USGS-474-136, "Gravity Survey of Amargosa Desert Area of Nevada

Total Page:16

File Type:pdf, Size:1020Kb

USGS-474-136, 4 alkali win, all f". rV Q4 th L's -4-T 61 z 94; tv +A m K. 40 AL w I .0 n2l Uml "32 2.2 3 gig= wa ;..IW-i 2.0 111111-25 14L 1.6 it MICROCOPY RESOLUTION TEST CH^9T NATKIbALbUat~u {or oa8r. lp- I I .z - , 1, :.?r "t e.., ;F. 1. I I .,i. -k I . 1., . -i , , 7I-P !Z 1. irv M'1 I r t 71V-I- BLA~~~~~~~~ieGt ` call, 4A -'sa-A 0 014 -U .-.Diego ,1z, Ta, falls Av ck -ni `Tft g, Q 17AATAMIR 114 V v k!", -Q, .Qh, :, ::e BLANI'S GEL A NTS -99 USGS-4 74-136 1971 UNIT1CD STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Federal Center, Denver, Colorado 80225 GRAVITY SURVEY OF THE AMARGOSA DESERT AREA OF NEVADA AND CALIFORNIA By D. L. Healey and C. H. Miller D,,Sn"U, - w1r .. .{ . ._ .. CONTEh"S Page Abstract -------------------------------- _-_______________-__- 1 Introduction -----------------------------a--------------- I Acknowledgments------------------------------------------------ 2 Geologic setting------------ ------------ ------------ ----------- 3 Density data--------------------------------------------------- 5 Gravity survey----------------------------------------------- 8 Field work------------------------------------------------ 8 Reduction of data----------------------------------------- 8 Interpretation------------9----------------------------- 9 Depch control------------------------9-- ------ ------ 9 Discussion of gravity anomalies--------------------------- 9 Gravity highs-------------------------------------------- 11 Funeral Mountains-Bare Mountain-Bullfrog Hills------ 11 Spring Mountains-Lathrop Wells area------------------ 12 Mount Shador area------------------------------------ 12 Resting Spring and Nopah Ranges---------------------- 12 Highs in alluviated areas---------------------------- 13 Gravity lows---------------------------------------------_ 14 Northern Amargosa Desert---------------------------- 14 Southern Amargosa Desert----------------------------- 15 Crater Flat-Yucca Mountain area--------------------- 19 Mount Shador brasin----------------------------------- 20 Pabrump Valley-Stewart Valley------------------------ 20 CONTENTS--Continued Page Interpretation--Continued Gravity lows--Continued Greenwater Range------------------------------------- 22 Indian Springs Valley------------------------------- 22 Gi:avity trends- -------------------------------------- 23 References---- ------------------------------------------- 27 ii -- - - - a- .-. -- -- -- - I ILLUTSTRArIONS Page Figure l.--Location map showing area of this report (shaded) and regional distribution of high-angle faults in southern Nevada and southeastern California------- In pocket 2.--Generalized geologic and complete Bouguer gravity anomaly map of the Amargosa Desert area, Nevada and California----------------------------------- In pocket 3.--Generalized geologic cross sections determined by two-dimensional analysis of gravity data---------- In pocket 4.--Trend map of major gravity anomalies, faults, and inferred faults in the Amargosa Desert area of Nevada and California----------------------------- In pocket TABLES Table l.--Range and average dersity of rocks in the vicinity of the Amargosa Desert----------------------------- 6 2.--Principal facts for gravity base stations in the Amargosa Desert area------------------------------- 10 iii UNITED STATES NTS-99 DEPARTMENT OF THE INTERIOR USGS-474-136 1971 GEOLOGICAL SURVEY Federal Center, Denver, Colorado 80225 GRAVITY SURVEY OF THE AMARGOSA DESERT AREA OF NEVADA AND CALIFORNIA By D. L. Healev and C. H. Miller ABSTRACT A gravity survey consisting of about 1,800 observations within the 2,400-square-mile area of the Amar-03a Desert has provided information regarding the basin-fill geology and buried normal fdults. Analysis of five two-dimensional geologic cross sections indicates that the valley fill ranges in thickness from seversa hundred to tlore than 7,OOC feet. The thickest fill apparently occurs between Lathrop Wells and 'Death Valley Junction and also in Mount Shador basin. At two locations steep gravity gradients are interpreted to represent high-angle normal faults hidden beneath the alluvium. Near Lathrop Wells one of these inferred faults may have been tha cause for the abrupt western terminus of outcropping pre-Cenozoic rocks in both the Striped and Skeleton Hills. The second inferred fault, near Death Valley Junction, may have been the cause of the southeast termination of the Funeral Mountains. The agreement between outcrops of pre-Cenozoic roc-a a-d the gravity anomalies is very good. Exceptions do occur, F3waver, and in these places the gravity anomalies are useful in delinea.ing the buried geologic structure. INTRODUCTION The southern and southeastern Amargosa Desert is an important discharge area of ground water coming from the Nevada Test Site. To provide the basic knowledge for determining semiquantitatively the relative proportions of ground water being contributed from the Nevada Test Site and from other areas, it has been necessary to compile the available geologic, geophysical, and hydrologic data and to supplement these data by limited field investigations where necessary. This report describes the results of the gravity survey. - - *--.--.----- * -t - _-- _'~..- I - The gravity survey of the Nevada Test Site was expaL.lec into the Amargosa Derert area to provide data regarding the subsuiface structure and thicknesses oL Tertiary and Quaternary fill in the various basinc. These data also add to our knowledge of the regional gravity gradient, which aids in interpreting gravity data at the Nevada Test Site aud northward. The purpose of this report is to make available the additional knowledge of the buried structure gained through analysii if these gravity data. The known and Infrred structural features are compared with known structural features in adjacent areas. These data will aid in synthesizing the structure of both the Amargosa Desert and the Nevada Test Site. ACKNOWLEDGMENTS The work was done on behalf of the Nevada Operations Office of the U.S. Atomic Energy Commission. We are indebted to the many people who helped to make this report possible. Maut of the gravity observatiou:3 were made by F. E. Currey, who aio assisted with the .eduction of these data. D. G. Murray, E. D. Seals, G. S. Erickson, R. C. Smith, Ppter Dobrovolny, and D. C. Jackson also aided in the acquisition and reduction of the gravity duta. R. M. Haziewood assisted with the gravity survey of the Mount Shade., quadrangle and adjacent areas. Particular thanks go to I. J. Winograd for his assistance in obtaining the drill-hole data for the area. We thank D. R. Mabey, U.S. Geological Survey, Denver, CAlo., or permission to use some of his reconnaissance gravity Zata in this 2 . e~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ report and M. F. Kane, U.S. Geological Survey, Woods Hole, Mass., for permission to use some of his gravity data in the western part of Clark County. GEOLOGIC SETTING The Amargosa Desert area is in southern Nevada and eastern California and roughly parallels the State line (fig. 1). The area of this report, about 2,400 square miles, is approximately 90 miles long (in a northwest direction) by a maximum of 35 miles wide and covers all or parts of fifteen 15-minute quadrangles. It lies within the Basin and Range physiographic province and is characterized by north- and northwest-trending mountain ranges and intermontane valleys. The topography differs from the typical Basin and Range topography in that the valleys are not closed. The Amargosa River drains all but the southeast corner of the area C(alker and Eakin, 1963, p. 5 and pl. 1). The northwest trend of the mountains and valleys has apparently resulted from tectonic activity. A right-lateral shear zone, the Walker Lane (fig. 1), which is inferred to trend southeastward across the Amargosa tesert, was postulated by 'ianella and Callaghan (1934, p. 3) and by Locke, Billingsley, and Mayo (1940). They project this shear zone more than 300 miles from north of Reno into Las Vegas Valley along a topographic trough. This topographic trough also marks the area where the Basin and Range structural alinement changes from north (on the north) to northwest (on the south). Longwell 3 Ii (1960, p. 202) traces the Las Vegas shear zone from a point east of Las Vegas northwesterly into a topographic depression west of Mercurv (fig. 1), but does not recognize the shear zone beyond this area. Burchfiel (1960, p. 138) suggests that the Las Vegas shear zone may trend west through the central portion of the Specter Range (west of Mercury) and then swing northwest at a point southwest of Lathrop Wells. F. G. Poole (oral commun., 1964) believes that the right-lateral displacement on the shear zone is taken up by a series of en echelon high-angle faults in the Specter Range. R. L. Christiansen (oral commun., 1964) thinks the right-lateral displacement is taken up by flexure. Other major high-angle fault zones in adjacent areas are also shown on figure 1. The structural complexity of the surrounding region is well illustrated by the number and extent of these faults. The apparent lack of faults in the area of this report is due mainly to a lack of geologic information. The fault pattern in figure 1 was taken from the Tectonic Map of the United States (Cohee, 1962), and most of the area of this report was unmapped, except in reconnaissance fashion, when the tectonic map was published. The rocks that crop out range in age from Precambrian through Cenozoic. A generalized summary of the geology of the region has been given previously by Healey
Recommended publications
  • Geodesy and Contemporary Strain in the Yucca Mountain Region, Nevada
    Geodesy and Contemporary Strain in the Yucca Mountain Region, Nevada By W.R. Keefer, J.A. Coe, S.K. Pezzopane, anofW. Clay Hunter U.S. GEOLOGICAL SURVEY Open-File Report 97-383 Prepared in cooperation with the NEVADA OPERATIONS OFFICE U.S. DEPARTMENT OF ENERGY (Interagency Agreement DE-AI08-92NV10874) Denver, Colorado 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: Chief, Earth Science Investigations Program U.S. Geological Survey Yucca Mountain Project Branch Information Services U.S. Geological Survey Box 25286 Box 25046, Mail Stop 421 Federal Center Denver Federal Center Denver, CO 80225 Denver, CO 80225-0046 CONTENTS Abstract................................................................................................................................................................................. 1 Introduction .............................................................................. 1 Background and Piirpose...........................................................................................................................................^ 1 Geologic Setting ......................................................................................................................................................... 4 Geodetic
    [Show full text]
  • Alluvial Fans in the Death Valley Region California and Nevada
    Alluvial Fans in the Death Valley Region California and Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 Alluvial Fans in the Death Valley Region California and Nevada By CHARLES S. DENNY GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 A survey and interpretation of some aspects of desert geomorphology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publications as follows: Denny, Charles Storrow, 1911- Alluvial fans in the Death Valley region, California and Nevada. Washington, U.S. Govt. Print. Off., 1964. iv, 61 p. illus., maps (5 fold. col. in pocket) diagrs., profiles, tables. 30 cm. (U.S. Geological Survey. Professional Paper 466) Bibliography: p. 59. 1. Physical geography California Death Valley region. 2. Physi­ cal geography Nevada Death Valley region. 3. Sedimentation and deposition. 4. Alluvium. I. Title. II. Title: Death Valley region. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Page Abstract.. _ ________________ 1 Shadow Mountain fan Continued Introduction. ______________ 2 Origin of the Shadow Mountain fan. 21 Method of study________ 2 Fan east of Alkali Flat- ___-__---.__-_- 25 Definitions and symbols. 6 Fans surrounding hills near Devils Hole_ 25 Geography _________________ 6 Bat Mountain fan___-____-___--___-__ 25 Shadow Mountain fan..______ 7 Fans east of Greenwater Range___ ______ 30 Geology.______________ 9 Fans in Greenwater Valley..-----_____. 32 Death Valley fans.__________--___-__- 32 Geomorpholo gy ______ 9 Characteristics of fans.._______-___-__- 38 Modern washes____.
    [Show full text]
  • Upper Neogene Stratigraphy and Tectonics of Death Valley — a Review
    Earth-Science Reviews 73 (2005) 245–270 www.elsevier.com/locate/earscirev Upper Neogene stratigraphy and tectonics of Death Valley — a review J.R. Knott a,*, A.M. Sarna-Wojcicki b, M.N. Machette c, R.E. Klinger d aDepartment of Geological Sciences, California State University Fullerton, Fullerton, CA 92834, United States bU. S. Geological Survey, MS 975, 345 Middlefield Road, Menlo Park, CA 94025, United States cU. S. Geological Survey, MS 966, Box 25046, Denver, CO 80225-0046, United States dTechnical Service Center, U. S. Bureau of Reclamation, P. O. Box 25007, D-8530, Denver, CO 80225-0007, United States Abstract New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from N3.58 Ma to b1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe–Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ~3.3 Ma the Furnace Creek basin was a northwest–southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique–normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone.
    [Show full text]
  • Draft DRECP and EIR/EIS CHAPTER II.4
    Draft DRECP and EIR/EIS CHAPTER II.4. ALTERNATIVE 1 II.4 ALTERNATIVE 1 Alternative 1 is one of five action alternatives considered and analyzed in the Desert Renewable Energy Conservation Plan (DRECP or Plan) and Environmental Impact Report/Environmental Impact Statement (EIR/EIS). The description of Alternative 1 is first provided at an interagency level (Section II.4.1), which describes all Plan elements of the alternative. After the interagency description, the individual elements of the alternative are described, including the Bureau of Land Management (BLM) Land Use Plan Amendment (LUPA) elements of the DRECP (Section II.4.2), the Natural Community Conservation Plan (NCCP) elements of the DRECP (Section II.4.3), and the General Conservation Plan (GCP) elements of the DRECP (Section II.4.4). II.4.1 Interagency Description of Alternative 1 The interagency description of Alternative 1 includes the following main sections: Overview of Alternative 1, Conservation Strategy, Monitoring and Adaptive Management Program, Description of the Covered Activities, and Plan Implementation. The description of Alternative 1 for the DRECP and EIR/EIS encompasses the overall conservation strategy and description of Covered Activities on federal and nonfederal lands (i.e., state, county, city, and privately owned lands) within the Plan Area. II.4.1.1 Overview of Alternative 1 The following provides a Plan-wide overview of Alternative 1. Alternative 1 integrates the renewable energy and resource conservation with other existing uses in the Plan Area and includes BLM LUPA elements, NCCP elements, and GCP elements. Under Alternative 1 for the DRECP, an interagency conservation strategy for the Plan Area would be established that includes a streamlined process for the permitting of renewable energy and transmission development on both federal and nonfederal lands and a BLM LUPA providing Conservation and Management Actions (CMAs) for resources throughout the Plan Area on BLM-administered lands.
    [Show full text]
  • Mercury Bowling Alley Demolition
    MEMORANDUM OF AGREEMENT BETWEEN THE U.S. DEPARTMENT OF ENERGY NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA FIELD OFFICE, AND THE NEVADA STATE HISTORIC PRESERVATION OFFICER REGARDING THE DEMOLITION OF THE MERCURY BOWLING ALLEY, NEVADA NATIONAL SECURITY SITE, NEVADA WHEREAS, the National Nuclear Security Administration Nevada Field Office (NNSA/NFO) intends to demolish the Mercury Bowling Alley (Building 23-517) on the Nevada National Security Site (NNSS) in Nye County, Nevada, as part of its plans for new construction and modernization of Mercury to support the NNSS's changing role in national security; and WHEREAS, the present undertaking consists of the demolition of Building 23-517 (SHPO Resource Number B 14451) that has remained vacant since the mid-i 990s following the end of nuclear testing activities at the NNSS (formerly Nevada Test Site [NTS]). In planning for the undertaking, NNSA/NFO considered all possible alternatives to avoid and minimize adverse effects to historic properties; and WHEREAS, theNNSA/NFO has defined the undertaking's area of potential effect (APE) as a 4.5-acre area in Mercury bounded on the west by the Mercury Highway, on the east by Teapot Street, on the south by Trinity Avenue, and on the north by a prominent terrace immediately south of a parking lot, park, and tennis/basketbatl court (Attachment A); and WHEREAS, the NNSA/NFO recorded and evaluated Building 23-517 (Attachment A) En accordance with the Nevada ArchUectvral Survey and Inventory Guidelines, and has determined that Building 23-517 is eligible for listing in the National Register of Historic Places (NRHP) under the Secretary's Significance Criteria A and C at the locai level of historic significance related to the era of nuclear testing; and WHEREAS, the NNSA/NFO has determined that the undertaking will constitute an adverse effect to the historic property Building 23-517, and has consulted with the Nevada Historic Preservation Officer (SHPO) pursuant to 36 C.F.R.
    [Show full text]
  • Hydrologic Basin Death Valley California
    Hydrologic Basin Death Valley California GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B Hydrologic Basin Death Valley California By CHARLES B. HUNT, T. W. ROBINSON, WALTER A. BOWLES, and A. L. WASHBURN GENERAL GEOLOGY OF DEATH VALLEY, CALIFORNIA GEOLOGICAL SURVEY PROFESSIONAL PAPER 494-B A! description of the hydrology, geochemistry, and patternedground of the saltpan UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract BI Hydrology-Continued Hydrology, by Charles B. Hunt and T. W. Robinson_ - 3 Descriptions and discharges of springs and of Introduction- 3 marshes-Continued Fieldwork- 3 Discharge of springs in the Furnace Creek fault Climate- 5 zone B35 Rainfall 5 Evapotranspiration discharge from the valley floor Evaporation 7 above the saltpan 37 Temperature- 8 Divisions of the valley according to sources of Humidity- 10 ground water 37 Wind- 11 Possible sources of water at Cottonball Marsh- 37 Rock types in the Death Valley hydrologic basin --- 11 Possible source of water at springs along Fur- Hard-rock formations 12 nace Creek fault zone 38 Unconsolidated Quaternary deposits 13 Geochemistry of the saltpan by Charles B. Hunt 40 Gravel deposits 13 General features 40 Fine-grained alluvial and playa deposits - 15 Fieldwork and acknowledgments 41 Salt deposits and saliferous playa deposits- 15 Geologic
    [Show full text]
  • Death Valley Lower Carbonate Aquifer Monitoring Program- Wells Down Gradient of the Proposed Yucca Mountian Nuclear Waste Repository
    iU4 MOL.20080509.0010 DEATH VALLEY LOWER CARBONATE AQUIFER MONITORING PROGRAM- WELLS DOWN GRADIENT OF THE PROPOSED YUCCA MOUNTIAN NUCLEAR WASTE REPOSITORY U.S. DEPARTMENT OF ENERGY COOPERATIVE AGREEMENT DE-FC28-06RW12368 YEAR ONE PROJECT REPORT PREPARED BY INYO COUNTY YUCCA MOUNTAIN REPOSITORY ASSESSMENT OFFICE Inyo County completed Year One of U.S. Department of Energy Cooperative Agreement No. DE-FC28-06RW12368. This report presents the results of research conducted within this cooperative agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Data collected within the cooperative agreement is included in interpretive illustrations and discussions of the results of our analysis. The central element's of this Cooperative Agreement program was the drilling of exploratory wells, analysis of geochemical data, geophysical surveys, and geological mapping of the Southern Funeral Mountain Range. The culmination of this research was two numerical ground water models of the Southern Funeral Mountain Range and Yucca Mountain region demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley. 1.0 Introduction The focus of the investigations by the Hydrodynamics Group for Inyo County is to assemble the best possible data on the Paleozoic Carbonate Aquifer, and then to use that data to assess the likelihood of contaminant transport from the planned Yucca Mountain high-level nuclear waste repository to the biosphere in Inyo County.
    [Show full text]
  • A Transect Across the Death Valley Extended Terrane, California Michael S
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B1, 2010, 10.1029/2001JB000239, 2002 Assessing vertical axis rotations in large-magnitude extensional settings: A transect across the Death Valley extended terrane, California Michael S. Petronis and John W. Geissman Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA Daniel K. Holm Department of Geology, Kent State University, Kent, Ohio, USA Brian Wernicke and Edwin Schauble Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA Received 11 September 2000; revised 7 May 2001; accepted 14 July 2001; published 18 January 2002. [1] Models for Neogene crustal deformation in the central Death Valley extended terrane, southeastern California, differ markedly in their estimates of upper crustal extension versus shear translations. Documentation of vertical axis rotations of range-scale crustal blocks (or parts thereof) is critical when attempting to reconstruct this highly extended region. To better define the magnitude, aerial extent, and timing of vertical axis rotation that could mark shear translation of the crust in this area, paleomagnetic data were obtained from Tertiary igneous and remagnetized Paleozoic carbonate rocks along a roughly east-west traverse parallel to about 36°N latitude. Sites were established in 7 to 5 Ma volcanic sequences (Greenwater Canyon and Brown’s Peak) and the 10 Ma Chocolate Sundae Mountain granite in the Greenwater Range, 8.5 to 7.5 Ma and 5 to 4 Ma basalts on the east flank of the Black Mountains, the 10.6 Ma Little Chief stock and upper Miocene(?) basalts in the eastern Panamint Mountains, and Paleozoic Pogonip Group carbonate strata in the north central Panamint Mountains.
    [Show full text]
  • United States Department of the Interior Geological Survey
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY GUIDEBOOK FOR PAST FIELD TRIPS TO THE NEVADA TEST SITE by R. L* Christiansen, F. G. Poole, Harley Barnes, P. P. Orkild, F. M. Byers, Jr., W. J. Carr, F. A. McKeown, F. N. Houser, E. M. Shoemaker, and W. L. Emerick Open-file Report 1969 69 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature. CONTENTS Page General Introduction, by Robert L. Christiansen. ........ 1 Paleozoic Stratigraphy and post-Paleozoic tectonic structure of Nevada Test Site and Vicinity, by F. G. Poole and Harley Barnes. ........................ 2 Timber Mountain Caldera and Related Volcanic Rocks, by Robert L. Christiansen, Paul P. Orkild, F. M. Byers, Jr., and W. J. Carr ........................ 24 Engineering Geology and Surface Effects of Nuclear Explosions, by F. A. McKeown, F. N. Houser, E. M. Shoemaker, and W. L. Emerick. ........................ 47 GENERAL INTRODUCTION A wide variety of geological studies has been undertaken by the U.S. Geological Survey at the Nevada Test Site since 1957 in cooperation with the Nevada Operations Office of the U.S. Atomic Energy Commission. This book has been prepared as a guide to some of the major results of the Survey's studies in this area and has been*divided into three topically oriented field trips. In several respects the Nevada Test Site is located in an area that is especially interesting geologically. It lies along the projected trend of the Walker Lane and the Las Vegas Valley Shear Zone (Locke and others, 1940; Longwell, 1960), one of the major crustal features of the Basin-Range province.
    [Show full text]
  • The California Desert CONSERVATION AREA PLAN 1980 As Amended
    the California Desert CONSERVATION AREA PLAN 1980 as amended U.S. DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT U.S. Department of the Interior Bureau of Land Management Desert District Riverside, California the California Desert CONSERVATION AREA PLAN 1980 as Amended IN REPLY REFER TO United States Department of the Interior BUREAU OF LAND MANAGEMENT STATE OFFICE Federal Office Building 2800 Cottage Way Sacramento, California 95825 Dear Reader: Thank you.You and many other interested citizens like you have made this California Desert Conservation Area Plan. It was conceived of your interests and concerns, born into law through your elected representatives, molded by your direct personal involvement, matured and refined through public conflict, interaction, and compromise, and completed as a result of your review, comment and advice. It is a good plan. You have reason to be proud. Perhaps, as individuals, we may say, “This is not exactly the plan I would like,” but together we can say, “This is a plan we can agree on, it is fair, and it is possible.” This is the most important part of all, because this Plan is only a beginning. A plan is a piece of paper-what counts is what happens on the ground. The California Desert Plan encompasses a tremendous area and many different resources and uses. The decisions in the Plan are major and important, but they are only general guides to site—specific actions. The job ahead of us now involves three tasks: —Site-specific plans, such as grazing allotment management plans or vehicle route designation; —On-the-ground actions, such as granting mineral leases, developing water sources for wildlife, building fences for livestock pastures or for protecting petroglyphs; and —Keeping people informed of and involved in putting the Plan to work on the ground, and in changing the Plan to meet future needs.
    [Show full text]
  • Death Valley National Monument
    DEATH VALLEY NATIONAL MONUMENT D/ETT H VALLEY NATIONAL 2 OPEN ALL YEAR o ^^uJv^/nsurty 2! c! Contents 2 w Scenic Attractions 2 2! Suggested Trips in Death Valley 4 H History 7 Indians 8 Wildlife 9 Plants 12 Geology 18 How To Reach Death Valley 23 By Automobile 23 By Airplane, Bus, or Railroad 24 Administration 25 Naturalist Service 25 Free Public Campground 25 Accommodations 25 References 27 UNITED STATES DEPARTMENT OF THE INTERIOR- Harold L. Ickes, Secretary NATIONAL PARK SERVICE Arno B. Cammerer, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON EATH VALLEY National Monument was created by Presidential proclamation on 2February 11), 1933, and enlarged to its present dimensions on March 26, 1937. Embracing 2,981 square miles, or nearly 2 million acres of primitive, unspoiled desert country, it is the second largest area administered by the National Park Service in the United States proper. Famed as the scene of a tragic episode in the gold-rush drama of '49, Death Valley has long been known to scientist and layman alike as a region rich in scientific and human interest. Its distinctive types of scenery, its geological phenomena, its flora, and climate are not duplicated by any other area open to general travel. In all ways it is different and unique. The monument is situated in the rugged desert region lying east of the High Sierra in eastern California and southwestern Nevada. The valley itself is about 140 miles in length, with the forbidding Panamint Range forming the western wall, and the precipitous slopes of the Funeral Range bounding it on the east.
    [Show full text]
  • Estimated Potentiometric Surface of the Death Valley Regional Groundwater Flow System, Nevada and California by Michael T
    U.S. Department of the Interior Prepared in cooperation with the Scientific Investigations Report 2016-5150 U.S. Geological Survey Bureau of Land Management, National Park Service, U.S. Department of Energy National Nuclear Security Administration Sheet 1 (Interagency Agreement DE–AI52–01NV13944), and Office of Civilian Radioactive Waste Management (Interagency Agreement DE–AI28–02RW12167), U.S. Fish and Wildlife Service, and Nye County, Nevada 650000 115° 117° 550000 116° 600000 118° 450000 500000 San Antonio Mts Monte Cristo Range Monitor Range Big Smokey Stone Valley Cabin Grant Range Valley Railroad 1600 Tonopah Valley Quinn Canyon Range Reveille Range 38° 38° Lincoln County Reveille Valley 4200000 4200000 Esmeralda County 1700 1500 1800 1500 Cactus Penoyer Valley Goldfield 00 00 16 Flat 16 (Sand Spring Worthington Range Hill Valley) Nye County 1600 Cactus Range Clayton Valley Stonewall Montezuma Range Flat Kawich Range Timpahute Range Hiko Range Kawich Fish Lake Valley 1700 1500 Gold Valley North Pahranagat Range 1600 Flat Palmetto Mts 1400 Stonewall 1400 4150000 4150000 1500 Mtn 1600 1500 East Pahranagat Range Pahranagat Range 1300 Magruder Mtn Tikaboo Valley Belted Range EmigrantValley Groom Range Last Chance Range 1500 Slate Ridge 1200 1300 Eureka Valley 1200 Pahute 1100 Black Mesa 1100 Mtn 1000 Gold Rainier Eleana 1500 Range Mtn Stonewall Mesa 1000 White Mts Pass Desert Range 900 Halfpint Range Shoshone Yucca 800 Grapevine Mts Flat 1300 Timber Mtn 1500 Sarcobatus Mtn 700 4100000 4100000 1700 Flat 37° 37° 1400 Desert 1600 Valley
    [Show full text]