New Immunological Approaches and Cytokine Targets in Asthma and Allergy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Do Persistent Organic Pollutants Interact
Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor Wilson, J., Berntsen, H. F., Elisabeth Zimmer, K., Verhaegen, S., Frizzell, C., Ropstad, E., & Connolly, L. (2016). Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor. Toxicology Letters, 241, 121-132. https://doi.org/10.1016/j.toxlet.2015.11.014 Published in: Toxicology Letters Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015 Elsevier Ireland Ltd This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:26. -
Functions of the Mineralocorticoid Receptor in the Hippocampus By
Functions of the Mineralocorticoid Receptor in the Hippocampus by Aaron M. Rozeboom A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor Audrey F. Seasholtz, Chair Professor Elizabeth A. Young Professor Ronald Jay Koenig Associate Professor Gary D. Hammer Assistant Professor Jorge A. Iniguez-Lluhi Acknowledgements There are more people than I can possibly name here that I need to thank who have helped me throughout the process of writing this thesis. The first and foremost person on this list is my mentor, Audrey Seasholtz. Between working in her laboratory as a research assistant and continuing my training as a graduate student, I spent 9 years in Audrey’s laboratory and it would be no exaggeration to say that almost everything I have learned regarding scientific research has come from her. Audrey’s boundless enthusiasm, great patience, and eager desire to teach students has made my time in her laboratory a richly rewarding experience. I cannot speak of Audrey’s laboratory without also including all the past and present members, many of whom were/are not just lab-mates but also good friends. I also need to thank all the members of my committee, an amazing group of people whose scientific prowess combined with their open-mindedness allowed me to explore a wide variety of interests while maintaining intense scientific rigor. Outside of Audrey’s laboratory, there have been many people in Ann Arbor without whom I would most assuredly have gone crazy. -
Hormonal Regulation of Oestrogen and Progesterone Receptors in Cultured Bovine Endometrial Cells
Hormonal regulation of oestrogen and progesterone receptors in cultured bovine endometrial cells C. W. Xiao and A. K. Goff Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, Quebec J2S 7C6, Canada Changes in the number of progesterone and oestradiol receptors in the endometrium are thought to play a role in the induction of luteolysis. The effect of oestradiol and progesterone on the regulation of their receptors in cultured bovine uterine epithelial and stromal cells was examined to determine the mechanisms involved in this process. Cells were obtained from cows at days 1\p=n-\3of the oestrous cycle and were cultured for 4 or 8 days in medium alone (RPMI medium + 5% (v/v) charcoal\p=n-\dextranstripped newborn calf serum) or with oestradiol, progesterone or oestradiol and progesterone. At the end of culture, receptor binding was measured by saturation analysis. Specific binding of both [3H]ORG 2058 (16\g=a\-ethyl-21-hydroxy-19-nor(6,7-3H) pregn-4-ene-3,20-dione) and [3H]oestradiol to epithelial and stromal cells showed high affinities (Kd = 1.1 x 10\m=-\9and 6 \m=x\ 10\m=-\10mol l\m=-\1,respectively, for progesterone receptors; Kd = 5.5 \m=x\10\m=-\9and 7 \m=x\10\m=-\10 mol l\m=-\1 respectively, for oestradiol receptors). In the stromal cells, oestradiol (0.1-10 nmol l\m=-\1 increased the number of oestradiol receptors from 0.21 \m=+-\0.06 to 0.70 \m=+-\0.058 fmol \g=m\g\m=-\1 DNA and the number of progesterone receptors from 1.4 \m=+-\0.83 to 6.6 \m=+-\0.70 fmol \g=m\g\m=-\1 DNA in a dose-dependent manner after 4 days of culture (P < 0.01). -
IL-25 and Type 2 Innate Lymphoid Cells Induce Pulmonary Fibrosis
IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis Emily Hamsa,b, Michelle E. Armstronga,b, Jillian L. Barlowc, Sean P. Saundersa,b, Christian Schwartzd, Gordon Cookee, Ruairi J. Fahyf, Thomas B. Crottyg, Nikhil Hiranih, Robin J. Flynnc, David Voehringerd, Andrew N. J. McKenziec, Seamas C. Donnellye,i, and Padraic G. Fallona,b,j,1 aTrinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland; bNational Children’s Research Centre, Our Lady’s Children’s Hospital, Dublin 8, Ireland; cMedical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; dDepartment of Infection Biology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; eSchool of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland; fSt. James’s Hospital, Dublin 8, Ireland; gDepartment of Pathology, St. Vincent’s University Hospital, Dublin 4, Ireland; hMedical Research Council Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; iNational Pulmonary Fibrosis Referral Centre, St. Vincent’s University Hospital, Dublin 4, Ireland; and jInstitute of Molecular Medicine, School of Medicine, Trinity College Dublin, St. James’s Hospital, Dublin 8, Ireland Edited by Shigeo Koyasu, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, and accepted by the Editorial Board November 15, 2013 (received for review August 26, 2013) Disease conditions associated with pulmonary fibrosis are pro- fibrosis in experimental mouse models, via the activation of IL-13– gressive and have a poor long-term prognosis with irreversible producing ILC2. We also observe increases in both IL-25 and ILC2 changes in airway architecture leading to marked morbidity and in the lung of patients with idiopathic pulmonary fibrosis (IPF). -
Identification of Immunologic and Genetic Biomarkers for TMA Sensitization
Identification of Immunologic and genetic biomarkers for TMA sensitization Debajyoti Ghosh PhD Research Scientist Internal Medicine, Division of Immunology University of Cincinnati College of Medicine Funding, lab support and mentorship • Funding: Supported by the National Institute for Occupational Safety and Health Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42/0H008432-09. • Lab-support and mentorship: Dr. Jonathan Bernstein MD (lab director) Department of Internal Medicine, UC College of Medicine Dr. Ian Lewkowich PhD Div. of Immunobiology Cincinnati Children’s Hospital and Medical Center Trimellitic Anhydride (TMA) • Hardening agent used in preparing plastics and paints. • 100,000 metric tons produced annually worldwide (65,000 metric tons/year in the U.S.). • An estimated 20,000 workers in the US are currently TMA:C H O exposed to trimellitic anhydride. 9 4 5 MW:192.13 • Free TMA can be converted to TMLA. It is an irritant (can’t induce antibody response). • Numerous TMA molecules can irreversibly bind to a large carrier protein (e.g. HSA) to make a complete antigen. This can cause allergenic antibody responses leading to occupational asthma. TMA TMA-HSA • TMA is a unique molecule responsible for producing both irritant and allergnic responses. Ref. http://www.inchem.org/documents (accessed Oct., 2015) http://www.cdc.gov/niosh/docs/1970/78121_21.html (accessed Oct, 2015) Irritant versus allergenic response • A reversible inflammatory effect on • Usually caused by antibody- living tissue by chemical action at the mediated systemic reactions. IgE is site of contact. Not antibody-mediated. the key molecule. • Non-specific reaction, can be caused • Very specific, mediated by Ag-Ab by any irritant. -
Anti-Mouse Fc Epsilon Receptor I Alpha (Fcer1) PE Catalog Number :84112-60 RUO: for Research Use Only
Technical Data Sheet Anti-Mouse Fc epsilon Receptor I alpha (FceR1) PE Catalog Number :84112-60 RUO: For Research Use Only. Not for use in diagnostic procedures. Product Information Clone: MAR-1 Format/Conjugate: PE Concentration: 0.2 mg/mL Reactivity: Mouse Laser: Blue (488nm), Yellow/Green (532-561nm) Peak Emission: 578nm Peak Excitation: 496nm Filter: 585/40 Brightness (1=dim,5=brightest): 5 Isotype: Armenian Hamster IgG Formulation: Phosphate-buffered aqueous solution, ≤0.09% Sodium azide, may contain carrier protein/stabilizer, ph7.2. Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light. Applications: FC Description The Mar-1 monoclonal antibody binds to the Fc ε Receptor I α subunit (FceR1a), which is a transmembrane glycoprotein from the immunoglobulin superfamily. FceR1a lacks signal-transducing ability and is expressed by mast and basophil cells. The Fc ε Receptor I α subunit is upregulated by IgE and forms a tetramer with a beta subunit and two gamma subunits, which have ITAM (immunoreceptor tyrosine-based activation motifs). The complex formed by the four subunits has very important roles in the IgE-facilitated allergic reactions. Preparation & Storage The product should be stored undiluted at 4°C and should be protected from prolonged exposure to light. Do not freeze.The monoclonal antibody was purified utilizing affinity chromatography and unreacted dye was removed from the product. Application Notes The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. For flow cytometric staining, the suggested use of this reagent is ≤0.06 ug per million cells in 100 µl volume. -
Actions of Corticosteroid Signaling Suggested by Constitutive Knockout of Corticosteroid Receptors in Small Fish
nutrients Communication ‘Central’ Actions of Corticosteroid Signaling Suggested by Constitutive Knockout of Corticosteroid Receptors in Small Fish Tatsuya Sakamoto * and Hirotaka Sakamoto Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17, Kashino, Ushimado, Setouchi 701-4303, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-869-34-5210 Received: 4 February 2019; Accepted: 11 March 2019; Published: 13 March 2019 Abstract: This review highlights recent studies of the functional implications of corticosteroids in some important behaviors of model fish, which are also relevant to human nutrition homeostasis. The primary actions of corticosteroids are mediated by glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which are transcription factors. Zebrafish and medaka models of GR- and MR-knockout are the first constitutive corticosteroid receptor-knockout animals that are viable in adulthood. Similar receptor knockouts in mice are lethal. In this review, we describe the physiological and behavioral changes following disruption of the corticosteroid receptors in these models. The GR null model has peripheral changes in nutrition metabolism that do not occur in a mutant harboring a point mutation in the GR DNA-binding domain. This suggests that these are not “intrinsic” activities of GR. On the other hand, we propose that integration of visual responses and brain behavior by corticosteroid receptors is a possible “intrinsic”/principal function potentially conserved in vertebrates. Keywords: metabolism; behavior; brain; vision; glucocorticoid; mineralocorticoid 1. Introduction Soon after the discovery of the steroid hormone receptor, establishment of its neuroanatomical localization [1–3] laid the groundwork for understanding that the brain, similarly to peripheral tissues, is a target organ for steroid hormones [4]. -
The Endocannabinoid System As a Novel Target in The
THE ENDOCANNABINOID SYSTEM AS A NOVEL TARGET IN THE PATHOPHYSIOLOGY AND TREATMENT OF DEPRESSIVE ILLNESS by MATTHEW NICHOLAS HILL B.Sc., The University of British Columbia, 2002 M.A., The University of British Columbia, 2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Psychology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 © Matthew Nicholas Hill, 2008 ( / ABSTRACT The endocannabinoid system is a neuromodulatory system which has recently gained attention in the pathophysiology and treatment of depressive illness. However, to date, the research investigating these relationships has been sparse. This dissertation aimed to further this understanding by examining the extent to which the activity of the endocannabinoid system (1) responds to a variety of regimens which reduce depression, (2) responds in an animal model of depression, and (3) differs in humans diagnosed with major depression. In Chapter 2 it was demonstrated that the cannabinoid CB1 receptor is upregulated in the hippocampus and hypothalamus following long-term treatment with the tricyclic antidepressant desipramine. In addition, it was also found that this increase in CB1 receptor activity contributed to the stress-attenuating effects of desipramine, as pharmacological antagonism of the CB1 receptor prevented the ability of desipramine treatment to suppress activation of the hypothalamic-pituitary-adrenal axis in response to stress. In Chapter 3, it was found that providing rodents with free access to a running wheel for 8 days resulted in a robust increase in hippocampal endocannabinoid signaling. This increase in endocannabinoid activity was, in turn, required for voluntary exercise to increase the proliferation of progenitor cells in the dentate gyms of the hippocampus. -
Peripheral Blood Mononuclear Cell Cytokine Expression in Horses
Peripheral Blood Mononuclear Cell Cytokine Expression in Horses Treated with Dexamethasone Flavia Regina Goncalves Monteiro Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Masters of Science In Biomedical and Veterinary Sciences Virginia Buechner-Maxwell, Chair Sharon Witonsky William Huckle August 04, 2005 Blacksburg, VA Keywords: Cytokines, Dexamethasone, Horses Peripheral Blood Mononuclear Cell cytokine expression in Horses treated with Dexamethasone Flavia Regina Goncalves Monteiro (Abstract) Glucocorticoids are widely used in horses for a variety of autoimmune and inflammatory conditions. Its potent antiinflammatory properties have been associated with the suppression of a number of different inflammatory cytokines. The purpose of the study was to evaluate the effect of dexamethasone treatment in horses on mRNA cytokine expression, including interleukin-1ß, interferon-gamma, interleukin-4 and interleukin- 6, during a five day treatment period and a five day post treatment period. A randomized complete block design was performed on 16 healthy horses. Group I (8 horses) received 0.1 mg/kg of dexamethasone sodium phosphate by intravenous injection once daily for 5 days. Group II (8 horses) received an equivalent volume of sterile saline by intravenous injection daily for 5 days. A sample of 5x10 mililiters of blood in acid citrate dextrose was obtained prior to initial treatment. Thirty minutes after each treatment injection (placebo or dexamethasone) a sample of blood was obtained during the 5 day treatment period and 24, 48, 72, 96 and 120 hours after the last treatment injection was administered. Peripheral-blood mononuclear cells were isolated from the blood samples and stimulated with concavalin A. -
Arnau Soler2019.Pdf
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Genetic responses to environmental stress underlying major depressive disorder Aleix Arnau Soler Doctor of Philosophy The University of Edinburgh 2019 Declaration I hereby declare that this thesis has been composed by myself and that the work presented within has not been submitted for any other degree or professional qualification. I confirm that the work submitted is my own, except where work which has formed part of jointly-authored publications has been included. My contribution and those of the other authors to this work are indicated below. I confirm that appropriate credit has been given within this thesis where reference has been made to the work of others. I composed this thesis under guidance of Dr. Pippa Thomson. Chapter 2 has been published in PLOS ONE and is attached in the Appendix A, chapter 4 and chapter 5 are published in Translational Psychiatry and are attached in the Appendix C and D, and I expect to submit chapter 6 as a manuscript for publication. -
Regulation of the Rat Hepatic NADPH-Cytochrome P450 Oxidoreductase by Glucocorticoids
Regulation of the rat hepatic NADPH-cytochrome P450 oxidoreductase by glucocorticoids by Alex Vonk A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Pharmacology and Toxicology University of Toronto © Copyright by Alex Vonk (2014) Abstract Regulation of the rat hepatic NADPH-cytochrome P450 oxidoreductase by glucocorticoids. Master of Science, 2014. Alex Vonk, Department of Pharmacology & Toxicology, University of Toronto. NADPH-Cytochrome P450 oxidoreductase (POR) is the obligate electron donor for all microsomal P450s. Rat hepatic POR expression is induced by dexamethasone (DEX), a synthetic glucocorticoid that activates the glucocorticoid (GR) and pregnane X receptors (PXR). This thesis addressed the roles of GR and PXR in rat hepatic POR regulation. A low GR-activating DEX dose induced POR mRNA levels by 3-fold at 6 h; a high DEX dose that activated GR and PXR induced POR mRNA levels by 5-fold at 6 h and increased POR protein and catalytic activity at 24 h. Selective GR or PXR agonists alone failed to induce POR protein or activity. The GR antagonist RU486 did not inhibit the DEX induction of POR expression. Induction of POR expression by DEX was significantly attenuated in PXR-knockout rats. Although GR activation may contribute to POR mRNA induction, induction of POR expression and function by DEX is primarily PXR-mediated. ii Acknowledgements My time in the Department of Pharmacology and Toxicology here at the University of Toronto has been very rewarding both professionally and socially. I feel privileged to have been given the opportunity to study and learn in an environment that continues to put forth innovative research in the field of science. -
Induction and Regulation of Allergen-Specific Ige
2 Induction and regulation of allergen-specific IgE Prescilla V. Jeurink and Huub F.J. Savelkoul, Abstract The immune response is characterized by an initial rapid activation of the innate defence system, geared at recognizing common structures shared by many micro- organisms. This innate immune response is a prerequisite to mount a highly antigen- specific adaptive immune response consisting of T-cell differentiation into effector subsets and B-cell differentiation into antibody-secreting plasma cells. Commonly, allergy is characterized by dendritic cells presenting allergenic peptides, activated Th2 cells producing signature cytokines like IL-4 and IL-5, and B-cells producing allergen-specific IgE antibodies. Under non-allergic conditions tolerance mechanisms, comprising regulatory T-cell subsets, are suppressing potential immune responses to allergen exposure. The protein structure of many allergens has been resolved and has provided an explanation for the epitope-specific IgE cross-reactivity responsible for the pollen– food syndrome. The knowledge on the protein characteristics of the major food allergens can provide better understanding why certain types of allergic symptoms can develop in particular individuals. Together with information on the genetic basis and the modulatory capacity of the environment, the Allergy Consortium Wageningen sets out to develop preventive measures to reduce allergic sensitization, to give advice to reduce allergen exposure and induce symptom reduction, and to provide clues to the management of an existing allergy. Keywords: allergens; cross-reactive epitopes; Th2 cells; regulatory T cells; induction of IgE; food allergy The immune system The immune system is essential to protect us from infections with potentially harmful viruses, bacteria, fungi and parasites.