Natural Rubber As a Green Commodity- Part II Kevin P

Total Page:16

File Type:pdf, Size:1020Kb

Natural Rubber As a Green Commodity- Part II Kevin P Natural rubber as a green commodity- Part II Kevin P. Jones, Malaysian Rubber Producers' Research Association Introduction B anbury 4.1 GJ/tonne of pallets and bale wrapping may IN THE LAST ISSUE of Rubber Calender 6.6 need to be considered within the new Developments Dr Wan Abdul Extruder 3.8 context of environmental quality Rahaman clearly demonstrated the Curing 6.3 control. 'green credentials' for natural rubber over its synthetic rivals (the key data are repeated below). Some may be The first figure is in general Environmental processing tempted to question whether there are agreement with measurements made at hazards hidden energy costs in the transport, MRPRA at about the same time, The rubber processing industry is use and disposal of natural rubber which estimated 1.2GJ/tonne for subject to specific environmental which offset the low energy budget of mastication and 2.9GJ/tonne for control in some countries. In the the natural material which is largely mixing. Both the overall figure of United Kingdom there are specific due to its solar, rather than fossil fuel 30GJ/tonne and the individual energy health and safety/environmental origins. breakdowns are probably well in protection regulations to limit the excess of the current best industrial emission of dust and fumes from Natural rubber versus practice. One efficient Scandinavian rubber processing operations. There is synthetic rubber company claims to be able to mix for an implied assertion that such dust and an energy cost of 0.4-lGJ/tonne fumes may be carcinogenic and that Material Energy consumption, within an overall energy requirement particular precautions must be taken. GJ/tonne of 20GJ/tonne, or lower. British Access to areas where such activities Natural rubber 16 energy data for mixing reveal take place has to be limited. It is not Polychloroprene 120 considerable differences between the rubber as such which is hazardous, SBR 130 plants. but the accelerators and antioxidants Polybutadiene 108 It is often, but not invariably, which may be added to it. In this EPDM 142 necessary to thaw bales of natural respect the rubber processing industry Polyurethane 174 rubber before processing as heavily- has never recovered from the Butyl rubber 174 crystallized natural rubber can damage industrial cancers which were caused Polypropylene 110 mixing machinery. Thawing is a by the long banned alpha common, but not standard practice, in naphthylamines. The data show the amount of energy northern Europe and northern North Natural rubber processing which is required to manufacture raw America for two to seven months per sometimes involves an additional natural and synthetic rubbers. It is year. Thawing is conducted in hot environmental hazard, namely odour. obvious that natural rubber enjoys a rooms which are maintained at Although such odours may be very considerable competitive edge in 40-45°C. The dwell time ranges from characterized as being typical energy terms as compared with two days to over a week. It has been agricultural, most such odours are synthetics. The energy required to calculated that the energy required to emitted in urban environments, where harvest, process and transport natural thaw natural rubber is 42 + 15? MJ per there is likely to be little sympathy. rubber is approximately one quarter of tonne, where t is the number of days The odours originate from the ageing that required for the feedstocks for the taken to thaw. If a period of four days of proteinaceous material, and is a synthetics. is involved, then the energy involved particular attribute of low grade would be 100MJ. There has been a rubbers. In some cases the unpleasant trend for the US rubber industry to odours may be carried over into rubber Natural rubber's hidden move south: this will have lessened products. When this happens it is energy costs the need for hot rooms in that country. probable that the processor will There are some modest energy In any event the energy cost of complain. Nevertheless, malodorous penalties involved in the processing of thawing is relatively trivial. At the products may still reach the market natural rubber, as compared with its worst it is likely that mixing natural place. If such products are identified competitors. These are the need to rubber may involve an energy penalty as being natural rubber this may lead thaw bales under certain circum- of between 10% and 15% as compared to a consumer backlash. A recent stances and a possible increase in the with SBR: this is trivial in overall issue of Rubber Developments number of mixing cycles. The typical energy terms. (Volume 46, page 35) showed how power requirements for rubber such odours could be greatly processing (natural or synthetic), diminished by using SMR CV. including overheads like office Packaging lighting, are probably in the region of Many countries, and notably Germany, 20-30GJ/tonne. The US Big Five take a keen interest in packaging and Recyclability (Goodyear, Firestone, etc) consumed argue that it is part of the supplier's The automotive industry is being 31GJ/tonne in 1976: some of the task to arrange for its disposal, politically dri ven to introduce individual process requirements for preferably by re-use or through a programmes for recycling the material energy at that time are: recycling operation. The construction from their products once they have Rubber Developments vol 47 no 3/4 1994 37 NR as a green commodity Major operators such as BMW are advertising their efforts to exploit an environmentally-friendly image. The increase in the use of thermoplastics is assisting this process. The picture shows a computer image of the new BMW 3 series; the recyclable components are coloured green, and the recycled components blue. become life expired. Considerable difficult. This even applies to dioxide produced is liable to damage progress is being made in Europe and thermoplastic elastomers, where in the incinerators. Radiation curing of the major operators, such as BMW. service degradation and pollution the gloves can eliminate this problem. are advertising their efforts to exploit damages the potential for recycling. Radiation curing also reduces the zinc an environmentally-friendly image. Nevertheless, a producer of TPEs effluent problem which is associated The increase in the use of thermo- claims that it is possible to recycle with traditional curing methods for plastics is assisting this process and automotive boots provided that they latex products. many of the manufacturers are coding are subjected to a washing process. thermoplastic components to assist Furthermore, TPEs do save raw with the recycling process. An materials as the waste from scrap is Tyre recycling important side effect of this policy is greatly reduced: in the case of TPNR, Between 60% and 70% of natural that vehicle manufacturers are seeking however, the raw material does rubber is consumed in tyres. In some to reduce the variety of thermoplastic involve the use of a material countries, notably the USA, Japan, materials to ease the recycling (polypropylene) with a high energy France, Germany, the UK and Brazil, operations. content (HOGJ/tonne). over 75% of the natural rubber With the exception of tyres, the consumed is in the form of tyres. In British automotive industry does not many countries, especially those with appear to be interested in recycling the Natural degradation high population densities, there is a elastomeric components even if Very thin rubber products, such as growing awareness of a tyre disposal thermoplastic elastomers (which are balloons and condoms, will degrade problem and this is accentuated when inherently recyclable) are substituted. naturally especially if they are serious fires occur at tyre dumps. The industry considers that all the subjected to natural sunlight. As is These fires can cause serious air engine compartment components will evident from the problems which are pollution as well as damage to water have been polluted by oils and exhaust associated with sealing rings natural courses. Consequently, some gases, and that the external rubber rubber is capable of being countries ban tyre dumping. components, like weatherstripping, biodegraded. It should be possible to If the life of the product is extended will have been polluted by cleaning compost thin rubber articles: then the disposal problem is reduced. agents or by environmental pollution. unfortunately the most important There is considerable evidence that If pressed to introduce recycling it is outlet for thin rubber articles is the tyre life has increased. This has crea- probable that the automotive industry medical industry, and the hazards of ted problems both for the tyre manu- will attempt to restrict the range of medical applications are liable to facturers and for suppliers to the elastomers employed to reduce the preclude the adoption of composting. industry, but it has coincidentally problems of classification at disposal. The presence of sulphur in medical reduced the scale of the disposal It is generally agreed that any form gloves may create problems for their problem. Automotive manufacturers of elastomeric product recycling is disposal by burning as the sulphur are seeking products which last for the 38 Rubber DevelopmentCOPYRIGHTs vol 47 no 3/4 1994 © MALAYSIAN RUBBER BOARD NR as a green commodity whole vehicle life: any progress in this suggest that the addition of tyre crumb Nevertheless, a new reclaiming plant direction will be regarded as steps in any way detracts from the life of is being built in the Netherlands - towards easing the environmental road surface dressings. mainly to accommodate waste tyres. burden. Although the use of recyclable Pyrolysis is frequently proposed as Retreading truck and aircraft tyres crumb from tyres is using only a very a means of extracting a useful range of is normal practice. Aircraft tyres are small proportion of the millions of raw materials from discarded rubber designed for multiple retreading and scrap tyres discarded every year, it is products.
Recommended publications
  • Tyre Study Report 01.Indd
    A Report by Chintan by A Report Circulating Tyres in the Economy A Waste to Wealth Approach to Old Tyres (2017) Published by Chintan Environmental Research and Action Group C14, Second Floor, Lajpat Nagar III, New Delhi 110024 Phone: +91-11-46574171 or 46574172 Email: [email protected] Website: http://www.chintan-india.org/ Twitter: https://twitter.com/ChintanIndia Instagram:Facebook: https://fb.me/ChintanIndia.org https://www.instagram.com/chintan.india/ About Chintan Environmental Research and Action Group Chintan is a registered non-profit organization with a vision of inclusive, sustainable, and equitable growth for all. Our mission is to reduce ecological footprints and increase environmental justice through changes brought about through partnerships, capacity building at the grassroots, advocacy and research, and sustainable, scalable models on Authorsthe ground. Rajat Rai Handa (Chintan) Bharati Chaturvedi (Chintan) Acknowledgements Chintan would like to thank the following people for their valuable contribution in writing this report: Darpan Anil Singh, Lalit Sharma, Madhu Jagdeeshan, Richa Chaturvedi, Shaila Faleiro and Taruni Kumar. We would also like to thank the dedicated team at Chintan who helped with various aspects of the research and fieldwork: Chitra Mukherjee and Imran Khan. Copyright notice ©Please Copyright feel free 2017, to use Chintan the information Environmental here to Research promote and environmental, Action Group economic and social justice. We urge you to quote this report when you use the information in it and inform us if possible. Executive Summary Executive Summary Executive | Over the last two decades, the world has seen an exponential rise in the number of motor vehicles.
    [Show full text]
  • Crosslink Density of Rubbers
    Characterisation of Crosslinks in Vulcanised Rubbers: From Simple to Advanced Techniques K.L. Mok* and A.H. Eng** *Malaysian Rubber Board, Paper Presenter **Malaysian Institute of Chemistry Copyright © 2017 by K.L. Mok and A.H. Eng 1 Rubber & Elastomer • Rubbery: 1) Sufficient long chain; 2) Flexible molecules with noncollinear single bonds that allow segmental rotations along the backbone; 3) Non crystalline at service temperature • Rubber vs Elastomer: Rubber commonly refers to elastic materials that requires vulcanisation before they can be used in the products. However, there are elastic polymers that do not require vulcanisation such as polyurethane (PU), styrene- isoprene (SIS) copolymer. These elastic materials are classified under elastomer, which normally also includes rubbers. • Unvulcanised Rubbers: Unvulcanised rubbers are normally weak when put under stress during use. With very few exceptions, such as rubber glues almost all rubber products require vulcanisation to provide the required strength for a longer design life. • Elastomers: Polyurethane (PU), styrene-isoprene (SIS) copolymer, do not require vulcanisation to have good strength properties as they contain the hard segment Copyrightwhich © 2017 by K.L.is Mok good and A.H. Engfor strength and the soft segment good elasticity properties. 2 Rubber Vulcanisation & Crosslink Density • Vulcanization or vulcanisation: A reaction that leads to the formation of inter-molecular bonding among the unsaturated rubber molecules with 3 dimensional network such that the mechanical properties such as tensile strength is enhanced. The vulcanising agent originally referred to was elemental sulfur. Later, sulfur donor was included. It now also includes non sulfur systems such as metal oxide and peroxides.
    [Show full text]
  • Tensile Properties of Pre-Vulcanised Natural Rubber Latex Films Via Hybrid Radiation and Peroxide Vulcanisations
    ASM Sci. J., 11(2), 67-75 Tensile Properties of Pre-vulcanised Natural Rubber Latex Films via Hybrid Radiation and Peroxide Vulcanisations Sofian Ibrahim1;2∗, Chai Chee Keong1, Chantara Thevy Ratnam1 and Khairiah Badri2 1Malaysian Nuclear Agency, 43000 Kajang, Selangor, Malaysia 2School of Chemical Science and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia Radiation pre-vulcanised natural rubber latex (RVNRL) prepared by using gamma irradia- tion technique has many advantages over the conventionally prepared sulphur pre-vulcanised natural rubber latex (SPVL). Despite the fact that many potential latex dipped products can be made from RVNRL, little effort was made to fully commercialise the products because of the inferior strength of RVNRL products compared to SPVL products. An attempt was made to improve the tensile strength of RVNRL by combining both radiation and peroxide vulcanisation in order to ensure that the products will not tear or fail, and has sufficient stretch. Hexanediol diacrylate (HDDA) plays the main role as sensitizer during radiation vulcanisation and tert-butyl hydroperoxide (t-BHPO) as the co-sensitizer in peroxide vul- canisation. Pre-vulcanised natural rubber latex dipped films via hybrid radiation and perox- idation vulcanisations obtained showed tensile strength of 26.7 MPa, an increment of more than 15% compared to controlled film (22.5 MPa). Besides, the crosslink percentage of the rubber films also showed around 5% increment from 90.7% to 95.6%. Keywords: RVNRL, vulcanisation, irradiation, latex I. INTRODUCTION the expansion of this positive sales performance. One of the major contributors to Malaysia's national income is rubber and latex-based prod- ucts.
    [Show full text]
  • Comparative Study of Natural Rubber Latex Particles and Artificially Prepared Rubber Particles
    1 Comparative study of natural rubber latex particles and artificially prepared rubber particles and Amir-Hashim M.Y ٭ A.R. Ruhida , ٭,#Tae Han Shen ,٭.Shamsul Bahri A.R Rubber Research Institute of Malaysia (RRIM), Malaysian Rubber Board (MRB), P.O. Box 10150 Kuala Lumpur, Malaysia ٭ # School of Science and Technology, Universiti Malaysia Sabah, P.O. Box 2073 Sabah Malaysia Abstract The bulk of the rubber in NR latex exists in the form of particles dispersed in the latex emulsion. These naturally occurring particles are made-up of rubber core surrounded by a layer of non-rubber materials such as protein and lipids. In this study, the electron microscopy technique was used to differentiate between the natural rubber particles and the artificially formed rubber particles prepared from dried latex compound. The artificial rubber particles appeared to be morphologically similar to the particles of natural rubber but with different particle size distribution. More importantly, the artificially rubber particles were not surrounded by rubber particle membrane proteins normally associated with natural rubber particles. The study is part of a concerted effort to develop NR-based synthetic rubber substitute in anticipation of future energy crisis associated with the dwindling global petroleum supply, the main raw material for many synthetic rubber. Key words: NR, natural latex, proteins, artificial latex, TEM, immunogold labelling, membrane protein Introduction Artificial isoprene latex, derived from of artificially formed rubber particles pre-formed polymers, normally derived and identifying the proteins membrane by re-dispersing bulk synthetic normally associated with the rubber polyisoprene cement in an aqueous particles of NR latex. medium.
    [Show full text]
  • Rubber and the Environment
    UNCTAD/IRSG Workshop 1998 Joint Workshop of the Secretariat of the United Nations Conference on Trade and Development and the International Rubber Study Group on Rubber and the Environment. Chairman: Dr Ulrich Hoffmann, UNCTAD Preface This, the second joint UNCTAD/IRSG Workshop on the internalization of environmental costs of rubber, follows directly from that held at the 101st Group Meeting of the IRSG in Liverpool, UK, in June 1997. UNCTAD has concluded that natural rubber stands to gain from internalization of environmental costs in the entire rubber industry. The economic variables prevailing in the natural rubber market favour internalization: the supply elasticity is below unity, and the price elasticity for demand is estimated to be significantly less than one. Furthermore, the 70% international market share of Thailand, Indonesia and Malaysia is coupled with intermediate export dependence as rubber accounts for only 3.5 % of their total exports. Unilateral attempts to pass on environmental cost increases appear feasible, although concerted action among the three main producers is desirable and cooperation with producers and manufacturers of synthetic rubber is necessary. The elastomer market is dominated by renewable natural rubber and non- renewable fossil-fuel-derived synthetic rubber: in some applications they are substitutes and in others, complements. Tyre production accounts for over 50% of elastomer consumption and 60% of natural rubber consumption. The current share of natural rubber in total tyre production is unlikely to change much. Rubber cannot realistically be replaced in tyre production, nor can tyres themselves be replaced by a different product. Many general rubber products also appear very difficult to displace or replace.
    [Show full text]
  • Eleventh Malaysia Plan 2016-2020 Anchoring G­­­­­­Rowth on People
    ELEVENTH MALAYSIA PLAN 2016-2020 ANCHORING G ROWTH ON PEOPLE ISBN 978-9675842085 For further information refer to: Director General, Economic Planning Unit, Prime Minister’s Department, Block B5 & B6, Federal Government Administrative Centre, 62502 Putrajaya. MALAYSIA. http://www.epu.gov.my email: [email protected] Tel.: 603-8000 8000 Fax: 603-8888 3755 Released on 21st May 2015 Reprinted on 29th May 2015 Publisher’s Copyright© All rights reserved. No part of this publication may be reproduced, copied, stored in any retrieval system or transmitted in any form or by any means – electronic, mechanical, photocopying, recording or otherwise; without prior permission of Economic Planning Unit, Prime Minister’s Department, Malaysia. Printed by Percetakan Nasional Malaysia Berhad, Kuala Lumpur, 2015 www.printnasional.com.my Email: [email protected] Tel: 03-92366895 Fax: 03-92224773 ELEVENTH MALAYSIA PLAN 2016-2020 ANCHORING G ROWTH ON PEOPLE Foreword Dato’ Sri Mohd Najib bin Tun Haji Abdul Razak Prime Minister of Malaysia i The Eleventh Malaysia Plan, 2016-2020, marks a momentous milestone in our nation’s history. With 2020 now just five years away, the Eleventh Plan is the next critical step in our journey to become an advanced nation that is inclusive and sustainable. In the last five years, although Malaysia encountered headwinds from a global economic slowdown, our economy has done extremely well with GDP growth among the fastest in the region. The quality of life of the rakyat has also improved as reflected by the increase in both per capita income and the average household income. This was made possible by the numerous reforms that were put in place by the Government to improve the quality of life of the people.
    [Show full text]
  • Global Tire Intelligence Report
    Return to Contents page Global Tire Intelligence report RESEARCH Dateline: 31 July 2016 Compiled by Shaw Information Services trading as Contents Bridgestone makes Senior Management Changes 7 Tire Industry Research Goodyear Reports Q2, H1 Results 7 © 2016 Shaw Information Services Ltd Section 1: Outlook 2 Michelin marks 70 years since inventing the Radial 7 President Trump would encourage trade barriers 2 Continental supplies tires for Volvo Concept 7 Yokohama uses Exa’s aerodynamic model 7 For subscription enquiries Survey reveals extent of illegal truck tires on US roads 2 Will US government legislate on tire grip? 2 Michelin reports higher profit and volumes in first half 8 [email protected] Conti names new Head of Commercial Specialty Tires 8 +44 208 647 1185 IRSG forecasts lower NR growth 2 Bridgestone’s vision of the future 2 Yokohama completes acquisition of Alliance Tire 8 EC truck producers fined €2.93 billion for cartel 3 Kumho tire share for sale 8 Cheng Shin chairman talks Maxxis globalisation 8 About this publication 2 Kenda Tire discusses Tech centre in North America 9 Section 2: Sustainability 4 Section 6: Upstream and raw materials 9 Michelin commits to zero deforestation 4 Asahi Kasei, JSR adding S-SBR materials 9 Toyo Tires Supports SNR-i 4 Evonik opens competence centre for silanes 9 3D printing using rubber from end-of-life tires 4 Evonik opens silica plant in Brazil 9 Irish Minister ends voluntary waste tire reporting 4 Malaysia’s NR production falls 9 Recycled tires can improve soil drainage 4 NR prices
    [Show full text]
  • Malaysian Rubber Board
    MRC INDUSTRY LINKAGE FUND Industry-University Interaction Session 2021 MALAYSIAN RUBBER BOARD 29 Jun 2021 Copyright © Malaysian Rubber Board MALAYSIAN RUBBER BOARD : OVERVIEW TECHNOLOGY & ENGINEERING DIVISION (BAHAGIAN TEKNOLOGI & KEJURUTERAAN, BTK) Economy, licensing & DOWNSTREAM R&D, CONSULTANCIES AND SPECIAL SERVICES enforcement Services & Support Dr Azhar Ahmad, PhD Ketua, Unit Pemprosesan & Dr Fatimah Rubaizah MR, PhD Kelestarian Ketua, Unit Pembangunan & ([email protected]) Inovasi Bahan Termaju ([email protected]) Upstream Dr Nazirah Ahmad, PhD Dasar & Ketua, Unit Kejuruteraan Operasi Rekabentuk & KETUA Downstream Pembangunaan Produk PENGARAH Penyelidikan Dr Mok Kok Lang, PhD ([email protected]) Relevant to MILF Divisional Director, & Inovasi Quality & Bahagian Teknologi & Standards Kejuruteraan ([email protected]) Expansion • Corporate • Legal • Strategic Planning Dr Yong Kok Chong, PhD Dr Asrul Mustafa, PhD • Human Resource Ketua, Unit Inovasi & Ketua, Unit Sains & • Audit Teknologi Elastomer Teknology Lateks • Integrity ([email protected]) ([email protected]) Copyright © Malaysian Rubber Board SCOPE, OBJECTIVE & FUNCTION of UNITS • Develop and diversify value- • R&D in natural and synthetic added dry rubber products latex-based thin-wall and foam • Focus on Industrial Rubber products Goods, General Rubber • Product degradation, energy Goods, Tire Technology and efficiency in product advanced composites manufacture, latex stability and • Provide consultative and preservation, blends, 01 technical advisory services on 03 nanocomposite
    [Show full text]
  • IS 4511-3 (1987): Methods of Test for Styrene-Butadiene Rubber (SBR) Latices, Part 3: Determination of Volatile Unsaturates [PCD 13: Rubber and Rubber Products]
    इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 4511-3 (1987): Methods of Test for Styrene-butadiene Rubber (SBR) Latices, Part 3: Determination of Volatile Unsaturates [PCD 13: Rubber and Rubber Products] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” IS : 4511 ( Part 3 ) - 1987 Indian Standard METHODS OF TEST FOR STYRENE-BUTADIENE RUBBER ( SBR ) LATICES PART 3 DETERMINATION OF VOLATILE UNSATURATES [SBRL:8] ( First Revision ) Rubber Sectional Committee, PCDC 14 Chairman Reprcscnting SHRI LALIT MOHAN JAM>.~DAB Cosmos India Rubber Works Pvt Ltd, Bombay Members SHRI SATISH ABRAHAX Padinjarekara Agencies Ltd, Kottayam SHRI 0.
    [Show full text]
  • • Introduction • History • Present Status • New Developments • Challenges • Initiatives to Tackle Challenges • Conclusion
    01-11-2012 Vinay Sharma, Job Kuriakose & Arup K. Chandra R & D Centre, Apollo Tyres Ltd. Limda, Gujarat‐391760 www.apollotyres.com www.apollotyres.com • Introduction • History • Present Status • New Developments • Challenges • Initiatives to tackle challenges • Conclusion 1 01-11-2012 www.apollotyres.com Introduction “Civilization as we know it today is wholly dependent upon rubber......” Ralph Wolf, “Rubber World” Oct. 1964 • India: A major producer & consumer of NR . •From eraser‐to‐tyre technology. •Performing reasonably well even during recession. •Raw rubber = NR & Synthetic rubber (75:25; India & 42:58 World). History of Rubber www.apollotyres.com 7th Century Central & Charles John Dunlop South America Goodyear 1843 1888 Rubber for (17th‐18th •Vulcanisation of ceremonial & rubber. •Invented pneumatic tyre. Social importance Century) •Moreresistanceto in Aztec & Mayan Waterproof textiles, temperature rubber boots, etc. Civilisations. increased applications. 2 01-11-2012 www.apollotyres.com History of Rubber The Stevenson Synthetic Rubber Standards for Rubber(1965) Plan (1922) Project (1942) Introduction of standards for Effort by British This unique venture, rubber by Malaysian Rubber government to lasted until 1953, Board. stabilize low rubber prices. documented in 8,000 First specifications were on technical reports. visible attributes, ash, copper, manganese, dirt & protein. www.apollotyres.com Applications ‐ Non‐Tyre sector • Automotive (belts, hoses, gaskets, moldings) • Industrial (adhesives, padding, belting, vibration dampening,
    [Show full text]
  • Devulcanization of Waste Rubber and Generation of Active Sites for Silica
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Omega 2019, 4, 17623−17633 http://pubs.acs.org/journal/acsodf Devulcanization of Waste Rubber and Generation of Active Sites for Silica Reinforcement Soumyajit Ghorai,† Dipankar Mondal,‡ Sakrit Hait,§ Anik Kumar Ghosh,§ Sven Wiessner,§ Amit Das,*,§ and Debapriya De*,† † Chemistry Department, MCKV Institute of Engineering, Liluah, Howrah 711204, India ‡ Department of Polymer Science and Technology, University of Calcutta, Kolkata 700009, India § Leibniz-Institut für Polymerforschung Dresden e.V., D-01069 Dresden, Germany ABSTRACT: Each year, hundreds of millions of tires are produced and ultimately disposed into nature. To address this serious environmental issue, devulcanization could be one of the sustainable solutions that still remains as one of the biggest challenges across the globe. In this work, sulfur-vulcanized natural rubber (NR) is mechanochemically devulcanized utilizing a silane-based tetrasulfide as a devulcanizing agent, and subsequently, silica (SiO2)-based rubber composites are prepared. This method not only breaks the sulfur−sulfur cross-links but also produces reactive poly(isoprene) chains to interact with silica. The silica natural rubber composites are prepared by replacing 30% fresh NR by devulcanized NR with varying contents of silica. The composites exhibit excellent mechanical properties, tear strength, abrasion resistance, and dynamic mechanical properties as compared with the fresh natural rubber silica composites. The tensile strength of devulcanized rubber-based silica composites is ∼20 MPa, and the maximum elongation strain is ∼921%. The devulcanized composites are studied in detail by chemical, mechanical, and morphological analyses.
    [Show full text]
  • Information & Guidelines
    REGIONAL RUBBER MARKET INFORMATION & GUIDELINES 1. WHAT IS RRM? RRM is a physical delivery rubber market which is jointly established by Thailand, Indonesia and Malaysia (TIM) under the framework of the International Tripartite Rubber Council (ITRC). The trading will be done via electronic trading platform through Continuous Auto-matching System. 2. WHO CAN TRADE IN RRM? SELLER (PROCESSER) A PROCESSOR who intends to trade in RRM must be member of MRE, ICDX, ICH and COFTRA. SELLER (TRADER) A person or company act as SELLER in RRM must be member of MRE, ICDX, ICH and COFTRA. The source of rubber must be from Approved Factory List. Any disputes and claim between Seller (Trader) and Buyer, ICDX will hold trader for the responsibility of the said rubber. BUYER A person or company act as BUYER in RRM must have a recommendation letter from MRE and register as member of ICDX, ICH and COFTRA. SOURCE OF RUBBER For Standard Malaysian Rubber (SMR) 20, kindly refer to APPENDIX 1- Approved Factory List. The Approved Factories are companies that met the criteria specified by ITRC: Companies which are approved/licensed and certified as TSR20 and/or RSS3 producers by the local regulators/authorities; Companies in operation to process natural rubber that meet the national standards of TIM and harmonized TSR20/RSS3 specifications; and Member of a reputable rubber organisation i.e. Thai Rubber Association (TRA)/Rubber Authority of Thailand (RAOT), Gabungan Perusahaan Karet Indonesia (GAPKINDO) and Malaysian Rubber Exchange (MRE). 2 3. What are the benefits of trading in RRM? The following benefits can be expected: Only standardised qualities of products are allowed to be traded in RRM.
    [Show full text]