entropy Article Pressure-Volume Work for Metastable Liquid and Solid at Zero Pressure Attila R. Imre 1,2,* ID , Krzysztof W. Wojciechowski 3,4 ID ,Gábor Györke 2, Axel Groniewsky 2 and Jakub. W. Narojczyk 3 ID 1 Thermohydraulics Department, MTA Centre for Energy Research, P.O. Box 49, 1525 Budapest, Hungary 2 Budapest University of Technology and Economics, Department of Energy Engineering, Muegyetem rkp. 3, H-1111 Budapest, Hungary;
[email protected] (G.G.);
[email protected] (A.G.) 3 Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, PL-60-179 Poznan, Poland;
[email protected] (K.W.W.);
[email protected] (J.W.N.) 4 President Stanisław Wojciechowski State University of Applied Sciences, Nowy Swiat 4, 62-800 Kalisz, Poland * Correspondence:
[email protected] or
[email protected] Received: 15 February 2018; Accepted: 20 April 2018; Published: 3 May 2018 Abstract: Unlike with gases, for liquids and solids the pressure of a system can be not only positive, but also negative, or even zero. Upon isobaric heat exchange (heating or cooling) at p = 0, the volume work (p-V) should be zero, assuming the general validity of traditional dW = dWp = −pdV equality. This means that at zero pressure, a special process can be realized; a macroscopic change of volume achieved by isobaric heating/cooling without any work done by the system on its surroundings or by the surroundings on the system. A neologism is proposed for these dWp = 0 (and in general, also for non-trivial dW = 0 and W = 0) processes: “aergiatic” (from Greek: , “inactivity”).