Science Instrument Command and Data Handling Unit

Total Page:16

File Type:pdf, Size:1020Kb

Science Instrument Command and Data Handling Unit SA2 Flexible Array 39.67 ft (12.1 m) 9.75 ft (3.3 m) SA3 Rigid Array 24.75 ft (7.1 m) 8.0 ft (2.6 m) Item Power Size Weight Comments SA2 4600 W at 39.67 ft x 9.75 ft 339 lb Actual on-orbit performance Flexible Array 6 years (12.1 m x 3.3 m) per wing measured at Winter Solstice, (actual) December 2000 SA3 5270 W at 24.75 ft x 8.0 ft 640 lb increased capability for Rigid Array 6 years (7.1 m x 2.6 m) per wing planned science (predicted) Less shadowing and blockage K7444_528A Fig. 5-25 Solar Array detail comparison S c i e n c e I n s t r u m e n t Components of the SI C&DH unit are: • NASA Standard Spacecraft Computer C o m m a n d a n d D a t a (NSCC-1) H a n d l i n g U n i t • Two standard interface circuit boards for the computer The SI C&DH unit keeps all science • Two control units/science data instrument systems synchronized. It formatter units (CU/SDF) works with the DMU to process, format • Two central processing unit (CPU) and temporarily store information on the modules data recorders or transmit science and • A PCU engineering data to the ground. • Two RIUs • Various memory, data and command communications lines (buses) con- Components nected by couplers. The SI C&DH unit is a collection of elec- tronic components attached to an Orbital These components are redundant so the Replacement Unit (ORU) tray mounted on system can recover from any single failure. the door of Bay 10 in the SSM Equipment Section (see Fig. 5-26). Small remote inter- NASA Computer. The NSSC-1 has one CPU face units (RIU), also part of the system, and eight memory modules, each holding provide the interface to individual sci- 8,192 eighteen-bit words. An embedded ence instruments. software program (the “executive”) runs Hubble Space Telescope Systems 5-25 Extravehicular Activity Handle Remote Two Central A118 Interface Unit Processor A118 Modules A118 Four Two Standard A118 Memories Interfaces A231 A109 A120 A300 A211 A117 Four A115 Memories A113 A230 A300 A111 A210 Remote Control Unit/ Interface Unit Science Data Formatter Control Unit/ Science Data Power Control Unit Formatter Bus Coupler Orbital Unit A240 Replacement Unit Tray K7444_529 Fig. 5-26 Science Instrument Control and Data Handling unit the computer. It moves data, commands The CU/SDF receives ground commands, and operation programs (called applica- data requests, science and engineering tions) for individual science instruments data, and system signals. Two examples in and out of the processing unit. The of system signals are “time tags”—clock application programs monitor and con- signals that synchronize the entire space- trol specific instruments, and analyze and craft—and “processor interface tables”— manipulate the collected data. communications codes. The CU/SDF transmits commands and requests after The memory stores operational com- formatting them so that the specific mands for execution when the telescope destination unit can read them. For is not in contact with the ground. Each example, ground commands and SSM memory unit has five areas reserved for commands are transmitted with differ- commands and programs unique to each ent formats because ground commands science instrument. The computer can be use 27-bit words and SSM commands reprogrammed from the ground for use 16-bit words. The formatter translates future requests or for working around each command signal into a common failed equipment. format. The CU/SDF also reformats and sends engineering and science data. Standard Interface Board. The circuit Onboard analysis of the data is an board is the communications bridge NSSC-1 function. between the computer and the CU/SDF. Power Control Unit. The PCU distributes Control Unit/Science Data Formatter. and switches power among components The heart of the SI C&DH unit is the of the SI C&DH unit. It also conditions CU/SDF. It formats and sends all com- the power required by each unit. For mands and data to designated destina- example, the computer memory boards tions such as the DMU of the SSM, the typically need +5 volts, -5 volts and NASA computer and the science instru- +12 volts while the CU/SDF requires ments. The unit has a microprocessor for +28 volts. The PCU ensures that all control and formatting functions. voltage requirements are met. 5-26 Hubble Space Telescope Systems Remote Interface Unit. RIUs transmit System Monitoring. Engineering data tell commands, clock and other system the monitoring computer whether instru- signals, and engineering data between ment systems are functioning. At regular the science instruments and the SI C&DH intervals, varying from every 500 millisec- unit. However, the RIUs do not send onds to every 40 seconds, the SI C&DH science data. There are six RIUs in the unit scans all monitoring devices for telescope: five attached to the science engineering data and passes data to the instruments and one dedicated to the NSCC-1 or SSM computer. The comput- CU/SDF and PCUs in the SI C&DH unit. ers process or store the information. Any Each RIU can be coupled with up to two failure indicated by these constant tests expander units. could initiate a “safing hold” situation and thus a suspension of science opera- Communications Buses. The SI C&DH tions. Refer to page 5-14, Safing unit contains data bus lines that pass (Contingency) System. signals and data between the unit and the science instruments. Each bus is Command Processing. Figure 5-27 shows multiplexed: one line sends system mes- the flow of commands within the SI C&DH sages, commands and engineering data unit. Commands enter the CU/SDF requests to the module units, and a reply (bottom right in the drawing) through the line transmits requested information and SSM Command DIU (ground commands) science data back to the SI C&DH unit. A or the DIU (SSM commands). The CU/SDF coupler attaches the bus to each remote checks and reformats the commands, unit. This isolates the module if the RIU which then go either to the RIUs or to fails. The SI C&DH coupler unit is on the the NSCC-1 for storage. Time-tagged ORU tray. commands, stored in the computer’s memory (top right of drawing), also Operation follow this process. The SI C&DH unit handles science instru- ment system monitoring (such as timing Each command is interpreted as “real and system checks), command processing time,” as if the SI C&DH just received it. and data processing. Many commands actually are onboard Remote Modules Science Science Instrument Instrument Unique Memory Unique Memory Remote Stored Modules Stored Science Command Instrument Command Output Buffer Memory Unique Memory Remote Modules Science Science Instrument Instrument Commands Unique Memory Unique Memory Remote To Science Instruments 1 – 5 To Modules NASA Standard Spacecraft Computer Model-I and Standard Remote Interface Modules Unit 1 Commands Units 6 and 7 Time Tags and Tags Time Units 4 and 5 Data Management Data Management Data Management Support Systems Computer Commands Module Processor Interface Table Words Word Order, Time Tag and Parity Checks From Command Supervisory Bus Data Interface Parity and Type Reformat Code Checks 27-bit Commands CU/SDF Remote To CU/SDF Parity and Word Modules Command Control Order Checks 16-bit Commands Processing Logic Science Instrument From Data Unique Memory Interface Unit To Power Control Unit/Science Data Formatter (CU/SDF) Control Unit K7444_530 Fig. 5-27 Command flow for Science Instrument Control and Data Handling unit Hubble Space Telescope Systems 5-27 stored commands activated by certain S p a c e S u p p o r t situations. For example, when the tele- scope is positioned for a programmed E q u i p m e n t observation using the Cosmic Origins Spectrograph, that program is activated. Hubble was designed to be maintained, The SI C&DH can issue certain requests repaired and enhanced while in orbit, to the SSM, such as to execute a limited extending its life and usefulness. For number of pointing control functions to servicing, the Shuttle will capture and make small telescope maneuvers. position the telescope vertically in the aft end of the cargo bay, then the crew Science Data Processing. Science data will perform maintenance and replace- can come from all science instruments ment tasks. The Space Support at once. The CU/SDF transfers incom- Equipment (SSE) provides a mainte- ing data through computer memory nance platform to hold the telescope, locations called packet buffers. It fills electrical support of the telescope dur- each buffer in order, switching among ing servicing and storage for Orbital them as the buffers fill and empty. Replacement Instruments (ORI) and ORUs. Each data packet goes from the buffer to the NSCC-1 for further processing, The major SSE items to be used for or directly to the SSM for storage in SM4 are the Flight Support System the data recorders or transmission to (FSS) and the Super Lightweight the ground. Data return to the Interchangeable Carrier (SLIC), Orbital CU/SDF after computer processing. Replacement Unit Carrier (ORUC) and When transmitting, the CU/SDF must Multi-Use Lightweight Equipment (MULE) send a continuous stream of data, Carrier. Crew aids and tools also will be either full packet buffers or empty used during servicing. Section 2 of this buffers called filler packets, to main- guide describes details specific to SM4. tain a synchronized link with the SSM.
Recommended publications
  • UNIX Workshop Series: Quick-Start Objectives
    Part I UNIX Workshop Series: Quick-Start Objectives Overview – Connecting with ssh Command Window Anatomy Command Structure Command Examples Getting Help Files and Directories Wildcards, Redirection and Pipe Create and edit files Overview Connecting with ssh Open a Terminal program Mac: Applications > Utilities > Terminal ssh –Y [email protected] Linux: In local shell ssh –Y [email protected] Windows: Start Xming and PuTTY Create a saved session for the remote host name centos.css.udel.edu using username Connecting with ssh First time you connect Unix Basics Multi-user Case-sensitive Bash shell, command-line Commands Command Window Anatomy Title bar Click in the title bar to bring the window to the front and make it active. Command Window Anatomy Login banner Appears as the first line of a login shell. Command Window Anatomy Prompts Appears at the beginning of a line and usually ends in $. Command Window Anatomy Command input Place to type commands, which may have options and/or arguments. Command Window Anatomy Command output Place for command response, which may be many lines long. Command Window Anatomy Input cursor Typed text will appear at the cursor location. Command Window Anatomy Scroll Bar Will appear as needed when there are more lines than fit in the window. Command Window Anatomy Resize Handle Use the mouse to change the window size from the default 80x24. Command Structure command [arguments] Commands are made up of the actual command and its arguments. command -options [arguments] The arguments are further broken down into the command options which are single letters prefixed by a “-” and other arguments that identify data for the command.
    [Show full text]
  • Unix/Linux Command Reference
    Unix/Linux Command Reference .com File Commands System Info ls – directory listing date – show the current date and time ls -al – formatted listing with hidden files cal – show this month's calendar cd dir - change directory to dir uptime – show current uptime cd – change to home w – display who is online pwd – show current directory whoami – who you are logged in as mkdir dir – create a directory dir finger user – display information about user rm file – delete file uname -a – show kernel information rm -r dir – delete directory dir cat /proc/cpuinfo – cpu information rm -f file – force remove file cat /proc/meminfo – memory information rm -rf dir – force remove directory dir * man command – show the manual for command cp file1 file2 – copy file1 to file2 df – show disk usage cp -r dir1 dir2 – copy dir1 to dir2; create dir2 if it du – show directory space usage doesn't exist free – show memory and swap usage mv file1 file2 – rename or move file1 to file2 whereis app – show possible locations of app if file2 is an existing directory, moves file1 into which app – show which app will be run by default directory file2 ln -s file link – create symbolic link link to file Compression touch file – create or update file tar cf file.tar files – create a tar named cat > file – places standard input into file file.tar containing files more file – output the contents of file tar xf file.tar – extract the files from file.tar head file – output the first 10 lines of file tar czf file.tar.gz files – create a tar with tail file – output the last 10 lines
    [Show full text]
  • EMERSON CENTER: HARDWARE Comp.Chem.20
    EMERSON CENTER: HARDWARE comp.chem.20 ssh –Y [email protected] euch4e.chem.emory.edu Passwd: HOME=/home/chemistry/ch_res/eclab cd spark cd star cd fire $HOME/spark $HOME/star $HOME/fire mkdir USER mkdir USER mkdir USER cd USER cd USER cd USER # Nodes = 36 # Nodes = 36 # Nodes = 16 + 1 GPU # Cores/node = 24 # Cores/node = 24, 16 # Cores/node = 56 + 5000 # Speed = 2.6 GHz # Speed = 2.5 GHz # Speed = 2.6 GHz # Memory = 96 GB # Memory = 80 GB # Memory = 196 GB # Classes = spark24p # Classes = star24p # Classes = fire28p spark12p star16p fire-gpu star8p stars (1 core) spark (or spark.chem.emory.edu) star (or star.chem.emory.edu) fire (or fire.chem.emory.edu) Login the Emerson Center’s Computers From a Unix/MAC/iPad/iPhone terminal ssh -Y [email protected] From PC 1) Download and run PuTTY (www.putty.org) 2) Enable X-forwarding (Connection -> SSH -> Tunnels) 3) Under Session, choose SSH on port 22 4) Type euch4e.chem.emory.edu as host name 5) Click Open A few UNIX commands and vi Editor UNIX Tree Structure: Files and Directories cd - change directory: cd directory_name rm - remove command: rm file_name: also: rmdir, rm –I mv - move comman: mv file_name mkdir - make directory: mkdir directory_name cp - copy command: cp file_name_1 file_name_2 ls - list command VI (View) Command mode and Insert mode vi file_name Type i for insert command Use backspace in order to correct mistake :w :w! or :wq :wq! Write or write and quit :q :q! quit dd n delete o Insert line EMERSON CENTER: Software (Selected List) Electronic Structure MD Simulation & Modeling Gaussian-16, 09 GROMACS-19.1 Molpro-15.1 NAMD-2.6 MOLCAS Rosetta GAMESS Amber-14 TURBOMOLE ORCA VASP-5.2 DFTB+ Graphics & Programming MATLAB 2019 Mathematica 12.0 Gauss View 6 Command file (for LoadLeveler only): #!/bin/ksh # ### # @ error = errcl.log # # @ initialdir = /star/chemistry/eclab/YOUR # @ requirements = (Arch == "R6000") && (OpSys == "AIX53") # @ notify_user = name@euch4e # @ class = star16p # @ group = ch_res # @ queue # INPF= test_inp OUTF= test_out .
    [Show full text]
  • PWD 3000 Cu / Cu-Al
    PWD 3000 Cu / Cu-Al High Precision Holding Devices Cable holding device featuring water flow system Pneumatic Cable Holding Device This special holding device allows high precision cable resistance for determining the Cable Resistance measurements on stranding machines even all main parts of it (the compactor and the cable take up mechanism ) are grounded! on non isolated No necessity for isolating machine parts! Stranding Machines The precision holding device PWD 3000 is used for the determination of the electric resistance per meter of power and medium voltage cables. The measurement is based on the 4-pole method according to Kelvin in order to eliminate the feed line resistances. The measuring current is supplied via pneumatically operated jaws, the measuring voltage picked-up via spring-supported taps, with a distance between the taps of 1000 mm (+/- 0,2mm). The current jaws and thus the current feeding points are arranged at a sufficient distance to the taps in accordance with DIN / IEC to ensure a constant and uniform distribution of the current across the actual measuring distance. The cable section is placed in two inner troughs which are filled with flowing water when the pump is running and are containing the potential bars for picking up the measuring voltage; it is here where the actual measurement takes place at a constant (water- ) temperature. Features The Microohmmeter which is part of the equipment additionally measures the (water-) temperature via a probe, • Holds diameters from 10 mm² to 1200 mm² and converts the previously measured resistance value to 20°C (or e.g. 23°C if wanted).
    [Show full text]
  • Nsight Compute OLCF Webinar
    Nsight Compute OLCF Webinar Felix Schmitt, Mahen Doshi, Jonathan Vincent Nsight Product Family Workflow Nsight Systems - Analyze application algorithms system-wide https://www.olcf.ornl.gov/calendar/nvidia-profiling-tools-nsight-systems/ Start here Nsight Compute - Analyze CUDA kernels Systems Nsight Graphics - Debug/analyze graphics workloads You are here Compute Graphics 2 Nsight Compute 3 Nsight Compute CUDA Kernel profiler Targeted metric sections for various performance aspects Customizable data collection and presentation (tables, charts, …) UI and Command Line Python-based rules for guided analysis (or post-processing) 4 Nsight Compute Detailed memory workload analysis chart and tables 5 Nsight Compute Comparison of results directly within the tool with “Baselines” Supported across kernels, reports, and GPU architectures 6 Nsight Compute Source/PTX/SASS analysis and correlation Source metrics per instruction and aggregated (e.g. PC sampling data) Metric heatmap 7 Nsight Compute Full command line interface (CLI) for data collection and analysis On your workstation Support for remote profiling across machines, platforms (Linux, Windows, …) in UI and CLI 8 Nsight Compute on Summit 9 Loading Module Use nv-nsight-cu-cli command line interface for data collection in batch environments Available as part of the CUDA toolkit $ module load cuda/10.1.243 $ /sw/summit/cuda/10.1.243/nsight-compute/nv-nsight-cu-cli Or as standalone installation (e.g. newer release than CUDA) $ module load nsight-compute/2019.5.0 $ /sw/summit/nsight-compute/2019.5.0/nv-nsight-cu-cli
    [Show full text]
  • Duane's Incredibly Brief Intro to Unix How to Get Help on Unix: Man
    Duane’s Incredibly Brief Intro to Unix Duane’s Ten Ways To Make Your Unix Life More Reasonable How to get help on unix: 0. Walk away from the machine. Don’t waste your time in front of a man <command-name> Get full description of command machine if you’re not making any progress. Print a listing and walk away. man -k <keyword> List commands mentioning keyword in title Make and take a friend with you. Life will be better if you reconsider the situation without the pressure of a computer. Logging in and out: logout Terminate session 1. Read the man pages. exit Terminate current "shell" Realize, if you haven’t already, that you don’t know everything. Learn. ssh <remote host> Login securely to a remote host The world travels about 66,600 miles an hour about our Sun, and the Sun glides gracefully along its own path dragging us along. File manipulation: Hackers have no impact. None. emacs <file> Edit a text file (see "cheat sheet") mv <old> <new> Rename/move <old> file to a <new> name 2. Learn the emacs keystrokes. It will save you when you have to rm <file(s)> Delete file(s) from system use a system whose mouse is not working. Avoid the "arrow keys". Why?... cp <orig> <duplicate> Copy <orig> to file named <duplicate> sftp <remote host> Secure batch file transfers between mach’ns 3. Use emacs keystrokes in the shell. Many cursor manipulation keystrokes scp host:<orig> host:<dup> Securely transfer files between machines from emacs recall history in the "bash" shell: cat <file> Display/catenate file contents to screen ^P = previous command, ^N = next command, more <file> Display file, page by page (but: use less) ^R = search for command from the past by typing a few letters less <file> Display file, page by page (avoid more) ^A = go to beginning of command line head <file> Display the first few lines of a file ^E = go to end of command line tail <file> Display the last few lines of a file ^B = go back one character grep <pattern> <file(s)> Search for/display pattern within file(s) ^F = go forward one character source <file> Read commands from <file> (also: .
    [Show full text]
  • 6. Environmental Variables Appropriate for Monitoring
    6. Environmental variables appropriate for monitoring 6.1. INTRODUCTION Chapter 5 above outlined the three major problem areas considered to be most relevant for early implementation in any global monitoring programme as follows: 1. Potentially adverseclimatic change resulting from human activities 2. Potentially adverse changes in biota and man from contamination by toxic substances,including radionuclides 3. Potentially adversechangesin biologicalproductivity causedby improper land-use (reduced soil fertility, soil erosion, extension of arid zones etc.) We now have to discuss which environmental parameters describe and quantify these problems in a useful way. These can be broadly classified under the followingheadings: la. Physical and chemical data from the atmosphere pertinent to climatic change potential b. Physical and chemical data from air, water, soils and biota pertinent to human health and welfare 2a. Physical, chemical and biological data reflecting the state of human health b. Biologicaldata reflecting the performance of biological systems 6.2. PHYSICAL AND CHEMICAL DATA FROM THE ATMOSPHERE PERTINENTTO GLOBALCLIMATICCHANGE In the previous chapter the important global environmental problems related to climatic change were discussed: increases of carbon dioxide and particulate matter in the atmosphere, changes in global albedo and the earth's surface, changes in cloudiness, production of waste heat, and contamination of the stratosphere. Since this discussionfocuses on climatic changes of global significancethe measurements and observations must be representative of large portions of the atmosphere (background values) and free of local contamination. The atmosphere has few mixing constraints and, therefore, this can be achievedby measurements in remote areas and in the upper atmosphere. Carbon dioxide. Our knowledge of the historical trend of atmospheric carbon dioxide as well as estimates of future concentrations are based primarily on a sole set of continuous observations, which dates only from 1958.
    [Show full text]
  • Bender Tutorial
    UC Riverside CS/EE 147 Bender Tutorial ♦ Overview In this tutorial, we will learn how to log into the EE server, Bender. Then, we will write and run a basic CUDA application on it. In short, we will do the following: 1. Access a terminal 2. Log into Bender 3. Write a simple CUDA code 4. Compile and run the CUDA code ♦ Access a terminal In order to log into Bender, you will need to access a terminal or SSH client first. You will then use it to connect to Bender via a secure shell protocol (SSH). For Windows, there are several free applications you could use to this end, such as PuTTY, MobaXTerm and Windows Subsystem for Linux (WSL). For Unix-based operating systems, there is already a pre-installed Terminal application. Therefore, you may skip this step if you are using Linux and open the Terminal for the next step. In this tutorial, we will use MobaXTerm due to its ease of use and fast preparation time. 1. Go to this link: https://mobaxterm.mobatek.net/download-home-edition.html 2. You may choose either the portable edition or the installer edition. (The portable edition requires no installation and can be run immediately.) 3. Run MobaXTerm. 4. Click “Start local terminal” in the middle or the “+” on the top (as shown by the red boxes) to open a terminal tab. 1 UC Riverside CS/EE 147 ♦ Login into Bender After opening the terminal, you can now SSH into the Bender machine. 1. Type the following command into the terminal: ssh <ENGR UNAME>@bender.engr.ucr.edu 2.
    [Show full text]
  • Development of a Distributed Design System For
    DEVELOPMENT OF A DISTRIBUTED DESIGN SYSTEM FOR INTEGRATED CIRCUIT DESIGN USING VAX 1117 50 AND SCALDSYSTEM COMPUTERS A Thesf-s Presented to The FacuJ.ty of the Col.1.ege of Engineering and Technology Ohfo University In Partial. Ful.fi.l.lment of the Requttements for the Degree Master of Science Robert Stratton Nobl.es,, TI -4L March, 1986 ACKNOWLEDGEMENTS I wou1.d Iike to thank my advl.sor, Dr. Harold KJ.ock not only for his support of this thesi.~,but for his interest in and support of my graduate work altogether. My thanks to the members of my committee: Dr. Janusz Starzyk and Dr. Robert Curt!.s who helped to form my earliest interest in VLSI deslgn (whj.c.h launched this thesis), and t.o Dr. Israel Uri.el.1, for his interest and val.uab1.e sugges- t l.ons . I wou1.d also I.lke to express my appreci.at!.on here for the help given to me by my mother and father, who have al-ways belleved j.n me. And final.l.y, my deepest gratitude goes to my wife, Kfm, whose support has meant everything to me. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i LIST OF FIGURES CHAPTER 1 : INTRODUCTION CHAPTER 2: AN INTRODUCTION TO THE UNIX SYSTEM 2.1 A Short View of rhe Hi-story of UNIX 2.2 Conventions Used In Thfs Thesis 2.3 The UNIX File System 9 2.4 UNIX System I/O 2.5 The UNIX Command Intetpreter(SheJ.1.) CHAPTER 3: VAX AND SCALDSYSTEX DESIGN ENVIRONMENTS 17 3.1 SCALDsystem Resources 3.1.1 Hardware Resources 3.1.2 The 0peratJ.ng System and F3.l.e System Layouts 20 3.1.3 SCALDsystem Integrated Cj.rcuf.t Desi.gn Software 26 3.2 VAX System Resources 3.2.1 Hardware Resources 3.2.2 The Operating System and File System Layouts 35 3.2.3 Integrated Circuit Design Software 41 CHAPTER 4: VAX/SCALDSYSTEM COMMUNICATIONS 4 5 4.1 Communi.catj.ons Usi.ng the Tip Program 4 5 4.2 Ini.t.Sal.iz3.ng UNIX Terminal.
    [Show full text]
  • Linux Shell Scripting Cookbook Second Edition
    Linux Shell Scripting Cookbook Second Edition Over 110 practical recipes to solve real-world shell problems, guaranteed to make you wonder how you ever lived without them Shantanu Tushar Sarath Lakshman BIRMINGHAM - MUMBAI Linux Shell Scripting Cookbook Second Edition Copyright © 2013 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: January 2011 Second edition: May 2013 Production Reference: 1140513 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK. ISBN 978-1-78216-274-2 www.packtpub.com Cover Image by Parag Kadam ([email protected]) Credits Authors Project Coordinator Shantanu Tushar Shiksha Chaturvedi Sarath Lakshman Proofreader Reviewers Linda Morris Rajeshwari K. John C. Kennedy Indexer Hemangini Bari Anil Kumar Sudhendu Kumar Production Coordinator Aravind SV Shantanu Zagade Acquisition Editor Cover Work Kartikey Pandey Shantanu Zagade Lead Technical Editor Ankita Shashi Technical Editors Jalasha D'costa Amit Ramadas Lubna Shaikh About the Authors Shantanu Tushar is an advanced GNU/Linux user since his college days.
    [Show full text]
  • SAS on Unix/Linux- from the Terminal to GUI
    SAS on Unix/Linux- from the terminal to GUI. L Gakava & S Kannan – October 2015 Agenda All about the terminal o Customising your terminal o Basic Linux terminal commands o Running SAS in non-interactive mode o Available SAS file editors o What to look out for on Unix/Linux platform All about Graphical User Interface (GUI) o Launching SAS GUI. o Changing SAS default behaviour o SAS ToolBox commands o SAS editor commands. Motivation - Why Use SAS On Unix/Linux? Using SAS on UNIX/Linux Platform o Company migrating to UNIX/Linux o Joining a company which is using SAS on the Linux platform Challenge Too many commands to learn! Why Use SAS On Unix/Linux o Customising Linux sessions will ensure you increase work efficiency by taking advantage of the imbedded Linux tools. In general transferring and running large files will be quicker in Linux compared to PC*. Terminal What to expect when you login? % pwd /home/username % ls Customise: Update .bashrc file with this line PS1='$IV $PWD$EE> ' will change your prompt to show the following: /home/username> Terminal Navigation Command Meaning ls list files and directories ls -a list all files and directories mkdir make a directory cd directory change to named directory cd change to home-directory cd ~ change to home-directory cd .. change to parent directory Terminal Navigation Command Meaning cp file1 file2 copy file1 and call it file2 mv file1 file2 move or rename file1 to file2 rm file remove a file rmdir directory remove a directory cat file display a file less file display a file a page at a time head file display the first few lines of a file tail file display the last few lines of a file grep 'keyword' file search a file for keywords count number of lines/words/ wc file characters in file Terminal useful commands How do you find out if a version of a file has changed? /home/username>diff file1.txt file2.txt Command to compare two files.
    [Show full text]
  • Cpsc 101 Lab 1 Fall 2015 Introduction to Unix Systems and C
    CpSc 101 Lab 1 Fall 2015 Introduction to Unix Systems and C How to login On the login screen is a place to enter your user name, and four controls: "Language", "Session", "Restart", and "Shutdown" • These controls are generally not useful, but you might find “session” useful in rare instances of severe “desktop malfunction.” • Type your CU username in the space provided and then press the enter key. • When prompted, enter your password to complete the login procedure. Managing Files and directories Creating directories • Open a terminal window • Enter the pwd command. (It stands for “print working directory”). The working directory should be "/users/your_username". This is also known as your home directory. Terminal windows open to this location by default. All your files and directories will be kept in a directory tree with this directory as root. • Enter mkdir 101 to create a directory for your CPSC 101 files. • Enter ls to list the contents of the current directory. You should see the new 101 directory. • Enter cd 101 to change to the 101 directory. • Enter mkdir lab1 to create a directory for today's lab. • Enter mkdir temp to create a temporary directory. Creating Files • Select the Applications control on the top panel and then left click "Text Editor". This will start the gedit text editor. You may also want to create a gedit launcher on the top panel or on the desktop. • You can use gedit to create and edit any type of text files including C programs. For now, create a file named test.txt and save it in 101/temp/.
    [Show full text]