Probiotic Lactobacillus Rhamnosus Downregulates FCER1 and HRH4 Expression in Human Mast Cells

Total Page:16

File Type:pdf, Size:1020Kb

Probiotic Lactobacillus Rhamnosus Downregulates FCER1 and HRH4 Expression in Human Mast Cells View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Online Submissions: http://www.wjgnet.com/1007-9327office World J Gastroenterol 2011 February 14; 17(6): 750-759 [email protected] ISSN 1007-9327 (print) ISSN 2219-2840 (online) doi:10.3748/wjg.v17.i6.750 © 2011 Baishideng. All rights reserved. BRIEF ARTICLE Probiotic Lactobacillus rhamnosus downregulates FCER1 and HRH4 expression in human mast cells Anna Oksaharju, Matti Kankainen, Riina A Kekkonen, Ken A Lindstedt, Petri T Kovanen, Riitta Korpela, Minja Miettinen Anna Oksaharju, Petri T Kovanen, Wihuri Research Institute, cells were stimulated with Lactobacillus rhamnosus (L. Helsinki 00140, Finland rhamnosus) GG (LGG®), L. rhamnosus Lc705 (Lc705), Matti Kankainen, VTT Technical Research Centre of Finland, Propionibacterium freudenreichii ssp. shermanii JS (PJS) Biosystems Modelling, Espoo 02044, Finland and Bifidobacterium animalis ssp. lactis Bb12 (Bb12) Riina A Kekkonen, Riitta Korpela, Valio Ltd, Research Cen- and their combination for 3 or 24 h, and were sub- tre, Helsinki 00370, Finland jected to global microarray analysis using an Affymetrix Riina A Kekkonen, Riitta Korpela, University of Helsinki, In- ® stitute of Biomedicine, Medical Nutrition Physiology, Helsinki GeneChip Human Genome U133 Plus 2.0 Array. The 00290, Finland gene expression differences between unstimulated and Ken A Lindstedt, Wihuri Research Institute, Helsinki 00140, bacteria-stimulated samples were further analyzed with Finland and Orion Corporation, Orion Pharma, Nonclinical R&D, GOrilla Gene Enrichment Analysis and Visualization Tool Espoo 02601, Finland and MeV Multiexperiment Viewer-tool. Minja Miettinen, National Institute for Health and Welfare, De- partment of Vaccines and Immune Protection, Helsinki 00580, RESULTS: LGG and Lc705 were observed to suppress Finland genes that encoded allergy-related high-affinity IgE re- Author contributions: Kekkonen RA, Korpela R, Lindstedt KA ceptor subunits α and γ (FCER1A and FCER1G, respec- and Oksaharju A designed the research; Oksaharju A performed tively) and histamine H4 receptor. LGG, Lc705 and the the experiments; Oksaharju A, Kankainen M and Miettinen M analyzed the data; Oksaharju A wrote the manuscript; Kankainen combination of four probiotics had the strongest effect M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R and on the expression of genes involved in mast cell im- Miettinen M edited the manuscript. mune system regulation, and on several genes that en- Supported by Valio Research Centre, the Foundation for Nutri- coded proteins with a pro-inflammatory impact, such as tion Research, Academy of Finland Research Council for Biosci- interleukin (IL)-8 and tumour necrosis factor alpha. Also ences and Environment, Grant No. 129954; and Finnish Funding genes that encoded proteins with anti-inflammatory Agency for Technology and Innovation (TEKES) grant No. functions, such as IL-10, were upregulated. 2243/31/05. Wihuri Research Institute is maintained by Jenny and Antti Wihuri Foundation CONCLUSION: Certain probiotic bacteria might diminish Correspondence to: Anna Oksaharju, MSc, Wihuri Research mast cell allergy-related activation by downregulation of Institute, Kalliolinnantie 4, Helsinki 00140, Finland. [email protected] the expression of high-affinity IgE and histamine recep- Telephone: +358-9-681411 Fax: +358-9-637476 tor genes, and by inducing a pro-inflammatory response. Received: May 14, 2010 Revised: August 28, 2010 Accepted: September 5, 2010 © 2011 Baishideng. All rights reserved. Published online: February 14, 2011 Key words: Probiotic bacteria; Mast cells; Microarray; Allergy; IgE receptor Abstract Peer reviewer: Dr. William R Parker, PhD, Assistant Profes- sor, Department of Surgery, Duke University Medical Center, AIM: To investigate the effects of four probiotic bac- Box 2605, Durham, NC 27710, United States teria and their combination on human mast cell gene expression using microarray analysis. Oksaharju A, Kankainen M, Kekkonen RA, Lindstedt KA, Kovanen PT, Korpela R, Miettinen M. Probiotic Lactobacillus METHODS: Human peripheral-blood-derived mast rhamnosus downregulates FCER1 and HRH4 expression in human WJG|www.wjgnet.com 750 February 14, 2011|Volume 17|Issue 6| Oksaharju A et al . Probiotics regulate mast cell gene expression mast cells. World J Gastroenterol 2011; 17(6): 750-759 Available tions. The most promising results of the health effects of from: URL: http://www.wjgnet.com/1007-9327/full/v17/i6/750. probiotics have been discovered in studies of diarrhea[12], htm DOI: http://dx.doi.org/10.3748/wjg.v17.i6.750 allergy[13], irritable bowel syndrome (IBS)[14,15], and respi- ratory infections[16,17]. The effects of probiotics are sug- gested to be strain-specific, although one strain can have multiple influences[18]. In the treatment of a complex and INTRODUCTION heterogeneous condition such as IBS, the use of combi- nations of different strains of probiotics can have advan- Mast cells are multifunctional regulator cells that are locat- [14] tages over using a single strain . The most investigated ed at strategic host-environment interfaces including skin, and used probiotic genera are Lactobacillus and Bifidobacte- vascular barriers and gastrointestinal tract, where they rium. Lactobacillus strains have been effective in beneficially encounter antigens and pathogens, as well as commen- modulating commensal microbes and inhibiting pathogen sal microbes. In the healthy intestinal mucosa, mast cells [1] adhesion to gut mucosa. Lactobacillus and Bifidobacterium constitute 2%-3% of the cells of the lamina propria . have been shown to produce antimicrobial agents and to Mast cells are very heterogeneous cells that are tradition- [19] alleviate symptoms of allergy . Dairy Propionibacterium, ally classified by the content of their specific proteases which has been observed to exclude pathogenic microbes tryptase and chymase. A mast cell subtype that contains from gut mucosa[20], has also been used as a probiotic. only tryptase (MCT) is predominant in the lung and intes- Evidence from two clinical trials performed with the tine, whereas mast cells that contain tryptase and chymase [2] combination of four probiotic bacteria, i.e. Lactobacillus (MCTC) are prevalent in the skin and conjunctiva . Mast rhamnosus (L. rhamnosus) GG (LGG), L. rhamnosus Lc705 cell subtypes can even vary between different parts of the (Lc705), Propionibacterium freudenreichii ssp. shermanii JS (PJS) same organ. Thus, MCT cells are enriched in the mucosal and Bifidobacterium animalis ssp. lactis Bb12 (Bb12), suggests layer of the intestine but MCTC cells outnumber them in that the consumption of such combination alleviates the the intestinal submucosa. However, this classification is symptoms in IBS patients[14,21]. As mast cells are believed thought to be interchangeable and can be shaped accord- [3] to be important in regulating intestinal immunity and per- ing to the microenvironment of the cells . haps also intestinal sensory functions, we chose to study Mast cells participate in a variety of physiological the effects of the above probiotic combination and each functions, such as epithelial secretion and permeability, bacterium alone on the global gene expression of primary blood flow, peristalsis, neuroimmune interactions, and peripheral-blood-derived human mast cells. wound healing. One significant task for mast cells is host defence against pathogenic microbes. By secreting several mediators including histamine, proteases, lipid mediators MATERIALS AND METHODS and pro- and anti-inflammatory cytokines, mast cells regu- Cell culture late the immune system and interact with other immune [4] Freshly collected buffy coats from healthy adult blood cells . The multifunctionality of mast cells can explain donors were provided by the Finnish Red Cross Blood why they are also involved in the pathogenesis of many Transfusion Service (Helsinki, Finland). The health of the inflammatory diseases, such as allergy. The number of subjects for blood donation is strictly controlled. The do- mast cells and the amount of mast-cell-derived mediators, nors must be 18-65 years of age, free of infections includ- such as histamine, which is the key mediator in allergy, are ing HIV, hepatitis B and C, and free of allergic symptoms increased at sites of allergic inflammation. The released and most chronic illnesses including autoimmune diseases. mediators induce mucus and electrolyte secretion, smooth Mononuclear cells were purified from heparinized blood muscle contraction, nerve-cell activation and other symp- by Ficoll-Paque™ Plus (GE Healthcare, Uppsala, Swe- [5] toms common in allergic reactions . The regulation of den) density gradient centrifugation. Mast cell precursor mast-cell mediators is complex. The best characterized cells were isolated by positive immunomagnetic selection mechanism of mast cell activation is high-affinity IgE using indirect CD34 MicroBead Kit and MACS® separa- [6] receptor (FcεR1)-mediated activation . IgE-receptor ag- tion columns (Miltenyi Biotec, Bergish Gladbach, Ger- gregation induces multiple signaling pathways that control many) according to the manufacturer’s instructions. After the secretion of allergy-related mediators, such as hista- selection, the CD34+ cells were cultured for 9-11 wk in mine and leukotrienes, and the induction of T helper cell serum-free Stem Span™ cell culture medium (Stem Cell 2 (Th2) type cytokine and tumor necrosis
Recommended publications
  • IL-25 and Type 2 Innate Lymphoid Cells Induce Pulmonary Fibrosis
    IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis Emily Hamsa,b, Michelle E. Armstronga,b, Jillian L. Barlowc, Sean P. Saundersa,b, Christian Schwartzd, Gordon Cookee, Ruairi J. Fahyf, Thomas B. Crottyg, Nikhil Hiranih, Robin J. Flynnc, David Voehringerd, Andrew N. J. McKenziec, Seamas C. Donnellye,i, and Padraic G. Fallona,b,j,1 aTrinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland; bNational Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin 8, Ireland; cMedical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; dDepartment of Infection Biology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; eSchool of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; fSt. James’s Hospital, Dublin 8, Ireland; gDepartment of Pathology, St. Vincent’s University Hospital, Dublin 4, Ireland; hMedical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; iNational Pulmonary Fibrosis Referral Centre, St. Vincent’s University Hospital, Dublin 4, Ireland; and jInstitute of Molecular Medicine, School of Medicine, Trinity College Dublin, St. James’s Hospital, Dublin 8, Ireland Edited by Shigeo Koyasu, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, and accepted by the Editorial Board November 15, 2013 (received for review August 26, 2013) Disease conditions associated with pulmonary fibrosis are pro- fibrosis in experimental mouse models, via the activation of IL-13– gressive and have a poor long-term prognosis with irreversible producing ILC2. We also observe increases in both IL-25 and ILC2 changes in airway architecture leading to marked morbidity and in the lung of patients with idiopathic pulmonary fibrosis (IPF).
    [Show full text]
  • Identification of Immunologic and Genetic Biomarkers for TMA Sensitization
    Identification of Immunologic and genetic biomarkers for TMA sensitization Debajyoti Ghosh PhD Research Scientist Internal Medicine, Division of Immunology University of Cincinnati College of Medicine Funding, lab support and mentorship • Funding: Supported by the National Institute for Occupational Safety and Health Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42/0H008432-09. • Lab-support and mentorship: Dr. Jonathan Bernstein MD (lab director) Department of Internal Medicine, UC College of Medicine Dr. Ian Lewkowich PhD Div. of Immunobiology Cincinnati Children’s Hospital and Medical Center Trimellitic Anhydride (TMA) • Hardening agent used in preparing plastics and paints. • 100,000 metric tons produced annually worldwide (65,000 metric tons/year in the U.S.). • An estimated 20,000 workers in the US are currently TMA:C H O exposed to trimellitic anhydride. 9 4 5 MW:192.13 • Free TMA can be converted to TMLA. It is an irritant (can’t induce antibody response). • Numerous TMA molecules can irreversibly bind to a large carrier protein (e.g. HSA) to make a complete antigen. This can cause allergenic antibody responses leading to occupational asthma. TMA TMA-HSA • TMA is a unique molecule responsible for producing both irritant and allergnic responses. Ref. http://www.inchem.org/documents (accessed Oct., 2015) http://www.cdc.gov/niosh/docs/1970/78121_21.html (accessed Oct, 2015) Irritant versus allergenic response • A reversible inflammatory effect on • Usually caused by antibody- living tissue by chemical action at the mediated systemic reactions. IgE is site of contact. Not antibody-mediated. the key molecule. • Non-specific reaction, can be caused • Very specific, mediated by Ag-Ab by any irritant.
    [Show full text]
  • Anti-Mouse Fc Epsilon Receptor I Alpha (Fcer1) PE Catalog Number :84112-60 RUO: for Research Use Only
    Technical Data Sheet Anti-Mouse Fc epsilon Receptor I alpha (FceR1) PE Catalog Number :84112-60 RUO: For Research Use Only. Not for use in diagnostic procedures. Product Information Clone: MAR-1 Format/Conjugate: PE Concentration: 0.2 mg/mL Reactivity: Mouse Laser: Blue (488nm), Yellow/Green (532-561nm) Peak Emission: 578nm Peak Excitation: 496nm Filter: 585/40 Brightness (1=dim,5=brightest): 5 Isotype: Armenian Hamster IgG Formulation: Phosphate-buffered aqueous solution, ≤0.09% Sodium azide, may contain carrier protein/stabilizer, ph7.2. Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light. Applications: FC Description The Mar-1 monoclonal antibody binds to the Fc ε Receptor I α subunit (FceR1a), which is a transmembrane glycoprotein from the immunoglobulin superfamily. FceR1a lacks signal-transducing ability and is expressed by mast and basophil cells. The Fc ε Receptor I α subunit is upregulated by IgE and forms a tetramer with a beta subunit and two gamma subunits, which have ITAM (immunoreceptor tyrosine-based activation motifs). The complex formed by the four subunits has very important roles in the IgE-facilitated allergic reactions. Preparation & Storage The product should be stored undiluted at 4°C and should be protected from prolonged exposure to light. Do not freeze.The monoclonal antibody was purified utilizing affinity chromatography and unreacted dye was removed from the product. Application Notes The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. For flow cytometric staining, the suggested use of this reagent is ≤0.06 ug per million cells in 100 µl volume.
    [Show full text]
  • Induction and Regulation of Allergen-Specific Ige
    2 Induction and regulation of allergen-specific IgE Prescilla V. Jeurink and Huub F.J. Savelkoul, Abstract The immune response is characterized by an initial rapid activation of the innate defence system, geared at recognizing common structures shared by many micro- organisms. This innate immune response is a prerequisite to mount a highly antigen- specific adaptive immune response consisting of T-cell differentiation into effector subsets and B-cell differentiation into antibody-secreting plasma cells. Commonly, allergy is characterized by dendritic cells presenting allergenic peptides, activated Th2 cells producing signature cytokines like IL-4 and IL-5, and B-cells producing allergen-specific IgE antibodies. Under non-allergic conditions tolerance mechanisms, comprising regulatory T-cell subsets, are suppressing potential immune responses to allergen exposure. The protein structure of many allergens has been resolved and has provided an explanation for the epitope-specific IgE cross-reactivity responsible for the pollen– food syndrome. The knowledge on the protein characteristics of the major food allergens can provide better understanding why certain types of allergic symptoms can develop in particular individuals. Together with information on the genetic basis and the modulatory capacity of the environment, the Allergy Consortium Wageningen sets out to develop preventive measures to reduce allergic sensitization, to give advice to reduce allergen exposure and induce symptom reduction, and to provide clues to the management of an existing allergy. Keywords: allergens; cross-reactive epitopes; Th2 cells; regulatory T cells; induction of IgE; food allergy The immune system The immune system is essential to protect us from infections with potentially harmful viruses, bacteria, fungi and parasites.
    [Show full text]
  • Γδ T Cells Affect IL-4 Production and B-Cell Tolerance PNAS PLUS
    γδ T cells affect IL-4 production and B-cell tolerance PNAS PLUS Yafei Huanga, Ryan A. Heiserb, Thiago O. Detanicoa, Andrew Getahunb, Greg A. Kirchenbaumb, Tamara L. Caspera, M. Kemal Aydintuga, Simon R. Cardingc, Koichi Ikutad, Hua Huanga, John C. Cambierb,a, Lawrence J. Wysockia,b, Rebecca L. O’Briena,b, and Willi K. Borna,b,1 aDepartment of Biomedical Research, National Jewish Health, Denver, CO 80206; bDepartment of Immunology & Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045; cThe Institute of Food Research and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7JT, United Kingdom; and dLaboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Edited* by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved November 7, 2014 (received for review August 6, 2014) γδ T cells can influence specific antibody responses. Here, we re- In the current study, we further tested this idea by examining port that mice deficient in individual γδ T-cell subsets have altered antibody levels and B cells in nonimmunized mice genetically levels of serum antibodies, including all major subclasses, some- deficient either in individual γδ T-cell subsets or in all γδ T cells. times regardless of the presence of αβ T cells. One strain with The focus on antibodies derives from our earlier observation that a partial γδ deficiency that increases IgE antibodies also displayed mutant mice selectively deficient in Vγ4 and Vγ6 (B6.TCR- − − − − increases in IL-4–producing T cells (both residual γδ T cells and αβ Vγ4 / /6 / ) produce substantially more IgE antibody than WT − − T cells) and in systemic IL-4 levels.
    [Show full text]
  • Basophils Control T-Cell Responses and Limit Disease Activity in Experimental Murine Colitis
    ARTICLES nature publishing group Basophils control T-cell responses and limit disease activity in experimental murine colitis M Rodriguez Gomez1, Y Talke1, C Hofmann2, I Ketelsen1, F Hermann1, B Reich1, N Goebel1, K Schmidbauer1, N Dunger2, H Bru¨hl2, K Renner1, S-N Syed1 and M Mack1 Basophils have been recognized as important inducers of T helper type 2 (Th2) responses. Using the colitis model of adoptive transfer of CD4 þ CD62L þ T cells into lymphopenic hosts, we have analyzed how basophils regulate T-cell responses and modulate disease activity. Transferred T cells rapidly proliferate, produce large amounts of interleukin (IL)-3, and expand the number of basophils in an IL-3-dependent manner. Depletion of basophils with two different antibodies substantially upregulated Th1 cytokines in transferred T cells at day 8. Increased Th1 cytokine expression persisted until the end of the experiment when basophil-depleted mice showed exacerbation of colitis with more severe loss of weight, histological damage, colonic leukocyte infiltration, and expression of pro-inflammatory cytokines. In vitro, we show that basophil-derived IL-4 and IL-6 downregulates expression of interferon-c, IL-2, and tumor necrosis factor in T cells. These data show a beneficial role of basophils in a T-cell driven model of autoimmunity. INTRODUCTION inflammatory bowel disease.22,23 Adoptive transfer of naive Basophils develop from a common granulocyte–monocyte CD4 þ T cells in T-cell-deficient mice (e.g., SCID or RAG À / À progenitor in the bone marrow and represent the least abundant mice) is a well-established model of colitis24 exhibiting many of leukocyte subset in the circulation (0.1–0.3%).1 The role of the clinical and histological features of human inflammatory basophils for host immunity has long been underestimated bowel disease.
    [Show full text]
  • Development of an Antibody That Neutralizes Soluble Ige and Eliminates Ige Expressing B Cells
    Cellular & Molecular Immunology (2016) 13, 391–400 OPEN ß 2016 CSI and USTC. All rights reserved 1672-7681/16 $32.00 www.nature.com/cmi RESEARCH ARTICLE Development of an antibody that neutralizes soluble IgE and eliminates IgE expressing B cells Andrew C. Nyborg1, Anna Zacco1, Rachel Ettinger1, M. Jack Borrok1, Jie Zhu1, Tom Martin1, Rob Woods1, Christine Kiefer1, Michael A. Bowen1, E. Suzanne Cohen2, Ronald Herbst1, Herren Wu1 and Steven Coats1 Immunoglobulin E (IgE) plays a key role in allergic asthma and is a clinically validated target for monoclonal antibodies. Therapeutic anti-IgE antibodies block the interaction between IgE and the Fc epsilon (Fce) receptor, which eliminates or minimizes the allergic phenotype but does not typically curtail the ongoing production of IgE by B cells. We generated high-affinity anti-IgE antibodies (MEDI4212) that have the potential to both neutralize soluble IgE and eliminate IgE-expressing B-cells through antibody-dependent cell-mediated cytotoxicity. MEDI4212 variants were generated that contain mutations in the Fc region of the antibody or alterations in fucosylation in order to enhance the antibody’s affinity for FccRIIIa. All MEDI4212 variants bound to human IgE with affinities comparable to the wild-type (WT) antibody. Each variant was shown to inhibit the interaction between IgE and FceRI, which translated into potent inhibition of FccRI-mediated function responses. Importantly, all variants bound similarly to IgE at the surface of membrane IgE expressing cells. However, MEDI4212 variants demonstrated enhanced affinity for FccRIIIa including the polymorphic variants at position 158. The improvement in FccRIIIa binding led to increased effector function in cell based assays using both engineered cell lines and class switched human IgE B cells.
    [Show full text]
  • Dominant-Negative Zeta-Associated Protein 70 Inhibits T Cell Antigen Receptor Signaling by Dapeng Qian, Marianne N. Mollenauer, and Arthurweiss
    Dominant-negative Zeta-associated Protein 70 Inhibits T Cell Antigen Receptor Signaling By Dapeng Qian, Marianne N. Mollenauer, and ArthurWeiss From the Departments of Microbiotogy and Immunology, and of Medicine, and the Howard Hughes Medical Institute, University of California, San Frandsco, California 94143 Sunlrnary Zeta-associated protein (ZAP)-70 is a cytoplasmic protein tyrosine kinase required for T cell antigen receptor (TCR) signaling and development. Mutations in ZAP-70 result in severe combined immunodeficiency in humans. ZAP-70 interacts with the TCR by binding to ty- rosine-phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) present in the invariant subunits of the TCR complex. Here we report that two ZAP-70 mutants devoid of kinase activity, generated either by a point mutation in the kinase domain to create an inac- tive kinase, or by truncation of the entire kinase domain (SH2[N+C]), functioned as domi- nant-negative mutants to specifically suppress TCR-mediated activation of NFAT, a nuclear factor essential for inducible interleukin 2 gene expression. Biochemical studies with the SH2(N+C) mutant showed that it also blocked early TCR signaling events, such as p95 vav ty- rosine phosphorylation, extracellular signal-regulated kinase 2 activation, and the association of a number of tyrosine-phosphorylated proteins with growth factor receptor-binding protein 2 (GRB2). The inhibitory effects of the SH2(N+C) mutant revealed that it requires an intact phosphotyrosine-binding site in its COOH-terminal SH2 domain. Using a CD8-~ chimeric receptor to analyze the interaction of the SH2(N+C) mutant with ITANIs of TCR-~, we found that this mutant was constitutively bound to the hyperphosphorylated CD8-~ chimera.
    [Show full text]
  • Anti-Fcer1 Alpha [Mar-1] Standard Size, 200 Μg, Ab01187-22.0 View Online
    Anti-FceR1 alpha [Mar-1] Standard Size, 200 μg, Ab01187-22.0 View online Anti-FceR1 alpha [Mar-1] Standard Size Ab01187-22.0 Isotype and Format: Hamster (Armenian) IgG, Lambda Clone Number: Mar-1 Alternative Name(s) of Target: Fcer1a; Fc epsilon RI alpha; FceRIa; FceRI alpha; FceRI-α; high affinity IgE receptor; High affinity immunoglobulin epsilon receptor subunit alpha;Fce1a; Fc-epsilon RI-alpha; FcERI; IgE Fc receptor subunit alpha UniProt Accession Number of Target Protein: P20489 Published Application(s): deplete, IP, FC, IHC Published Species Reactivity: Mouse Immunogen: Specificity: This antibody specifically targets the non-signalling alpha chain of the FceR1 complex. Application Notes: This antibody has been used in flow cytometric analysis of FceR1 alpha cell surface expression by basophils (Min et al, 2004; Chen et al, 2009), and immunohistochemical analysis of epidermal sheets (Holzmann et al, 2004). It has also been used in immunoprecipitation analysis of cell lysates from lung cDCs and MC/9 mast cells (Grayson et al, 2007). In vitro incubation of basophils with this antibody blocks subsequent MAR-1 staining, but does not activate basophil IL-4 production (Sokol et al, 2008). Intravenous treatment of mice with this antibody results in basophil depletion in peripheral blood, spleen, bone marrow and liver, but not skin or intraperitoneal mast cell depletion (Sokol et al, 2008). Following treatment with this antibody, basophil-depleted mice display impaired Th2 differentiation upon papain immunisation (Sokol et al, 2008). However, MAR-1 treated mice respond normally to high-dose intravenous Ig in both the K/BxN serum transfer arthritis and collagen-induced arthritis models, despite basophil depletion (Campbell et al, 2014).
    [Show full text]
  • Anti-Mouse Fc Epsilon Receptor I Alpha (Fcer1) SAFIRE Purified Catalog Number :84112-25 RUO: for Research Use Only
    Technical Data Sheet Anti-Mouse Fc epsilon Receptor I alpha (FceR1) SAFIRE Purified Catalog Number :84112-25 RUO: For Research Use Only. Not for use in diagnostic procedures. Product Information Clone: MAR-1 Format/Conjugate: SAFIRE Purified Concentration: 2 mg/mL Reactivity: Mouse Laser: Not Applicable Peak Emission: Not Applicable Peak Excitation: Not Applicable Filter: Not Applicable Brightness (1=dim,5=brightest): Not Applicable Isotype: Armenian Hamster IgG Formulation: Phosphate-buffered aqueous solution, ph7.2. Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light. Applications: FC, FA, IHC, IP Description The MAR-1 antibody reacts with the Fc epsilon Receptor I alpha chain (FceRIa), a transmembrane protein member of the Ig superfamily. This chain, together with a beta chain and two gamma chains form a tetrameric complex that supports IgE- mediated signaling and subsequent release of chemical mediators of allergy and immediate hypersensitivity. FceR1a is upregulated in the presence of IgE on those cell types which express it, such as Mast cells and Basophils. The MAR-1 antibody is widely used both in flow cytometry and for depletion of cells in vitro / in vivo. Preparation & Storage The product should be stored undiluted at 4°C. Do not freeze. The monoclonal antibody was purified utilizing affinitychromatography. The endotoxin level is determined by LAL test to be less than 0.01 EU/µg of the protein. Application Notes The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. It is recommended that the reagent be titrated for optimal performance for each application.
    [Show full text]
  • Fc Epsilon Receptor I Alpha Antibody [Fcer1] Cat
    Fc epsilon Receptor I alpha Antibody [FceR1] Cat. No.: 77-175 Fc epsilon Receptor I alpha Antibody [FceR1] Specifications HOST SPECIES: Hamster SPECIES REACTIVITY: Mouse TESTED APPLICATIONS: Flow, Func, IHC, IP The MAR-1 antibody reacts with the Fc epsilon Receptor I alpha chain (FceRIa), a SPECIFICITY: transmembrane protein member of the Ig superfamily. Properties The monoclonal antibody was purified utilizing affinity chromatography. The endotoxin PURIFICATION: level is determined by LAL test to be less than 0.01 EU/µg of the protein. CLONALITY: Monoclonal ISOTYPE: Armenian Hamster IgG CONJUGATE: Unconjugated PHYSICAL STATE: liquid BUFFER: Phosphate-buffered aqueous solution, ph7.2. CONCENTRATION: batch dependent October 1, 2021 1 https://www.prosci-inc.com/fc-epsilon-receptor-i-alpha-antibody-fcer1-77-175.html STORAGE CONDITIONS: The product should be stored undiluted at 4˚C . Do not freeze. Additional Info OFFICIAL SYMBOL: FCER1A ALTERNATE NAMES: FCE1A, FcER, FCER1A GENE ID: 2205 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The MAR-1 antibody reacts with the Fc epsilon Receptor I alpha chain (FceRIa), a transmembrane protein member of the Ig superfamily. This chain, together with a beta chain and two gamma chains form a tetrameric complex that supports IgE-mediated BACKGROUND: signaling and subsequent release of chemical mediators of allergy and immediate hypersensitivity. FceR1a is upregulated in the presence of IgE on those cell types which express it, such as Mast cells and Basophils.The MAR-1 antibody is widely used both in flow cytometry and for depletion of cells in vitro / in vivo.
    [Show full text]
  • Anti-Human Fc Epsilon Receptor I Alpha (Fcer1) FITC Catalog Number: 11-5899 Also Known As: Fceri Alpha, High Affinity Ige Receptor RUO: for Research Use Only
    Page 1 of 2 Anti-Human Fc epsilon Receptor I alpha (FceR1) FITC Catalog Number: 11-5899 Also known as: FceRI alpha, high affinity IgE receptor RUO: For Research Use Only. Not for use in diagnostic procedures. Staining of normal human peripheral blood cells with Anti-Human IgE PE (cat. 12-6986) and Mouse IgG2b K Isotype Control FITC (cat. 11-4732) (left) or Anti-Human Fc epsilon Receptor I alpha (FceR1) FITC (right). Cells in the lymphocyte gate were used for analysis (note: basophils reside in FSC/SSC position of lymphocytes). Product Information Contents: Anti-Human Fc epsilon Receptor I Formulation: aqueous buffer, 0.09% sodium alpha (FceR1) FITC azide, may contain carrier protein/stabilizer Catalog Number: 11-5899 Temperature Limitation: Store at 2-8°C. Do not Clone: AER-37 (CRA1) freeze. Light sensitive material. Concentration: 5 uL (0.5 ug)/test Batch Code: Refer to vial Host/Isotype: Mouse IgG2b, kappa Use By: Refer to vial Caution, contains Azide Description The AER-37 monoclonal antibody reacts with the Fc epsilon RI alpha subunit, an IgE-binding subunit lacking signal- transducing ability. Fc epsilon RI apha is expressed on mast and basophil cells and is upregulated by the presence of IgE. Fc epsilon RI alpha forms a tetrameric complex with one beta and two gamma subunits. The beta and gamma subunits possess immunoreceptor tyrosine-based activation motifs (ITAM). The Fc epsilon RI complex plays an important role in triggering IgE-mediated allergic reactions. Applications Reported This AER-37 (CRA1) antibody has been reported for use in flow cytometric analysis.
    [Show full text]