the content of this publication to IBM Product Publications, Endicott, New York 13764. Contents IBM 1401 System Summary . ........... 5 System Concepts . ................ 6 Card-Oriented System .... ......... 11 Physical Features. 11 Interleaving. .. .................................... 14 Data Flow.... ... ... ... ... .. ... ... .. ................... 14 Checking ................................................... 15 Word Mark.. ... ... ... ... ... ... .. ... ... ... ........... 15 Stored-Program Instructions. .................. 15 Operation Codes . .. 18 Editing. .. ............ 18 IBM 1401 Console ............................................ 19 IBM 1406 Storage Unit. ........................... 20 Magnetic-Tape-Oriented System . ........................... 22 Data Flow ................................................. -
Coppola Marchese Unixworld.Pdf
- Given a budget of around 98000, Francis Marchiseand Jean Coppola (left)ol Pace Uni- versity created an AT-based 386 workstation with exceptional f loating-point performance. TURBOGHARGING YOUR 386 Build a 386 from scratch, or inrease performa,nce on a budget chip, and the software must be Weitek .fi', _/crn F. Coppola and, Francis T Marchese compatible to recognize it. Srtren writ- I t : ve bousht a 386 machine tional floating-point power for computa- ing your own code, this is not a big prob- f .rnning UNH, and you wanl tionally intensive applications such as lem because compilers are available I - improve i1s per[ormance ray tracing, cellular automata, and that support Weitek. I rci add some neat features. molecular modeling. Although the Weitek was excellent - j :.,::, vou have a limited budget, so w We would have complete control for our in-house intense floating-point ,n. best price/performance over all the components in the system. applications, we also needed a fast : ::,: If we would have bought a preconfig- numeric co-processor for commercial ', -=:: do you start? Whether you're ured system, it would not be custom- non-Weitek-supported applications, and particular parallel , -,. .:::rg -""our 386SX or building your ized to our needs, nor would possibly computations. A ' ::. stem from modules, you first we be assured of the quality of each daughterboard. wilh sockels for both ' :": ., Sat priorities. As small systems component. chips, can accomplish this task, and j : r ::s at Pace, a New York universiff, Two further considerations: we both chips can reside in the same sys- -: :articuiar goal was to build a 25- chose to stay with the AT-bus architec- tem to accommodate any co-processor- ,.-.- s1'stem that was as powerful as a ture because the Industry Standard specific application. -
A Generic Linked List Implementation in Fortran 95∗
A Generic Linked List Implementation in Fortran 95∗ JASON R. BLEVINS† Department of Economics, Duke University May 18, 2009 Abstract. This paper develops a standard conforming generic linked list in Fortran 95 which is capable of storing data of an any type. The list is implemented using the transfer intrinsic function, and although the interface is generic, it remains relatively simple and minimizes the potential for error. Although linked lists are the focus of this paper, the generic programming techniques used are very general and broadly-applicable to other data structures and procedures implemented in Fortran 95 that need to be used with data of an unknown type. Keywords: Fortran 95, generic programming, data structures, scientific computing. 1. INTRODUCTION A linked list, or more specifically a singly-linked list, is a list consisting of a series of individual node elements where each node contains a data member and a pointer that points to the next node in the list. This paper describes a generic linked list implementation in standard Fortran 95 which is able to store arbitrary data, and in particular, pointers to arbitrary data types. While linked lists are the focus of this paper, the underlying idea can be easily used to create more general generic data structures and procedures in Fortran 95. The generic_list module is developed in detail below, followed by an example control program which illustrates the list interface, showing how to use Fortran’s transfer intrinsic function to store and retrieve pointers to derived type data variables. This module has several advantages: it is written in standard Fortran 95 to ensure portability, it is self-contained and does not require the use of a preprocessor or include statements, and the transfer function only needs to be called once by the user, resulting in clean code and minimizing the potential for errors. -
Computer Architectures an Overview
Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.