Blocking the Transient Receptor Potential Vanilloid-1 Does Not

Total Page:16

File Type:pdf, Size:1020Kb

Blocking the Transient Receptor Potential Vanilloid-1 Does Not Blocking the transient receptor potential vanilloid-1 does not reduce the exercise pressor reflex in healthy rats Guillaume Ducrocq, Juan Estrada, Joyce Kim, Marc Kaufman To cite this version: Guillaume Ducrocq, Juan Estrada, Joyce Kim, Marc Kaufman. Blocking the transient receptor po- tential vanilloid-1 does not reduce the exercise pressor reflex in healthy rats. AJP - Regulatory, Integrative and Comparative Physiology, American Physiological Society, 2019, 317 (4), pp.576 - 587. 10.1152/ajpregu.00174.2019. hal-02969591 HAL Id: hal-02969591 https://hal.archives-ouvertes.fr/hal-02969591 Submitted on 16 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Am J Physiol Regul Integr Comp Physiol 317: R576–R587, 2019. First published July 31, 2019; doi:10.1152/ajpregu.00174.2019. RESEARCH ARTICLE Neural Control Blocking the transient receptor potential vanilloid-1 does not reduce the exercise pressor reflex in healthy rats X Guillaume P. Ducrocq, Juan A. Estrada, X Joyce S. Kim, and Marc P. Kaufman Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania Submitted 12 June 2019; accepted in final form 26 July 2019 Ducrocq GP, Estrada JA, Kim JS, Kaufman MP. Blocking the 28). Group III and IV muscle afferents synapse in laminae I, transient receptor potential vanilloid-1 does not reduce the exercise II, and V of the dorsal horn of the spinal cord (5, 26) and pressor reflex in healthy rats. Am J Physiol Regul Integr Comp Physiol then project to brainstem to exert their sympathoexcitatory 317: R576–R587, 2019. First published July 31, 2019; doi:10.1152/ effects (17). ajpregu.00174.2019.—Controversy exists regarding the role played Recently, studies have identified the receptors that activate by transient receptor potential vanilloid-1 (TRPV1) in evoking the exercise pressor reflex. Here, we determine the role played by TRPV1 the group III–IV afferent fibers, whose contraction-induced in evoking this reflex while assessing possible confounding factors stimulation evokes the exercise pressor reflex. So far, there is arising from TRPV1 antagonists or from the vehicle in which they good agreement that purinergic 2X receptors (15, 42), acid- were dissolved. The exercise pressor reflex was evoked in decere- sensing ion channels (42), and transient receptor potential brated, anesthetized Sprague-Dawley rats by electrical stimulation of (TRP) ankyrin-1 (23) play important roles in evoking the the tibial nerve to contract the triceps surae muscles statically. This reflex. In contrast, conflicting results exist regarding the role procedure was repeated before and after injection of the TRPV1 played by TRP vanilloid-1 (TRPV1) in evoking the exercise blockers: capsazepine (100 ␮g/100 ␮L), ruthenium red (100 ␮g/100 ␮ ␮ ␮ pressor reflex (22, 29, 38, 45). TRPV1 is expressed in rat dorsal L), or iodoresiniferatoxin (IRTX; 1 g/100 L). We found that root ganglion cells innervating the hindlimb muscles (29); it is capsazepine decreased the exercise pressor reflex when the drug was Ͻ Ͼ dissolved in DMSO (Ϫ10 Ϯ 9 mmHg; P ϭ 0.015; n ϭ 7). However, activated by low pH ( 5.5) and heat ( 43°C) and by vanilloid similar reduction was found when DMSO alone was injected (Ϫ8 Ϯ 5 compounds, such as capsaicin (4, 31). The hypothesis that mmHg; P ϭ 0.023; n ϭ 5). Capsazepine, dissolved in ethanol (2 Ϯ 6 TRPV1 plays a role in evoking the exercise pressor reflex may mmHg; P ϭ 0.49; n ϭ 7), ruthenium red (Ϫ4 Ϯ 12 mmHg; P ϭ 0.41; have arisen from findings that the injection of capsaicin into the n ϭ 7), or IRTX (4 Ϯ 18 mmHg; P ϭ 0.56; n ϭ 7), did not arterial supply of hindlimb skeletal muscle evoked a strong significantly decrease the exercise pressor reflex. In addition, we reflex pressor response (19, 47), an effect that, in turn, was found that capsazepine and ruthenium red had “off-target” effects. blunted by injection of TRPV1 antagonists (22, 38, 45). Two Capsazepine decreased the pressor response evoked by intra-arterial findings, however, cast doubt on this hypothesis, namely, that injection of bradykinin (500 ng/kg; Ϫ12 Ϯ 13 mmHg; P ϭ 0.028; n ϭ ␣ ␤ ␮ Ϫ Ϯ ϭ muscle interstitial pH does not decrease below 6.9 (43) and that 9) and - -methylene ATP (10 g/kg; 7 8 mmHg; P 0.019; during exhaustive exercise muscle temperature, does not in- n ϭ 10), whereas ruthenium red decreased the ability of the muscle to produce and sustain force (Ϫ99 Ϯ 83 g; P ϭ 0.020; n ϭ 7). Our data crease above 39°C (12). Furthermore, skeletal muscle does not therefore suggest that TRPV1 does not play a role in evoking the produce vanilloid substances (8). exercise pressor reflex. Additionally, given their strong off-target The lack of consensus regarding the role played by TRPV1 effects, capsazepine and ruthenium red should not be used for study- in evoking the exercise pressor reflex might have been caused ing the role played by TRPV1 in evoking the exercise pressor reflex. by differences in animal species (i.e., cats vs. rats), animal health, TRPV1 antagonists, and/or the solvents used to dissolve blood pressure; exercise; rats; transient receptor potential vanilloid-1 the antagonists. For example, the findings showing that cap- sazepine or iodoresiniferatoxin (IRTX) decreased the pressor response to static contraction have not been accompanied by INTRODUCTION the proper vehicle controls (29, 38), raising the possibility that the reduced pressor reflex found following capsazepine or The exercise pressor reflex, in combination with sympatho- IRTX injections was caused by the vehicle alone. In addition, lysis, functions to increase arterial blood flow to contracting the effect of TRPV1 antagonists might have been misinter- muscles (1, 32, 36). The afferent arm of the reflex is composed preted because of the drugs acting on other receptors. For of group III and IV fibers (25) whose endings are found in the example, capsazepine, in addition to inhibiting TRPV1 effec- interstitial space of skeletal muscle, small vessels, or connec- tively, has been found to inhibit voltage-gated calcium chan- tive tissue (40, 46a). For the most part, the endings of group III nels in vitro (10). Likewise, ruthenium red, acting as a nonse- afferents respond to mechanical distortion of their receptive lective TRP antagonist (2), also inhibits TRP ankyrin-1 (18), fields (20, 28, 33), whereas the endings of group IV afferents receptors that, in turn, have been shown to play a role in respond to byproducts of muscle contraction (20, 21, 27, evoking the exercise pressor reflex (23). In addition, ruthenium red blocks ryanodine receptors (48), an effect that might have reduced the ability of the muscle to produce force by reducing Address for reprint requests and other correspondence: G. P. Ducrocq, Heart 2ϩ and Vascular Institute, Pennsylvania State Univ. College of Medicine, 500 the sarcoplasmic release of Ca . It is therefore possible that University Dr., C2810, Hershey, PA 17033 (e-mail: [email protected]). the injection of TRPV1 antagonists might have reduced the R576 0363-6119/19 Copyright © 2019 the American Physiological Society http://www.ajpregu.org Downloaded from journals.physiology.org/journal/ajpregu (089.158.232.103) on May 6, 2020. TRPV1 AND THE EXERCISE PRESSOR REFLEX IN RATS R577 exercise pressor reflex by mechanisms other than just TRPV1 Animal Characteristics, Wellness, and Sample Size inhibition. Experiments were conducted at constant room air temperature Therefore, the main purpose of the present study was to (21°C) on 91 male Sprague-Dawley rats (Charles River), weighing determine the role played by TRPV1 in evoking the exercise 300–500 g. pressor reflex in healthy rats. To block TRPV1, we injected Rats were housed within the central animal facility of the Penn- capsazepine, ruthenium red, or IRTX into the arterial supply of sylvania State University College of Medicine, with access to food the triceps surae muscles. To determine if the vehicles in which and water ad libitum, and were exposed to a 50:50 light/dark cycle. these TRPV1 antagonists were dissolved affected the exercise All attempts were made to minimize animal discomfort and pain. pressor reflex, we tested the effect of dissolving capsazepine in two different solvents, namely, DMSO and ethanol. Finally, to Surgical Procedures determine possible confounding factors of TRPV1 antagonism, At the beginning of every surgery, the animal was anesthetized by we measured the effect of capsazepine on the pressor response ␣ ␤ inhalation of 4% of isoflurane with oxygen. We started the surgical evoked by bradykinin, - -methylene ATP, and diprotonated procedure only when the corneal reflex stopped and when pinching phosphate, each of which is a metabolic byproduct of contrac- the hindpaw did not produce a withdrawal reflex. tion but does not directly activate TRPV1. We also determined With the rat in supine position, the neck area was opened to expose the effect of ruthenium red on the ability of the muscle to the trachea, which was cannulated with a 2-cm long 14G Teflon tube. produce and sustain force. We tested the following hypotheses Lungs
Recommended publications
  • Targeting the Endocannabinoid System to Reduce Nociception
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2011 Targeting the endocannabinoid system to reduce nociception Lamont Booker Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medical Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2419 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Targeting the Endocannabinoid System to Reduce Nociception A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. By Lamont Booker Bachelor’s of Science, Fayetteville State University 2003 Master’s of Toxicology, North Carolina State University 2005 Director: Dr. Aron H. Lichtman, Professor, Pharmacology & Toxicology Virginia Commonwealth University Richmond, Virginia April 2011 Acknowledgements The author wishes to thank several people. I like to thank my advisor Dr. Aron Lichtman for taking a chance and allowing me to work under his guidance. He has been a great influence not only with project and research direction, but as an excellent example of what a mentor should be (always willing to listen, understanding the needs of each student/technician, and willing to provide a hand when available). Additionally, I like to thank all of my committee members (Drs. Galya Abdrakmanova, Francine Cabral, Sandra Welch, Mike Grotewiel) for your patience and willingness to participate as a member. Our term together has truly been memorable! I owe a special thanks to Sheryol Cox, and Dr.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • Transient Receptor Potential Channels As Drug Targets: from the Science of Basic Research to the Art of Medicine
    1521-0081/66/3/676–814$25.00 http://dx.doi.org/10.1124/pr.113.008268 PHARMACOLOGICAL REVIEWS Pharmacol Rev 66:676–814, July 2014 Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: DAVID R. SIBLEY Transient Receptor Potential Channels as Drug Targets: From the Science of Basic Research to the Art of Medicine Bernd Nilius and Arpad Szallasi KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium (B.N.); and Department of Pathology, Monmouth Medical Center, Long Branch, New Jersey (A.S.) Abstract. ....................................................................................679 I. Transient Receptor Potential Channels: A Brief Introduction . ...............................679 A. Canonical Transient Receptor Potential Subfamily . .....................................682 B. Vanilloid Transient Receptor Potential Subfamily . .....................................686 C. Melastatin Transient Receptor Potential Subfamily . .....................................696 Downloaded from D. Ankyrin Transient Receptor Potential Subfamily .........................................700 E. Mucolipin Transient Receptor Potential Subfamily . .....................................702 F. Polycystic Transient Receptor Potential Subfamily . .....................................703 II. Transient Receptor Potential Channels: Hereditary Diseases (Transient Receptor Potential Channelopathies). ......................................................704
    [Show full text]
  • Pharmacology and Antitussive Efficacy of 4-(3-Trifluoromethyl-Pyridin
    JPET Fast Forward. Published on August 9, 2007 as DOI: 10.1124/jpet.107.127258 JPET FastThis article Forward. has not beenPublished copyedited on and Augustformatted. 9,The 2007 final version as DOI:10.1124/jpet.107.127258 may differ from this version. JPET # 127258 Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin- 2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)- amide (JNJ17203212), a TRPV1 antagonist in guinea pigs Downloaded from Anindya Bhattacharya, Brian P. Scott, Nadia Nasser, Hong Ao, Michael P. Maher, Adrienne E. Dubin, Devin M. Swanson, Nigel P. Shankley, Alan D. Wickenden, Sandra jpet.aspetjournals.org R. Chaplan Department of Pain and Related Disorders (A.B., B.P.S., N.N., H.A., M.P.M., A.E.D., A.D.W., S.R.C.), Neuroscience (D.M.S.) and Physiological Systems (N.P.S.) Johnson and Johnson Pharmaceutical Research & Development LLC. at ASPET Journals on September 26, 2021 3210 Merryfield Row, San Diego, CA 92121 1 Copyright 2007 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on August 9, 2007 as DOI: 10.1124/jpet.107.127258 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 127258 Running title: TRPV1 antagonism and cough Corresponding author: Anindya Bhattacharya, Ph.D. Johnson and Johnson Pharmaceutical Research & Development 3210 Merryfield Row Downloaded from San Diego, CA 92121 [email protected] Phone: (858) 320-3429 Fax: (858) 450-2040 jpet.aspetjournals.org Number of
    [Show full text]
  • Cannabinoids Using ALZET Osmotic Pumps
    ALZET® Bibliography References on the Administration of Cannabinoids Using ALZET Osmotic Pumps Q5966: P. Weydt. Mechanisms and Modifiers of Energy Metabolism in ALS and Huntington Disease. Open Access Repositorium der Universität Ulm 2016; ALZET Comments: Cannabinol; PEG 400; SC; Mice; 2004; 4 weeks; animal info (SOD 1 transgenic); pumps replaced every 28 days; Therapeutic indication (amyotrophic lateral sclerosis); Dose (5 mg/kg);. Q3610: E. J. Rahn, et al. Prophylactic cannabinoid administration blocks the development of paclitaxel-induced neuropathic nociception during analgesic treatment and following cessation of drug delivery. Molecular Pain 2014;10(U1-U19 ALZET Comments: AM1710; Taxol-WIN-55212-2; AM251; AM630; DMSO; PEG 400; SC; Rat; 2ML4; 28 days; Controls received mp w/ saline; animal info (male, Sprague Dawley, 300-400g); functionality of mp verified by residual volume; 50% PEG 400 used; 50% DMSO used; Multiple pumps per animal (2); stress/adverse reaction: (see pg.15); behavioral testing (mechanical threshold, cold withdrawal, locomotor activity); AM1710 is a cannabilactone CB2-selective agonist; pumps removed on day 22; WIN55,212-2 is a CB1/CB2 agonist;. Q4814: Heloísa Helena Vilela Costa, et al. Continuous central infusion of cannabinoid receptor agonist WIN 55,212-2 decreases maternal care in lactating rats: Consequences for fear conditioning in adulthood males. Behav. Brain Res 2013;257(31-38 ALZET Comments: WIN-55212-2; NaCl; tween, DMSO; CSF/CNS; Rat; 1007D; 7 days; Controls received mp w/ vehicle; animal info (female, Wistar, 9 weeks old); 10% DMSO used; dose-response (pg 34); behavioral testing (fear conditioning, maternal behavior); teratology; “The continuous infusion of WIN in the CNS using an osmotic minipump in lactating dams eliminates the possibility that WIN affects the behavior of the offspring when offered in the milk.
    [Show full text]
  • Antitussive Activity of Iodo-Resiniferatoxin in Guinea Pigs M Trevisani, a Milan, R Gatti, a Zanasi, S Harrison, G Fontana, a H Morice, P Geppetti
    769 COUGH Thorax: first published as 10.1136/thx.2003.012930 on 27 August 2004. Downloaded from Antitussive activity of iodo-resiniferatoxin in guinea pigs M Trevisani, A Milan, R Gatti, A Zanasi, S Harrison, G Fontana, A H Morice, P Geppetti ............................................................................................................................... Thorax 2004;59:769–772. doi: 10.1136/thx.2003.012930 See end of article for authors’ affiliations ....................... Background: Iodo-resiniferatoxin (I-RTX) has recently been described as an ultra potent antagonist of the Correspondence to: transient receptor potential vanilloid-1 (TRPV1). M Trevisani, PhD, Methods: The ability of I-RTX to inhibit cough induced by inhalation of two putative TRPV1 stimulants Center of Excellence for the Study of Inflammation, (capsaicin and citric acid) was tested in non-anaesthetised guinea pigs. University of Ferrara, Results: Pretreatment with I-RTX either intraperitoneally (0.03–0.3 mmol/kg) or by aerosol (0.1–3 mM) 44100 Ferrara, Italy; reduced the number of coughs produced by inhalation of citric acid (0.25 M) and capsaicin (30 mM) in a [email protected] dose dependent manner. Capsazepine (CPZ) also reduced citric acid and capsaicin induced cough, but Received 17 July 2003 the activity of I-RTX was 10–100 times more potent than CPZ in all the experimental conditions tested. Accepted 10 March 2004 Conclusions: I-RTX is a novel and potent antitussive drug which inhibits cough mediated by agents possibly ....................... acting via TRPV1 activation. ough is one of the most common reasons for medical I-RTX behaves as an ultra potent antagonist at the native rat consultation. In most cases, however, drugs currently and guinea pig TRPV1 and at the recombinant human Cavailable for antitussive treatment are only partially TRPV1.20 effective.
    [Show full text]
  • Calcium Entry Through TRPV1: a Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells
    International Journal of Molecular Sciences Review Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells Kevin Zhai 1 , Alena Liskova 2, Peter Kubatka 3 and Dietrich Büsselberg 1,* 1 Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar; [email protected] 2 Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; [email protected] 3 Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +974-4492-8334 Received: 14 May 2020; Accepted: 8 June 2020; Published: 11 June 2020 2+ 2+ Abstract: Intracellular calcium (Ca ) concentration ([Ca ]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation.
    [Show full text]
  • 5-Iodoresiniferatoxin Evokes Hypothermia in Mice and Is a Partial TRPV1 Agonist in Vitro
    JPET Fast Forward. Published on June 9, 2005 as DOI: 10.1124/jpet.105.084277 JPETThis Fast article Forward. has not been Published copyedited and on formatted. June 9, The 2005 final asversion DOI:10.1124/jpet.105.084277 may differ from this version. JPET #84277 TITLE: 5-Iodoresiniferatoxin evokes hypothermia in mice and is a partial TRPV1 agonist in vitro Isao Shimizu1, Tohko Iida1, Nobuhiko Horiuchi, and Michael J. Caterina Downloaded from Departments of Biological Chemistry and Neuroscience Johns Hopkins School of Medicine, Baltimore, MD 21205 USA (I.S., T.I., and M.J.C.) jpet.aspetjournals.org and Dainippon Pharmaceutical Company, Limited, Suita/Osaka 564-0053 Japan (I.S. and N.H.) at ASPET Journals on September 27, 2021 1 Copyright 2005 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on June 9, 2005 as DOI: 10.1124/jpet.105.084277 This article has not been copyedited and formatted. The final version may differ from this version. JPET #84277 RUNNING TITLE: IRTX activates TRPV1 in vivo and in vitro Address correspondence to: Michael J. Caterina, M.D., Ph.D., Associate Professor, Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205 email: [email protected]. Downloaded from Phone: (410) 502-5457 FAX: (410) 955-5759 jpet.aspetjournals.org Number of text pages: 31 (including title pages and figure legends) Number of tables: 0 at ASPET Journals on September 27, 2021 Number of figures: 4 Number of References: 33 Words in Abstract: 149 Words in Introduction: 607 Words in Discussion: 1289 Nonstandard Abbreviations: TRPV1, transient receptor potential vanilloid 1; I-RTX, 5-iodoresiniferatoxin, (6,7-deepoxy-6,7-didehydro-5-deoxy-21-dephenyl-21-(phenylmethyl)-daphnetoxin,20-(4-h ydroxy-5-iodo-3-ethoxybenzeneacetate,; RTX, resiniferatoxin, 6,7-deepoxy-6,7-didehydro-5-deoxy-21-dephenyl-21-(phenylmethyl)-daphnetoxin,20-(4-hy 2 JPET Fast Forward.
    [Show full text]
  • Brain Research Bulletin Sensitization of Voltage Activated Calcium Channel Currents for Capsaicin in Nociceptive Neurons by Tumo
    Brain Research Bulletin 81 (2010) 157–163 Contents lists available at ScienceDirect Brain Research Bulletin journal homepage: www.elsevier.com/locate/brainresbull Research report Sensitization of voltage activated calcium channel currents for capsaicin in nociceptive neurons by tumor-necrosis-factor-␣ T. Hagenacker a,b,∗, J.C. Czeschik b, M. Schäfers a, D. Büsselberg b,c a Universitätsklinikum Essen, Klinik für Neurologie, Hufelandstr. 55, 45122 Essen, Germany b Universitätsklinikum Essen, Institut für Physiologie, Hufelandstr. 55, 45122 Essen, Germany c Texas Tech University, Health Science Center, Paul L. Foster School of Medicine, 5001 El Paso Drive, El Paso, TX 79905, USA article info abstract Article history: It is known that application of tumor-necrosis-factor-␣ (TNF-␣) sensitizes neuronal calcium channels Received 9 July 2009 for heat stimuli in rat models of neuropathic pain. This study examines whether TNF-␣ modulates the Received in revised form capsaicin-induced effects after transient receptor potential vanilloid (TRPV)-1 receptor activation on 16 September 2009 voltage activated calcium channel currents (I ). Accepted 27 September 2009 Ca(V) TRPV-1 receptors are activated by heat and play an important role in the pathogenesis of thermal hyper- Available online 7 October 2009 algesia in neuropathic pain syndromes, while voltage activated channels are essential for transmission of neuronal signals. Keywords: Voltage activated calcium channels Eliciting ICa(V) in DRG neurons of rats by a depolarization from the resting potential to 0 mV, TNF- ␣ ± ␮ ± Tumor-necrosis-factor-␣ (100 ng/ml) reduces ICa(V) by 16.9 2.2%, while capsaicin (0.1 M) decreases currents by 27 4.3%. Capsaicin Pre-application of TNF-␣ (100 ng/ml) for 24 h results in a sensitization of ICa(V) to capsaicin (0.1 ␮M) Neuropathic pain with a reduction of 42.8 ± 4.4% mediated by TRPV-1.
    [Show full text]
  • Certificate of Analysis
    Print Date: Jan 13th 2016 Certificate of Analysis www.tocris.com Product Name: 5'-Iodoresiniferatoxin Catalog No.: 1362 Batch No.: 3 CAS Number: 535974-91-5 IUPAC Name: 6,7-Deepoxy-6,7-didehydro-5-deoxy-21-dephenyl-21-(phenylmethyl)-daphnetoxin,20-(4-hydroxy-5-iodo-3- methoxybenzeneacetate) 1. PHYSICAL AND CHEMICAL PROPERTIES Batch Molecular Formula: C37H39IO9 Batch Molecular Weight: 754.6 Physical Appearance: White lyophilised solid Solubility: Soluble in DMSO ethanol to 100 mM Storage: Desiccate at -20°C Batch Molecular Structure: 2. ANALYTICAL DATA HPLC: Shows >98.7% purity 1H NMR: Consistent with structure Mass Spectrum: Consistent with structure Caution - Not Fully Tested • Research Use Only • Not For Human or Veterinary Use bio-techne.com North America China Europe Middle East Africa Rest of World [email protected] Tel: (800) 343 7475 [email protected] Tel: +44 (0)1235 529449 www.tocris.com/distributors [email protected] Tel: +86 (21) 52380373 Tel:+1 612 379 2956 Print Date: Jan 13th 2016 Product Information www.tocris.com Product Name: 5'-Iodoresiniferatoxin Catalog No.: 1362 Batch No.: 3 CAS Number: 535974-91-5 IUPAC Name: 6,7-Deepoxy-6,7-didehydro-5-deoxy-21-dephenyl-21-(phenylmethyl)-daphnetoxin,20-(4-hydroxy-5-iodo-3- methoxybenzeneacetate) Description: Storage: Desiccate at -20°C Potent and silent vanilloid receptor antagonist, 40-fold more CAUTION - This product is light sensitive and we recommend potent than capsazepine (Cat. No. 0464). Binds to TRPV1 (VR1) that the solid material and any solutions obtained are protected receptors expressed in HEK293 cells with a Ki of 5.8 nM.
    [Show full text]
  • TRPV1 Channels Contribute to Behavioral Hypersensitivity and Spontaneous Activity in Nociceptors After Spinal Cord Injury Zizhen Wu
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2013 TRPV1 Channels Contribute to Behavioral Hypersensitivity and Spontaneous Activity in Nociceptors After Spinal Cord Injury zizhen wu Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Molecular and Cellular Neuroscience Commons Recommended Citation wu, zizhen, "TRPV1 Channels Contribute to Behavioral Hypersensitivity and Spontaneous Activity in Nociceptors After Spinal Cord Injury" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 355. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/355 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TRPV1 Channels Contribute to Behavioral Hypersensitivity and Spontaneous Activity in Nociceptors After Spinal Cord Injury
    [Show full text]
  • TRPV1: Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing
    International Journal of Molecular Sciences Review TRPV1: Role in Skin and Skin Diseases and Potential Target for Improving Wound Healing Michelle D. Bagood 1 and R. Rivkah Isseroff 1,2,* 1 Department of Dermatology, School of Medicine, UC Davis, Sacramento, CA 95816, USA; [email protected] 2 Dermatology Section, VA Northern California Health Care System, Mather, CA 95655, USA * Correspondence: [email protected]; Tel.: +1-(916)-551-2606 Abstract: Skin is innervated by a multitude of sensory nerves that are important to the function of this barrier tissue in homeostasis and injury. The role of innervation and neuromediators has been previously reviewed so here we focus on the role of the transient receptor potential cation channel, subfamily V member 1 (TRPV1) in wound healing, with the intent of targeting it in treatment of non-healing wounds. TRPV1 structure and function as well as the outcomes of TRPV1-targeted therapies utilized in several diseases and tissues are summarized. In skin, keratinocytes, sebocytes, nociceptors, and several immune cells express TRPV1, making it an attractive focus area for treating wounds. Many intrinsic and extrinsic factors confound the function and targeting of TRPV1 and may lead to adverse or off-target effects. Therefore, a better understanding of what is known about the role of TRPV1 in skin and wound healing will inform future therapies to treat impaired and chronic wounds to improve healing. Keywords: TRPV1; wound healing; skin; keratinocytes; pilosebaceous unit; nociceptors Citation: Bagood, M.D.; Isseroff, R.R. TRPV1: Role in Skin and Skin Diseases and Potential Target for 1. Introduction Improving Wound Healing.
    [Show full text]