Mechanistic Insights of an Immunological Adverse Event
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eosinophil Cytolysis and Release of Cell-Free Granules
CORRESPONDENCE LINK TO ORIGINAL ARTICLE LINK TO INITIAL CORRESPONDENCE to determine what conditions in vivo favour piecemeal degranulation and what condi- Eosinophil cytolysis and release of tions promote cytolysis (with or without ‘net’ formation) and release of intact granules. cell-free granules There are several strong recent reviews cover- ing mechanisms of degranulation, including 10 Helene F. Rosenberg and Paul S. Foster those written by Neves and Weller , and Lacy and Moqbel11, for those seeking greater insight into this important and evolving field. We are grateful for an excellent oppor- The results of eosinophil cytolysis — Helene F. Rosenberg is in the Inflammation tunity to expand on our recent Review specifically, the release of intact granules — Immunobiology Section, National Institute of Allergy (Eosinophils: changing perspectives in are not new findings. There have been many and Infectious Diseases, National Institutes of Health, health and disease. Nature Rev. Immunol. reports of free granules in tissues found in Bethesda, Maryland 20892, USA. 13, 9–22 (2013))1 that has been provided by conjunction with eosinophil-associated dis- Paul S. Foster is at the Priority Research Center the correspondence from Carl Persson and eases, including allergic rhinitis, bronchial for Asthma and Respiratory Diseases, Hunter Medical Research Institute and School of Lena Uller (Primary lysis of eosinophils asthma, atopic dermatitis, urticaria and Biomedical Sciences and Pharmacy, Faculty of Health, 7 as a major mode of activation of eosino- eosinophilic esophagitis . However, it was University of Newcastle, Newcastle, New South Wales, phils in human diseased tissues. Nature not clear what role these granules had, if any, 2300, Australia. -
IL-25 and Type 2 Innate Lymphoid Cells Induce Pulmonary Fibrosis
IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis Emily Hamsa,b, Michelle E. Armstronga,b, Jillian L. Barlowc, Sean P. Saundersa,b, Christian Schwartzd, Gordon Cookee, Ruairi J. Fahyf, Thomas B. Crottyg, Nikhil Hiranih, Robin J. Flynnc, David Voehringerd, Andrew N. J. McKenziec, Seamas C. Donnellye,i, and Padraic G. Fallona,b,j,1 aTrinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland; bNational Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin 8, Ireland; cMedical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; dDepartment of Infection Biology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; eSchool of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; fSt. James’s Hospital, Dublin 8, Ireland; gDepartment of Pathology, St. Vincent’s University Hospital, Dublin 4, Ireland; hMedical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; iNational Pulmonary Fibrosis Referral Centre, St. Vincent’s University Hospital, Dublin 4, Ireland; and jInstitute of Molecular Medicine, School of Medicine, Trinity College Dublin, St. James’s Hospital, Dublin 8, Ireland Edited by Shigeo Koyasu, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, and accepted by the Editorial Board November 15, 2013 (received for review August 26, 2013) Disease conditions associated with pulmonary fibrosis are pro- fibrosis in experimental mouse models, via the activation of IL-13– gressive and have a poor long-term prognosis with irreversible producing ILC2. We also observe increases in both IL-25 and ILC2 changes in airway architecture leading to marked morbidity and in the lung of patients with idiopathic pulmonary fibrosis (IPF). -
Identification of Immunologic and Genetic Biomarkers for TMA Sensitization
Identification of Immunologic and genetic biomarkers for TMA sensitization Debajyoti Ghosh PhD Research Scientist Internal Medicine, Division of Immunology University of Cincinnati College of Medicine Funding, lab support and mentorship • Funding: Supported by the National Institute for Occupational Safety and Health Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42/0H008432-09. • Lab-support and mentorship: Dr. Jonathan Bernstein MD (lab director) Department of Internal Medicine, UC College of Medicine Dr. Ian Lewkowich PhD Div. of Immunobiology Cincinnati Children’s Hospital and Medical Center Trimellitic Anhydride (TMA) • Hardening agent used in preparing plastics and paints. • 100,000 metric tons produced annually worldwide (65,000 metric tons/year in the U.S.). • An estimated 20,000 workers in the US are currently TMA:C H O exposed to trimellitic anhydride. 9 4 5 MW:192.13 • Free TMA can be converted to TMLA. It is an irritant (can’t induce antibody response). • Numerous TMA molecules can irreversibly bind to a large carrier protein (e.g. HSA) to make a complete antigen. This can cause allergenic antibody responses leading to occupational asthma. TMA TMA-HSA • TMA is a unique molecule responsible for producing both irritant and allergnic responses. Ref. http://www.inchem.org/documents (accessed Oct., 2015) http://www.cdc.gov/niosh/docs/1970/78121_21.html (accessed Oct, 2015) Irritant versus allergenic response • A reversible inflammatory effect on • Usually caused by antibody- living tissue by chemical action at the mediated systemic reactions. IgE is site of contact. Not antibody-mediated. the key molecule. • Non-specific reaction, can be caused • Very specific, mediated by Ag-Ab by any irritant. -
Allergen-Specific Igg1 and Igg3 Through Fc Gamma RII Induce Eosinophil Degranulation
Allergen-specific IgG1 and IgG3 through Fc gamma RII induce eosinophil degranulation. M Kaneko, … , G J Gleich, H Kita J Clin Invest. 1995;95(6):2813-2821. https://doi.org/10.1172/JCI117986. Research Article Evidence suggests that eosinophils contribute to inflammation in bronchial asthma by releasing chemical mediators and cytotoxic granule proteins. To investigate the mechanism of eosinophil degranulation in asthma, we established an in vitro model of allergen-induced degranulation. We treated tissue culture plates with short ragweed pollen (SRW) extract and sera from either normal donors or SRW-sensitive patients with asthma. Eosinophils were incubated in the wells and degranulation was assessed by measurement of eosinophil-derived neurotoxin in supernatants. We detected degranulation only when sera from SRW-sensitive patients were reacted with SRW. Anti-IgG and anti-Fc gamma RII mAb, but not anti-IgE or anti-Fc epsilon RII mAb, abolished the degranulation. IgG-depleted serum did not induce degranulation; IgE-depleted serum triggered as much degranulation as untreated serum. Furthermore, serum levels of SRW-specific IgG1 or IgG3 correlated with the amounts of released eosinophil-derived neurotoxin. When eosinophils were cultured in wells coated with purified IgG or IgE, eosinophil degranulation was observed only with IgG. Finally, human IgG1 and IgG3, and less consistently IgG2, but not IgG4, induced degranulation. Thus, sera from patients with SRW-sensitive asthma induce eosinophil degranulation in vitro through antigen-specific IgG1 and IgG3 antibodies. These antibodies may be responsible for degranulation of eosinophils in inflammatory reactions, such as bronchial asthma. Find the latest version: https://jci.me/117986/pdf Allergen-specific IgG1 and IgG3 through FcRIl Induce Eosinophil Degranulation Masayuki Kaneko, Mark C. -
Anti-Mouse Fc Epsilon Receptor I Alpha (Fcer1) PE Catalog Number :84112-60 RUO: for Research Use Only
Technical Data Sheet Anti-Mouse Fc epsilon Receptor I alpha (FceR1) PE Catalog Number :84112-60 RUO: For Research Use Only. Not for use in diagnostic procedures. Product Information Clone: MAR-1 Format/Conjugate: PE Concentration: 0.2 mg/mL Reactivity: Mouse Laser: Blue (488nm), Yellow/Green (532-561nm) Peak Emission: 578nm Peak Excitation: 496nm Filter: 585/40 Brightness (1=dim,5=brightest): 5 Isotype: Armenian Hamster IgG Formulation: Phosphate-buffered aqueous solution, ≤0.09% Sodium azide, may contain carrier protein/stabilizer, ph7.2. Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light. Applications: FC Description The Mar-1 monoclonal antibody binds to the Fc ε Receptor I α subunit (FceR1a), which is a transmembrane glycoprotein from the immunoglobulin superfamily. FceR1a lacks signal-transducing ability and is expressed by mast and basophil cells. The Fc ε Receptor I α subunit is upregulated by IgE and forms a tetramer with a beta subunit and two gamma subunits, which have ITAM (immunoreceptor tyrosine-based activation motifs). The complex formed by the four subunits has very important roles in the IgE-facilitated allergic reactions. Preparation & Storage The product should be stored undiluted at 4°C and should be protected from prolonged exposure to light. Do not freeze.The monoclonal antibody was purified utilizing affinity chromatography and unreacted dye was removed from the product. Application Notes The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. For flow cytometric staining, the suggested use of this reagent is ≤0.06 ug per million cells in 100 µl volume. -
Differential Release of Mast Cell Mediators and the Pathogenesis Of
Theoharis C. Theoharides Differential release of mast cell Duraisamy Kempuraj Michael Tagen mediators and the pathogenesis of Pio Conti inflammation Dimitris Kalogeromitros Authors’ addresses Summary: Mast cells are well known for their involvement in allergic and Theoharis C. Theoharides1,2,3,4, Duraisamy Kempuraj1, Michael Tagen1, anaphylactic reactions, during which immunoglobulin E (IgE) receptor Pio Conti5, Dimitris Kalogeromitros4 (FceRI) aggregation leads to exocytosis of the content of secretory granules 1Laboratory of Molecular Immunopharmacology and Drug (1000 nm), commonly known as degranulation, and secretion of multiple Discovery, Department of Pharmacology and Experimental mediators. Recent findings implicate mast cells also in inflammatory Therapeutics, Tufts University School of Medicine diseases, such as multiple sclerosis, where mast cells appear to be intact by and Tufts – New England Medical Center, Boston, MA, USA. light microscopy. Mast cells can be activated by bacterial or viral antigens, 2Department of Biochemistry, Tufts University School of cytokines, growth factors, and hormones, leading to differential release of Medicine and Tufts – New England Medical Center, Boston, distinct mediators without degranulation. This process appears to involve MA, USA. de novo synthesis of mediators, such as interleukin-6 and vascular endothelial 3Department of Internal Medicine, Tufts University School growth factor, with release through secretory vesicles (50 nm), similar to of Medicine and Tufts – New England Medical Center, those in synaptic transmission. Moreover, the signal transduction steps Boston, MA, USA. necessary for this process appear to be largely distinct from those known in 4Allergy Section, Attikon Hospital, Athens, Medical School, FceRI-dependent degranulation. How these differential mast cell responses Athens, Greece. are controlled is still unresolved. -
Human Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies Do Not Recruit Non-Human Primate CD20+ NK Cells Stephanie Asdell, R
Human Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies Do Not Recruit Non-Human Primate CD20+ NK Cells Stephanie Asdell, R. Whitney Edwards, Shalini Jha, Dr. Guido Ferrari Department of Surgery and Molecular Genetics and Microbiology Introduction Results Results • The antibody-dependent cell-mediated cytotoxicity 1) How does the % NK in the effector population 4) Do CD20+ NK populations play a role in the ADCC (ADCC) response represents one of mechanisms affect ADCC activity? response? Figure 3: We through which the immune system destroys HIV-1 NK Purity measured levels of infected cells. CD107a in 4 NHP • ADCC responses in non primate (NHP) models, PBMC and 5 which are used to study protection from HIV-1 in splenocyte samples. preclinical trials to translate for human use, have not The threshold of been well characterized to date. positivity was 0.396%. Results: Using • In ADCC, natural killer (NK) cells are recruited by C11_WT human Ab natural infection- or vaccine-induced antibodies (Abs) and JR4 NHP Ab, the bound to the HIV-1 envelope glycoproteins expressed difference in the on infected CD4+ T-cells via Fc-γ Receptor IIIA . Figure 1: Population of NK was determined from live lymph cells proportion of CD8- that are CD3-, CD20-, CD16+. The x-axes represent one or more • NK cells’ recognition of the infected cells leads to the NKG2a- CD107A+ human (left figure) or NHP (right two figures) donors, and the y- cells was not release granzymes and perforin by degranulation, axes represent the % of live lymph cells that are NK. statistically significant triggering apoptotic signal pathways in the infected Results: In previous experiments, we showed that the NHP between CD20- and cells and ultimately causing their elimination. -
Induction and Regulation of Allergen-Specific Ige
2 Induction and regulation of allergen-specific IgE Prescilla V. Jeurink and Huub F.J. Savelkoul, Abstract The immune response is characterized by an initial rapid activation of the innate defence system, geared at recognizing common structures shared by many micro- organisms. This innate immune response is a prerequisite to mount a highly antigen- specific adaptive immune response consisting of T-cell differentiation into effector subsets and B-cell differentiation into antibody-secreting plasma cells. Commonly, allergy is characterized by dendritic cells presenting allergenic peptides, activated Th2 cells producing signature cytokines like IL-4 and IL-5, and B-cells producing allergen-specific IgE antibodies. Under non-allergic conditions tolerance mechanisms, comprising regulatory T-cell subsets, are suppressing potential immune responses to allergen exposure. The protein structure of many allergens has been resolved and has provided an explanation for the epitope-specific IgE cross-reactivity responsible for the pollen– food syndrome. The knowledge on the protein characteristics of the major food allergens can provide better understanding why certain types of allergic symptoms can develop in particular individuals. Together with information on the genetic basis and the modulatory capacity of the environment, the Allergy Consortium Wageningen sets out to develop preventive measures to reduce allergic sensitization, to give advice to reduce allergen exposure and induce symptom reduction, and to provide clues to the management of an existing allergy. Keywords: allergens; cross-reactive epitopes; Th2 cells; regulatory T cells; induction of IgE; food allergy The immune system The immune system is essential to protect us from infections with potentially harmful viruses, bacteria, fungi and parasites. -
Γδ T Cells Affect IL-4 Production and B-Cell Tolerance PNAS PLUS
γδ T cells affect IL-4 production and B-cell tolerance PNAS PLUS Yafei Huanga, Ryan A. Heiserb, Thiago O. Detanicoa, Andrew Getahunb, Greg A. Kirchenbaumb, Tamara L. Caspera, M. Kemal Aydintuga, Simon R. Cardingc, Koichi Ikutad, Hua Huanga, John C. Cambierb,a, Lawrence J. Wysockia,b, Rebecca L. O’Briena,b, and Willi K. Borna,b,1 aDepartment of Biomedical Research, National Jewish Health, Denver, CO 80206; bDepartment of Immunology & Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045; cThe Institute of Food Research and Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7JT, United Kingdom; and dLaboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan Edited* by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved November 7, 2014 (received for review August 6, 2014) γδ T cells can influence specific antibody responses. Here, we re- In the current study, we further tested this idea by examining port that mice deficient in individual γδ T-cell subsets have altered antibody levels and B cells in nonimmunized mice genetically levels of serum antibodies, including all major subclasses, some- deficient either in individual γδ T-cell subsets or in all γδ T cells. times regardless of the presence of αβ T cells. One strain with The focus on antibodies derives from our earlier observation that a partial γδ deficiency that increases IgE antibodies also displayed mutant mice selectively deficient in Vγ4 and Vγ6 (B6.TCR- − − − − increases in IL-4–producing T cells (both residual γδ T cells and αβ Vγ4 / /6 / ) produce substantially more IgE antibody than WT − − T cells) and in systemic IL-4 levels. -
Immunology: Antibody Basics 2
John A. Burns School of Medicine JABSOM e-Learning for Basic Sciences e-Learning To navigate: 1 1. Yellow navigation bar 2 Immunology: Antibody Basics 2. Back and Fwd buttons Estimated Learning Time: 30 min. 3 4 Back Fwd 5 One :: General Structure 6 7 Identify the Parts of an Antibody 8 Two :: Isotypes 9 Identify Antibody Isotypes 10 [ Start Now! ] 11 Three :: Function 12 Match Antibody Functions With Isotypes 13 14 Four :: Diversity 15 Explain Antibody Diversity 16 17 Antibody 18 Advice 19 20 21 Allow Hi! 22 me to be your Ctrl + L 23 Command + L guide... find me 24 FULL SCREEN at the bottom 25 in Adobe Acrobat of each page! 26 Contributors William L. Gosnell, Ph.D. Software Requirements: Kenton J. Kramer, Ph.D. Click to download Karen M. Yamaga, Ph.D. the latest versions Department of Tropical Medicine, Medical Microbiology and Pharmacology JABSOM John A. Burns School of Medicine e-Learning e-Learning for Basic Sciences OVERVIEW 1 2 3 Contents 4 5 instructional By the end of this module you should be This One :: General Structure 6 module was designed with you able to: Identify the Parts of an Antibody Page 3 7 in mind. Understanding antibody 1. Identify the parts of an antibody. basics will help you understand 2. Identify antibody isotypes. Two :: Isotypes 8 immunology concepts that are 3. Match antibody functions with isotypes. Identify Antibody Isotypes Page 9 9 necessary to pass USMLE board 4. Explain antibody diversity from 10 exams - the first step on your way somatic recombination. to becoming a doctor. -
Mouse and Human Fcr Effector Functions
Pierre Bruhns Mouse and human FcR effector € Friederike Jonsson functions Authors’ addresses Summary: Mouse and human FcRs have been a major focus of Pierre Bruhns1,2, Friederike J€onsson1,2 attention not only of the scientific community, through the cloning 1Unite des Anticorps en Therapie et Pathologie, and characterization of novel receptors, and of the medical commu- Departement d’Immunologie, Institut Pasteur, Paris, nity, through the identification of polymorphisms and linkage to France. disease but also of the pharmaceutical community, through the iden- 2INSERM, U760, Paris, France. tification of FcRs as targets for therapy or engineering of Fc domains for the generation of enhanced therapeutic antibodies. The Correspondence to: availability of knockout mouse lines for every single mouse FcR, of Pierre Bruhns multiple or cell-specific—‘a la carte’—FcR knockouts and the Unite des Anticorps en Therapie et Pathologie increasing generation of hFcR transgenics enable powerful in vivo Departement d’Immunologie approaches for the study of mouse and human FcR biology. Institut Pasteur This review will present the landscape of the current FcR family, 25 rue du Docteur Roux their effector functions and the in vivo models at hand to study 75015 Paris, France them. These in vivo models were recently instrumental in re-defining Tel.: +33145688629 the properties and effector functions of FcRs that had been over- e-mail: [email protected] looked or discarded from previous analyses. A particular focus will be made on the (mis)concepts on the role of high-affinity Acknowledgements IgG receptors in vivo and on results from antibody engineering We thank our colleagues for advice: Ulrich Blank & Renato to enhance or abrogate antibody effector functions mediated by Monteiro (FacultedeMedecine Site X. -
The Enigma of Eosinophil Degranulation
International Journal of Molecular Sciences Review The Enigma of Eosinophil Degranulation Timothée Fettrelet 1,2 , Lea Gigon 1, Alexander Karaulov 3 , Shida Yousefi 1 and Hans-Uwe Simon 1,3,4,5,* 1 Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland; [email protected] (T.F.); [email protected] (L.G.); shida.yousefi@pki.unibe.ch (S.Y.) 2 Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland 3 Department of Clinical Immunology and Allergology, Sechenov University, 119991 Moscow, Russia; [email protected] 4 Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012 Kazan, Russia 5 Institute of Biochemistry, Medical School Brandenburg, D-16816 Neuruppin, Germany * Correspondence: [email protected]; Tel.: +41-31-632-3281 Abstract: Eosinophils are specialized white blood cells, which are involved in the pathology of diverse allergic and nonallergic inflammatory diseases. Eosinophils are traditionally known as cytotoxic effector cells but have been suggested to additionally play a role in immunomodulation and maintenance of homeostasis. The exact role of these granule-containing leukocytes in health and diseases is still a matter of debate. Degranulation is one of the key effector functions of eosinophils in response to diverse stimuli. The different degranulation patterns occurring in eosinophils (piecemeal degranulation, exocytosis and cytolysis) have been extensively studied in the last few years. How- ever, the exact mechanism of the diverse degranulation types remains unknown and is still under investigation. In this review, we focus on recent findings and highlight the diversity of stimulation and methods used to evaluate eosinophil degranulation.