Implementing IBM Flashsystem 900

Total Page:16

File Type:pdf, Size:1020Kb

Implementing IBM Flashsystem 900 Front cover Implementing IBM FlashSystem 900 Karen Orlando Ingo Dimmer Detlef Helmbrecht Jon Herd Carsten Larsen Matt Levan Redbooks International Technical Support Organization Implementing IBM FlashSystem 900 November 2016 SG24-8271-01 Note: Before using this information and the product it supports, read the information in “Notices” on page ix. Second Edition (November 2016) This edition applies to the IBM FlashSystem 900, Release 1.2. © Copyright International Business Machines Corporation 2015, 2019. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . ix Trademarks . .x IBM Redbooks promotions . xi Preface . xiii Authors. xiv Now you can become a published author, too! . xvi Comments welcome. xvi Stay connected to IBM Redbooks . xvii Summary of changes. xix April 2019, Second Edition update. xix November 2016, Second Edition . xix May 2015, First Edition . xix Chapter 1. FlashSystem storage introduction . 1 1.1 FlashSystem storage overview . 2 1.2 IBM FlashCore technology . 2 1.2.1 Flash wear guarantee . 4 1.3 Why flash technology matters . 4 1.4 IBM FlashSystem family: Product differentiation. 5 1.5 Technology and architectural design overview . 6 1.5.1 Hardware-only data path. 7 1.5.2 The 20nm flash card memory chips . 8 1.5.3 Flash module capacities . 8 1.5.4 Gateway interface FPGA . 8 1.5.5 Flash controller FPGA. 8 1.5.6 IBM Variable Stripe RAID and 2D Flash RAID overview . 9 1.6 Variable Stripe RAID . 10 1.6.1 How Variable Stripe RAID works . 10 1.7 Two-dimensional (2D) Flash RAID . 12 Chapter 2. IBM FlashSystem 900 architecture . 15 2.1 Introduction to the IBM FlashSystem 900 architecture . 16 2.1.1 Capacity . 16 2.1.2 Performance and latency . 17 2.1.3 Power requirements . 18 2.1.4 Physical specifications . 18 2.1.5 FlashCore technology . 18 2.1.6 Scalability . 20 2.1.7 Protocol support . 20 2.1.8 Encryption support . 21 2.1.9 Comparison of IBM FlashSystem models 840 and 900 . 23 2.1.10 Management . 23 2.2 Architecture of IBM FlashSystem 900. 24 2.2.1 Overview of architecture . 24 2.2.2 Hardware components . 26 2.2.3 Canisters. 26 © Copyright IBM Corp. 2015, 2019. All rights reserved. iii 2.2.4 Interface cards . 27 2.2.5 MicroLatency modules . 31 2.2.6 Battery modules . 34 2.3 Administration and maintenance. 36 2.3.1 Serviceability and software enhancements. 36 2.3.2 System management . 37 2.4 Support matrix. 43 2.5 Product integration overview. 43 2.5.1 IBM Spectrum Virtualize - SAN Volume Controller . 44 2.5.2 IBM Storwize V7000 storage array . 45 2.5.3 IBM DB2 database environments . 46 2.5.4 IBM Spectrum Scale . 46 2.5.5 IBM TS7650G ProtecTIER . 47 2.5.6 VMware with IBM Storage Integration Server. 48 Chapter 3. Planning . 49 3.1 Prerequisites to installation . 50 3.1.1 Contact information and checklist . 50 3.1.2 Completing the hardware location chart . 51 3.2 Planning cable connections . 52 3.2.1 Management port connections . 52 3.2.2 Interface card connections . 54 3.3 Planning for power . 59 3.4 Planning for configuration . 59 3.5 The call home option. 61 3.6 TCP/IP requirements. 62 3.7 Planning for encryption . 63 3.8 Checking web browser settings for the management GUI . 64 3.9 Licensing . ..
Recommended publications
  • IBM Flashsystem A9000 Product Guide (Version 12.3)
    Front cover IBM FlashSystem A9000 Product Guide (Updated for Version 12.3.2) Bert Dufrasne Stephen Solewin Francesco Anderloni Roger Eriksson Lisa Martinez Product Guide IBM FlashSystem A9000 Product Guide This IBM® Redbooks® Product Guide is an overview of the main characteristics, features, and technologies that are used in IBM FlashSystem® A9000 Models 425 and 25U, with IBM FlashSystem A9000 Software V12.3.2. IBM FlashSystem A9000 storage system uses the IBM FlashCore® technology to help realize higher capacity and improved response times over disk-based systems and other competing flash and solid-state drive (SSD)-based storage. FlashSystem A9000 offers world-class software features that are built with IBM Spectrum™ Accelerate. The extreme performance of IBM FlashCore technology with a grid architecture and comprehensive data reduction creates one powerful solution. Whether you are a service provider who requires highly efficient management or an enterprise that is implementing cloud on a budget, FlashSystem A9000 provides consistent and predictable microsecond response times and the simplicity that you need. As a cloud optimized solution, FlashSystem A9000 suits the requirements of public and private cloud providers who require features, such as inline data deduplication, multi-tenancy, and quality of service. It also uses powerful software-defined storage capabilities from IBM Spectrum Accelerate, such as Hyper-Scale technology, VMware, and storage container integration. FlashSystem A9000 is a modular system that consists of three grid controllers and a flash enclosure. An external view of the Model 425 is shown in Figure 1. Figure 1 IBM FlashSystem A9000 Model 425 © Copyright IBM Corp. 2017, 2018. All rights reserved.
    [Show full text]
  • Emerging Technologies Multi/Parallel Processing
    Emerging Technologies Multi/Parallel Processing Mary C. Kulas New Computing Structures Strategic Relations Group December 1987 For Internal Use Only Copyright @ 1987 by Digital Equipment Corporation. Printed in U.S.A. The information contained herein is confidential and proprietary. It is the property of Digital Equipment Corporation and shall not be reproduced or' copied in whole or in part without written permission. This is an unpublished work protected under the Federal copyright laws. The following are trademarks of Digital Equipment Corporation, Maynard, MA 01754. DECpage LN03 This report was produced by Educational Services with DECpage and the LN03 laser printer. Contents Acknowledgments. 1 Abstract. .. 3 Executive Summary. .. 5 I. Analysis . .. 7 A. The Players . .. 9 1. Number and Status . .. 9 2. Funding. .. 10 3. Strategic Alliances. .. 11 4. Sales. .. 13 a. Revenue/Units Installed . .. 13 h. European Sales. .. 14 B. The Product. .. 15 1. CPUs. .. 15 2. Chip . .. 15 3. Bus. .. 15 4. Vector Processing . .. 16 5. Operating System . .. 16 6. Languages. .. 17 7. Third-Party Applications . .. 18 8. Pricing. .. 18 C. ~BM and Other Major Computer Companies. .. 19 D. Why Success? Why Failure? . .. 21 E. Future Directions. .. 25 II. Company/Product Profiles. .. 27 A. Multi/Parallel Processors . .. 29 1. Alliant . .. 31 2. Astronautics. .. 35 3. Concurrent . .. 37 4. Cydrome. .. 41 5. Eastman Kodak. .. 45 6. Elxsi . .. 47 Contents iii 7. Encore ............... 51 8. Flexible . ... 55 9. Floating Point Systems - M64line ................... 59 10. International Parallel ........................... 61 11. Loral .................................... 63 12. Masscomp ................................. 65 13. Meiko .................................... 67 14. Multiflow. ~ ................................ 69 15. Sequent................................... 71 B. Massively Parallel . 75 1. Ametek.................................... 77 2. Bolt Beranek & Newman Advanced Computers ...........
    [Show full text]
  • Faster Oracle Performance with IBM Flashsystem 2 Faster Oracle Performance with IBM Flashsystem
    IBM Systems and Technology Group May 2013 Thought Leadership White Paper Faster Oracle performance with IBM FlashSystem 2 Faster Oracle performance with IBM FlashSystem Executive summary The result is a massive performance gap, felt most painfully This whitepaper discusses methods for improving Oracle® by database servers, which typically carry out far more I/O database performance using flash storage to accelerate the most transactions than other systems. Super fast processors and resource-intensive data that slows performance across the massive amounts of bandwidth are often wasted as storage board. devices take several milliseconds just to access the requested data. To this end, it discusses methods for identifying I/O performance bottlenecks, and it points out components that are the best candidates for migration to a flash storage appliance. An in-depth explanation of flash technology and possible implementations are also included. The problem of I/O wait time Often, additional processing power alone will do little or nothing to improve Oracle performance. This is because the processor, no matter how fast, finds itself constantly waiting on mechanical storage devices for its data. While every other component in the “data chain” moves in terms of computation times and the raw speed of electricity through a circuit, hard drives move mechanically, relying on physical movement around a magnetic platter to access information. In the last 20 years, processor speeds have increased at a Figure 1: Comparing processor and storage performance improvements geometric rate. At the same time, however, conventional storage access times have only improved marginally (see Figure 1). IBM Systems and Technololgy Group 3 When servers wait on storage, users wait on servers.
    [Show full text]
  • IBM DS8880: Hybrid Cloud Integration with Transparent Cloud Tiering
    Accelerate with IBM Storage: IBM DS8880: Hybrid cloud integration with Transparent Cloud Tiering Craig Gordon Consulting I/T Specialist IBM Washington Systems Center [email protected] © Copyright IBM Corporation 2018. Washington Systems Center - Storage Accelerate with IBM Storage Webinars The Free IBM Storage Technical Webinar Series Continues in 2018... Washington Systems Center – Storage experts cover a variety of technical topics. Audience: Clients who have or are considering acquiring IBM Storage solutions. Business Partners and IBMers are also welcome. To automatically receive announcements of upcoming Accelerate with IBM Storage webinars, Clients, Business Partners and IBMers are welcome to send an email request to [email protected]. Located in the Accelerate with IBM Storage Blog: https://www.ibm.com/developerworks/mydeveloperworks/blogs/accelerate/?lang=en Also, check out the WSC YouTube Channel here: https://www.youtube.com/playlist?list=PLSdmGMn4Aud-gKUBCR8K0kscCiF6E6ZYD&disable_polymer=true 2018 Webinars: January 9 – DS8880 Easy Tier January 17 – Start 2018 Fast! What's New for Spectrum Scale V5 and ESS February 8 - VersaStack - Solutions For Fast Deployments February 16 - TS7700 R4.1 Phase 2 GUI with Live Demo February 22 - DS8880 Transparent Cloud Tiering Live Demo March 1 - Spectrum Scale/ESS Application Case Study Register Here: https://ibm2.webex.com/ibm2/onstage/g.php?MTID=e25146b6c1207cb081f4392087fb6f73a March 7 - Spectrum Storage Management, Control, Insights, Foundation; what’s the difference? Register Here: https://ibm2.webex.com/ibm2/onstage/g.php?MTID=e3165dfc6c698c8fcb83132c95ae6dfe7 March 15 - IBM FlashSystem A9000/R and SVC Configuration Best Practices Register Here: https://ibm2.webex.com/ibm2/onstage/g.php?MTID=e87d423c5cccbdefbbb61850d54f70f4b © Copyright IBM Corporation 2018.
    [Show full text]
  • Publication Title 1-1962
    publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013
    [Show full text]
  • IBM Power® Systems for SAS® Empowers Advanced Analytics Harry Seifert, Laurent Montaron, IBM Corporation
    Paper 4695-2020 IBM Power® Systems for SAS® Empowers Advanced Analytics Harry Seifert, Laurent Montaron, IBM Corporation ABSTRACT For over 40+ years of partnership between IBM and SAS®, clients have been benefiting from the added value brought by IBM’s infrastructure platforms to deploy SAS analytics, and now SAS Viya’s evolution of modern analytics. IBM Power® Systems and IBM Storage empower SAS environments with infrastructure that does not make tradeoffs among performance, cost, and reliability. The unified solution stack, comprising server, storage, and services, reduces the compute time, controls costs, and maximizes resilience of SAS environment with ultra-high bandwidth and highest availability. INTRODUCTION We will explore how to deploy SAS on IBM Power Systems platforms and unleash the full potential of the infrastructure, to reduce deployment risk, maximize flexibility and accelerate insights. We will start by reviewing IBM and SAS’s technology relationship and the current state of SAS products on IBM Power Systems. Then we will look at some of the infrastructure options to deploy SAS 9.4 on IBM Power Systems and IBM Storage, while maximizing resiliency & throughput by leveraging best practices. Next, we will look at SAS Viya, which introduces changes to the underlying infrastructure requirements while remaining able to be deployed alongside a traditional SAS 9.4 operation. We’ll explore the various deployment modes available. Finally, we’ll look at tuning practices and reference materials available for a deeper dive in deploying SAS on IBM platforms. SAS: 40 YEARS OF PARTNERSHIP WITH IBM IBM and SAS have been partners since the founding of SAS.
    [Show full text]
  • N94-13338 1.1.1 3Rd NASA Symposium on VLSI Design 1991
    N94-13338 1.1.1 3rd NASA Symposium on VLSI Design 1991 Experience with Custom Processors in Space Flight Applications M. E. Fraeman, J. R. Hayes, D. A. Lohr, B. W. Ballard, R. L. Williams, and R. M. Henshaw Johns Hopkins University Applied Physics Laboratory Laurel, Maryland 20723 Abstract- APL has developed a magnetometer instrument for a Swedish satel- lite named Freja with launch scheduled for August 1992 on a Chinese Long March rocket. The magnetometer controller utilized a custom microprocessor designed at APL with the Genesil silicon compiler. The processor evolved from our experience with an older bit-slice design and two prior single chip efforts. The architecture of our microprocessor greatly lowered software development costs because it was optimized to provide an interactive and extensible pro- gramming environment hosted by the target hardware. Radiation tolerance of the microprocessor was also tested and was adequate for Freja's mission-- 20 kRad(Si) total dose and very infrequent latch-up and single event upset events. 1 Introduction The Johns Hopkins University Applied Physics Laboratory (APL) has developed a micro- processor that is well suited to one-of-a-kind embedded applications especially in satellite instrument control. The chip has been qualified for use in a magnetometer instrument for the Swedish Freja satellite. The processor's language directed architecture reduced Freja software costs because the flight hardware served as its own development system. Thus, unlike traditional interpreted programming languages like Basic, Lisp, or Smalltalk, our Forth language development system was fully supported on the embedded flight proces- sor. Performance was also equivalent or better than that obtained by other microprocessors programmed in languages like C with traditional cross-compilers and development systems.
    [Show full text]
  • Best Practices for IBM DS8000 and IBM Z/OS Hyperswap with IBM Copy Services Manager
    Front cover Best Practices for IBM DS8000 and IBM z/OS HyperSwap with IBM Copy Services Manager Thomas Luther Alexander Warmuth Marcelo Takakura Redbooks IBM Redbooks Best Practices for IBM DS8000 and IBM z/OS HyperSwap with IBM Copy Services Manager May 2019 SG24-8431-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (May 2019) This edition applies to IBM Copy Services Manager (CSM) V6.2.3 with IBM DS8000 Version 8.5. © Copyright International Business Machines Corporation 2019. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix Authors. ix Now you can become a published author, too! . .x Comments welcome. .x Stay connected to IBM Redbooks . .x Part 1. Introduction and planning . 1 Chapter 1. Introduction. 3 1.1 IBM Copy Services Manager overview . 4 1.2 CSM licenses . 5 1.2.1 CSM licenses for z/OS platforms . 5 1.2.2 CSM licenses for distributed server platforms. 6 1.3 z/OS HyperSwap overview . 7 1.3.1 z/OS HyperSwap: Not so basic anymore . 8 1.3.2 CSM sessions that support HyperSwap . 9 1.3.3 z/OS HyperSwap functions . 9 1.3.4 HyperSwap sequence. 11 1.3.5 Planned and unplanned HyperSwap . 12 1.4 CSM and HyperSwap communication flow . 13 1.5 GDPS Metro solutions. 14 1.6 IBM Resiliency Orchestration and CSM . 15 Chapter 2. IBM Copy Services Manager and IBM z/OS HyperSwap implementation topologies .
    [Show full text]
  • Space Station Freedom Data Management System Growth and Evolution Report
    NASA Technical Memorandum 103869 Space Station Freedom Data Management System Growth and Evolution Report R. Bartlett, G. Davis, T. L. Grant, J. Gibson, R. Hedges, M. J. Johnson, Y. K. Liu, A. Patterson-Hine, N. Sliwa, H. Sowizral, and J. Yan N93-15k77 (NASA-TM- I03869) SPACE STATION FREEDOM DATA MANAGEMENT SYSTEM GROWTH ANO EVOLU TIr}N REPORT (NASA) Uncl as September 1992 66 P G3/17 0178407 National Aeronautics and Space Administration Z NASA Technical Memorandum 103869 Space Station Freedom Data Management System Growth and Evolution Report T. L. Grant and J. Yan, Ames Research Center, Moffett Field, California September 1992 RIASA National Aeronauticsand Space Administration Ames Research Center MoffettField, CaJifomia94035-1000 The Study Team The Data Management System (DMS) analysis team Digital Equipment Corporation, Moffett Field, CA consists of civil servants and contractors at NASA Ames Roger Bartlett Research Center, Information Sciences Division. Prof. Joanne Bechta Dugan provided the reliability Intelligent Systems Technology Branch, Ames analysis of the DMS network reported in appendix B; she Research Center, Moffett Field, CA used the HARP code and the work was sponsored by Gloria Davis Langley Research Center (LaRC). Members of the Failure Terry Grant Tolerance/Redundancy Management Working Group Bob Hedges provided network failure information and preliminary Y. K. Liu models that aided our study of the failure tolerance of the Dr. Ann Patterson-Hine DMS network. Nancy Sliwa We also acknowledge the following individuals for Sterling Federal Systems, Inc., Palo Alto, CA reviewing early versions of the manuscripts: Dr. Jerry Yah Gregg Swietek (NASA Headquarters), Mike Pasciuto (NASA), Donald Woods (McDonnell Douglas Space Research Institute for Advanced Computational Systems Company (MDSSC)) and George Ganoe Science, Moffett Field, CA (NASA LaRC).
    [Show full text]
  • Inter-Processor and Inter-Computer Communications
    Inter-processor and Inter-computer Communications David Rye :: MTRX3700 Communications :: Slide 1 of 87 Classification . Close-coupled . Loose-coupled . On-board busses . Serial . Backplanes . RS-232 . RS-422 . RS-485 . CAN . Ethernet David Rye :: MTRX3700 Communications :: Slide 2 of 87 Classification . Interface standard: . Software protocol: physical definition of definition of . Connectors . Order and encoding of . Pin assignments the data words being . Voltage levels transmitted (logic encoding) . Flow control . Timing and handshaking . Error detection and correction David Rye :: MTRX3700 Communications :: Slide 3 of 87 Parallel Busses . Single processor . Multi-processor . Bus mastering . Always short – less than 5m, and often much less David Rye :: MTRX3700 Communications :: Slide 4 of 87 Some Parallel Bus Standards . IEEE-488 (HP-IB, GPIB) . S-100 bus (Altair) . Intel Multibus (Intel, Sun). Adopted as IEEE-765 bus . VMEbus (Motorola 68000). Adopted as IEEE-1014 bus . ISA . PCI . PCIe . etc, etc, etc… David Rye :: MTRX3700 Communications :: Slide 5 of 87 Backplanes, sub-racks and enclosures . Backplanes provide electronic connection for bus signals between processor, memory and I/O boards CAMAC VME Bus All are passive backplanes PCIe David Rye :: MTRX3700 Communications :: Slide 6 of 87 Backplanes, sub-racks and enclosures . Sub-racks provide physical mounting and restraint for backplanes and plug-in cards Eurocard subrack and cards 19” subrack David Rye :: MTRX3700 Communications :: Slide 7 of 87 Backplanes, sub-racks and enclosures . Enclosures and cases provide mounting and environmental protection 19” Rack Case Enclosures Floor-standing 19” rack enclosure 19” Desktop case (exploded view) David Rye :: MTRX3700 Communications :: Slide 8 of 87 IEEE-488 Standard (HP-IB1 or GPIB) .
    [Show full text]
  • Embedded Multi-Core Processing for Networking
    12 Embedded Multi-Core Processing for Networking Theofanis Orphanoudakis University of Peloponnese Tripoli, Greece [email protected] Stylianos Perissakis Intracom Telecom Athens, Greece [email protected] CONTENTS 12.1 Introduction ............................ 400 12.2 Overview of Proposed NPU Architectures ............ 403 12.2.1 Multi-Core Embedded Systems for Multi-Service Broadband Access and Multimedia Home Networks . 403 12.2.2 SoC Integration of Network Components and Examples of Commercial Access NPUs .............. 405 12.2.3 NPU Architectures for Core Network Nodes and High-Speed Networking and Switching ......... 407 12.3 Programmable Packet Processing Engines ............ 412 12.3.1 Parallelism ........................ 413 12.3.2 Multi-Threading Support ................ 418 12.3.3 Specialized Instruction Set Architectures ....... 421 12.4 Address Lookup and Packet Classification Engines ....... 422 12.4.1 Classification Techniques ................ 424 12.4.1.1 Trie-based Algorithms ............ 425 12.4.1.2 Hierarchical Intelligent Cuttings (HiCuts) . 425 12.4.2 Case Studies ....................... 426 12.5 Packet Buffering and Queue Management Engines ....... 431 399 400 Multi-Core Embedded Systems 12.5.1 Performance Issues ................... 433 12.5.1.1 External DRAMMemory Bottlenecks ... 433 12.5.1.2 Evaluation of Queue Management Functions: INTEL IXP1200 Case ................. 434 12.5.2 Design of Specialized Core for Implementation of Queue Management in Hardware ................ 435 12.5.2.1 Optimization Techniques .......... 439 12.5.2.2 Performance Evaluation of Hardware Queue Management Engine ............. 440 12.6 Scheduling Engines ......................... 442 12.6.1 Data Structures in Scheduling Architectures ..... 443 12.6.2 Task Scheduling ..................... 444 12.6.2.1 Load Balancing ................ 445 12.6.3 Traffic Scheduling ...................
    [Show full text]
  • Ats.T UNIX® SYSTEM V/386 RELEASE4 MULTIBUS® Reference
    ATs.T UNIX® SYSTEM V/386 RELEASE4 MULTIBUS® Reference Manual ·::::\ .. '''\~:::t::. ::· UNIX Software Operation Copyright 1990, 1989, 1988, 1987, 1986, 1985, 1984 AT&T All Rights Reserved Printed in USA Published by Prentice-Hall, Inc. A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632 No part of this publication may be reproduced or transmitted in any form or by any means-graphic, electronic, electrical, mechanical, or chemical, including photocopying, recording in any medium, tap­ ing, by any computer or information storage and retrieval systems, etc., without prior permissions in writing from AT&T. ACKNOWLEDGEMENT Portions of this book have been provided by Intel Corporation. IMPORTANT NOTE TO USERS While every effort has been made to ensure the accuracy of all information in this document, AT &T assumes no liability to any party for any loss or damage caused by errors or omissions or by state­ ments of any kind in this document, its updates, supplements, or special editions, whether such er­ rors are omissions or statements resulting from negligence, accident, or any other cause. AT&T furth­ er assumes no liability arising out of the application or use of any product or system described herein; nor any liability for incidental or consequential damages arising from the use of this docu­ ment. AT&T disclaims all warranties regarding the information contained herein, whether expressed, implied or statutory, including implied warranties of merchantability or fitness for a particular purpose. AT&T makes no representation that the interconnection of products in the manner described herein will not infringe on existing or future patent rights, nor do the descriptions contained herein imply the granting or license to make, use or sell equipment constructed in accordance with this description.
    [Show full text]