Rearing Xyleborus Volvulus (Coleoptera: Curculionidae) On

Total Page:16

File Type:pdf, Size:1020Kb

Rearing Xyleborus Volvulus (Coleoptera: Curculionidae) On Environmental Entomology, XX(X), 2017, 1–9 doi: 10.1093/ee/nvx151 Insect–Symbiont Interactions Research Rearing Xyleborus volvulus (Coleoptera: Curculionidae) on Media Containing Sawdust from Avocado or Silkbay, With or Without Raffaelea lauricola (Ophiostomatales: Ophiostomataceae) Octavio Menocal,1,3 Luisa F. Cruz,1 Paul E. Kendra,2 Jonathan H. Crane,1 Randy C. Ploetz,1 and Daniel Carrillo1 1Tropical Research & Education Center, University of Florida, 18905 SW 280th Street, Homestead, FL 33031-3314, 2USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158-1857, and 3Corresponding author, e-mail: [email protected] Subject Editor: Steve Perlman Received 8 June 2017; Editorial decision 20 August 2017 Abstract Like other ambrosia beetles, Xyleborus volvulus Fabricius (Coleoptera: Curculionidae) lives in a mutualistic symbiotic relationship with fungi that serve as food source. Until recently, X. volvulus was not considered a pest, and none of its symbionts were considered plant pathogens. However, recent reports of an association between X. volvulus and Raffaelea lauricola T.C. Harr., Fraedrich & Aghayeva (Ophiostomatales: Ophiostomataceae), the cause of the laurel wilt disease of avocado (Persea americana Mill. [Laurales: Lauraceae]), and its potential role as vector of the pathogen merit further investigation. The objective of this study was to evaluate three artificial media containing sawdust obtained from avocado or silkbay (Persea humilis Nash) for laboratory rearing of X. volvulus. The effect of R. lauricola in the media on the beetle’s reproduction was also evaluated. Of the three media, the one with the lowest content of sawdust and intermediate water content provided the best conditions for rearing X. volvulus. Reproduction on this medium was not affected by the sawdust species or the presence of R. lauricola. On the other two media, there was a significant interaction between sawdust species andR. lauricola. The presence of R. lauricola generally had a negative effect on brood production. There was limited colonization of the mycangia of X. volvulus by R. lauricola on media inoculated with the pathogen. From galleries formed within the best medium, there was 50% recovery of R. lauricola, but recovery was much less from the other two media. Here, we report the best artificial substrate currently known forX. volvulus. Key words: ambrosia beetle, ambrosia fungi, artificial rearing, beetle–fungus symbiosis, laurel wilt Laurel wilt (LW) is a lethal vascular disease of avocado (Persea R. lauricola to avocado trees under no-choice conditions (Carrillo americana Mill. [Laurales: Lauraceae]) and other woody species et al. 2014). within the Lauraceae. The causal agent of laurel wilt is the fungal X. volvulus, a pantropical species that probably originated in pathogen, Raffaelea lauricola T. C. Harr., Fraedrich & Aghayeva the Neotropical realm, has become widely distributed throughout (Ophiostomatales: Ophiostomataceae). The primary vector of Florida, Central and South America, and the Caribbean (Wood 1982, R. lauricola in native ecosystems, including natural hammocks of Gohli et al. 2016). This beetle has a broad host range that includes the Florida Everglades, is the redbay ambrosia beetle, Xyleborus species in 24 plant families including the Lauraceae (Atkinson 2016). glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae: Other ambrosia beetles that have been introduced to the New World Xyleborini) (Kendra et al. 2014, Hughes et al. 2015). However, are important pests (i.e., X. glabratus (Fraedrich et al. 2008, Hanula X. glabratus is rarely associated with laurel wilt-affected avocado et al. 2008, Brar et al. 2013, Maner et al. 2013), Xylosandrus com- trees in south Florida (Carrillo et al. 2012). Recently, R. lauricola pactus (Eichhoff) [Coleoptera: Curculionidae] (Greco and Wright was found in at least nine other ambrosia beetle species isolated 2015), Euwallacea spp. (Carrillo et al. 2016, Cooperband et al. from avocado (Carrillo et al. 2014, Ploetz et al. 2017). Two of the 2016), Xylosandrus germanus (Eichhoff), and Xylosandrus cras- species, Xyleborus volvulus Fabricius (Coleoptera: Curculionidae) siusculus (Motschulsky) [Coleoptera: Curculionidae] (Castrillo and Xyleborus bispinatus Eichhoff, were capable of transmitting et al. 2012, Ranger et al. 2016)). In Florida, X. volvulus occurs © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: [email protected] 1 Downloaded from https://academic.oup.com/ee/article-abstract/doi/10.1093/ee/nvx151/4383829/Rearing-Xyleborus-volvulus-Coleoptera by University of Florida user on 12 October 2017 2 Environmental Entomology, 2017, Vol. XX, No. X sympatrically with X. glabratus and breeds in hosts affected by LW [44-gallon (167 L) Brute® container (2643–60 Rubbermaid®) with (Kendra et al. 2011, Carrillo et al. 2012). Although X. volvulus has a 2-quart Mason jar attached to a port on one of each side of the not been associated with economic damage to trees, its experimental chamber, as described in Carrillo et al. (2012)]. Rolled moistened transmission of R. lauricola to avocado (Carrillo et al. 2014) indi- paper towels were placed inside the jars to collect beetles emerging cates that the association between the beetle and this pathogen war- from the logs and attracted to light. Fully sclerotized (dark brown) rants further investigation. females were collected daily and identified as X. volvulus based on Ambrosia beetles are difficult to study because of their cryptic life their morphological characteristics (Rabaglia et al. 2006). style. They bore through the bark of a host tree and form galleries within the xylem. Ambrosia beetles complete their life cycle in these Artificial Media galleries, where they actively cultivate symbiotic fungi that serve as In February 2016, avocado logs were collected from an unsprayed their primary food (Rudinsky 1962, Farrell et al. 2001). avocado orchard in Miami-Dade County (25° 29’ 38” N 80° 28’ 53” The ambrosia beetle–fungal symbiosis is an area of active W), and silkbay logs were collected from the Archbold Biological research. Recent studies revealed that Xyleborus species consist- Station in Highlands County, FL (27° 10’ 50” N 81° 21’ 0” W). The ently carry not only multiple dominant fungal associates but also logs were debarked and dried for 4 d in an industrial oven at 75°C fungi from the environment, including plant pathogens and endo- and then cut into smaller pieces using a miter saw. A sander was used phytes (Kostovcik et al. 2015). However, there is limited information to create sawdust from the xylem-sapwood layer. The sawdust was regarding their biology, behavior, and the functional role of their sifted through a 12 mm sieve and stored at -18 ºC until it was used symbiotic associations. Establishment of colonies of these insects to prepare media. would allow studies on their development, physiology, behavior, Three types of artificial media were evaluated (Table 1). Medium colony composition and size, and enable ambrosia beetle–fungus 1 with sawdust from avocado or silkbay (designated as AM1 and associations to be manipulated to improve understandings of this SM1, respectively) was prepared using the ingredients and proce- taxonomic group, and their direct and indirect effects on host trees. dures described by Castrillo et al. (2011). Medium 2 (either as AM2 Artificial media have been used to mass rear insects, test com- or SM2) was prepared using different proportions of the same ingre- pounds for physiological effects, and study insect nutrition and dients as proposed by Biedermann et al. (2009). Medium 3 (either as behavior (Vanderzant 1974). According to Singh (1977), ‘an artifi- AM3 or SM3) was prepared with the same ingredients in the same cial medium is an unfamiliar substrate, which has been formulated, quantities as in Medium 2, but more water was added to facilitate synthesized, processed, and/or concocted by man, and on which an manipulation while transferring the medium into rearing tubes. insect in captivity can develop through all or part of its life cycle.’ All dry ingredients (sawdust, agar, sucrose, starch, yeast, casein, In the case of ambrosia beetles, culture conditions must be suitable Wesson’s salt mixture, and tetracycline) were mixed in a 600 ml for both the symbiotic fungi and the beetles (Maner et al. 2013). An beaker. Then, with constant stirring, liquid ingredients were added effective medium requires an in-depth understanding of the insect’s in the following order: wheat germ oil, peanut oil, ethanol, and biology, behavior, and physiology. Ideally, an artificial medium for water. Homogenized media were autoclaved at 121°C for 30 min ambrosia beetles should serve as a nutritional substrate for the fun- and were stirred to re-suspend settled ingredients; 15 ml was poured gal symbiont and support the economical production of large num- into 50 ml sterile plastic centrifuge tubes (Fisher Scientific Catalog bers of healthy insects that are similar to those living in the natural no. 0644318, Suwanee, GA) that were loosely capped, tapped to environment (Adeyeye and Blum 1988). remove air bubbles, and allowed to cool in the laminar flow hood Xyleborus ferrugineus F. was the first ambrosia beetle success- for 24 h. Medium 2 was dispensed in the plastic tubes before auto- fully reared on an artificial medium (Saunders and Knoke 1967). claving due to its more
Recommended publications
  • Xyleborus Bispinatus Reared on Artificial Media in the Presence Or
    insects Article Xyleborus bispinatus Reared on Artificial Media in the Presence or Absence of the Laurel Wilt Pathogen (Raffaelea lauricola) Octavio Menocal 1,*, Luisa F. Cruz 1, Paul E. Kendra 2 ID , Jonathan H. Crane 1, Miriam F. Cooperband 3, Randy C. Ploetz 1 and Daniel Carrillo 1 1 Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA; luisafcruz@ufl.edu (L.F.C.); jhcr@ufl.edu (J.H.C.); kelly12@ufl.edu (R.C.P.); dancar@ufl.edu (D.C.) 2 Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Rd., Miami, FL 33158, USA; [email protected] 3 Otis Laboratory, USDA-APHIS-PPQ-CPHST, 1398 W. Truck Road, Buzzards Bay, MA 02542, USA; [email protected] * Correspondence: omenocal18@ufl.edu; Tel.: +1-786-217-9284 Received: 12 January 2018; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Like other members of the tribe Xyleborini, Xyleborus bispinatus Eichhoff can cause economic damage in the Neotropics. X. bispinatus has been found to acquire the laurel wilt pathogen Raffaelea lauricola (T. C. Harr., Fraedrich & Aghayeva) when breeding in a host affected by the pathogen. Its role as a potential vector of R. lauricola is under investigation. The main objective of this study was to evaluate three artificial media, containing sawdust of avocado (Persea americana Mill.) and silkbay (Persea humilis Nash.), for rearing X. bispinatus under laboratory conditions. In addition, the media were inoculated with R. lauricola to evaluate its effect on the biology of X. bispinatus. There was a significant interaction between sawdust species and R.
    [Show full text]
  • MYCOTAXON Volume 104, Pp
    MYCOTAXON Volume 104, pp. 399–404 April–June 2008 Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae T. C. Harrington1*, S. W. Fraedrich2 & D. N. Aghayeva3 *[email protected] 1Department of Plant Pathology, Iowa State University 351 Bessey Hall, Ames, IA 50011, USA 2Southern Research Station, USDA Forest Service Athens, GA 30602, USA 3Azerbaijan National Academy of Sciences Patamdar 40, Baku AZ1073, Azerbaijan Abstract — An undescribed species of Raffaelea earlier was shown to be the cause of a vascular wilt disease known as laurel wilt, a severe disease on redbay (Persea borbonia) and other members of the Lauraceae in the Atlantic coastal plains of the southeastern USA. The pathogen is likely native to Asia and probably was introduced to the USA in the mycangia of the exotic redbay ambrosia beetle, Xyleborus glabratus. Analyses of rDNA sequences indicate that the pathogen is most closely related to other ambrosia beetle symbionts in the monophyletic genus Raffaelea in the Ophiostomatales. The asexual genus Raffaelea includes Ophiostoma-like symbionts of xylem-feeding ambrosia beetles, and the laurel wilt pathogen is named R. lauricola sp. nov. Key words — Ambrosiella, Coleoptera, Scolytidae Introduction A new vascular wilt pathogen has caused substantial mortality of redbay [Persea borbonia (L.) Spreng.] and other members of the Lauraceae in the coastal plains of South Carolina, Georgia, and northeastern Florida since 2003 (Fraedrich et al. 2008). The fungus apparently was introduced to the Savannah, Georgia, area on solid wood packing material along with the exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), a native of southern Asia (Fraedrich et al.
    [Show full text]
  • Recovery Plan for Laurel Wilt of Avocado
    Recovery Plan for Laurel wilt of Avocado (caused by Raffaelea lauricola) 22 March 2011 Contents Page Executive Summary 2-3 Reviewer and Contributors 4 I. Introduction 4 - 7 II. Symptoms 7 - 8 III. Spread 8 - 11 IV. Monitoring and Detection 11 - 12 V. Response 13 - 143 VI. Permit and Regulatory Issues 14 VII. Economic Impact 14 VIII. Mitigation and Disease Management 14 - 17 IX. Infrastructure and Experts 17 - 18 X. Research, Extension and Education Priorities 18 - 19 XI. Timeline for Recovery 20 References 21 -24 Web Resources 24 This recovery plan is one of several disease-specific documents produced as part of the National Plant Disease Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9). The purpose of the NPDRS is to insure that the tools, infrastructure, communication networks, and capacity required to mitigate the impact of high consequence plant disease outbreaks such that a reasonable level of crop production is maintained. Each disease-specific plan is intended to provide a brief primer on the disease, assess the status of critical recovery components, and identify disease management research, extension, and education needs. These documents are not intended to be stand-alone documents that address all of the many and varied aspects of plant disease outbreak and all of the decisions that must be made and actions taken to achieve effective response and recovery. They are, however, documents that will help USDA guide further efforts directed toward plant disease recovery. Executive Summary Laurel wilt kills American members of the Lauraceae plant family, including avocado (Persea americana).
    [Show full text]
  • The Redbay Ambrosia Beetle and Laurel Wilt: Biology, Impact, and Thoughts on Biological Control
    The Redbay Ambrosia Beetle and Laurel Wilt: Biology, Impact, and Thoughts on Biological Control Albert E. Mayfield and James L. Hanula USDA Forest Service, Southern Research Station So, what is a redbay? Persea borbonia (Lauraceae) • Aromatic, broadleaved, evergreen of the US Southeastern Coastal Plain Exotic Scolytinae (bark and ambrosia beetles) in the US • 59 exotic spp. established – 30 last 30 yrs, 12 since 2000 • Majority ambrosia beetles • Easily transported and established in wood and solid wood packing material Brief History of Laurel Wilt • 2002: An Asian ambrosia beetle (Xyleborus glabratus) detected near Savannah, GA • 2004-2005: Beetle determined to be vector of fungus (Raffaelea lauricola) causing wilt disease and widespread redbay mortality (SC, GA, FL) • 2005-2010: continued range expansion in Southeastern US Redbay Ambrosia Beetle (Xyleborus glabratus) • Coleoptera: Curculionidae: Scolytinae – Symbiont fungi, mandibular mycangia – Partial parthenogenesis, sib mating – Sex ratio strongly skewed to female Female Male Redbay Ambrosia Beetle (Xyleborus glabratus) • Native to India, Bangladesh, Myanmar, Taiwan, Japan • Reported Asian host families (genera): – Lauraceae (Lindera, Litsea, Phoebe) – Dipterocarpaceae (Shorea) – Fagaceae (Lithocarpus) – Fabaceae (Leucaena) Laurel wilt pathogen (Raffaelea lauricola) • Recently described as one of 6 Raffaelea spp. in the mycangia (Harrington et al. 2010) • Presumed to have arrived with vector • Transmitted to host sapwood via RAB and moves systemically in the xylem S.W. Fraedrich A.E. Mayfield M.D. Ulyshen RAB Biology and Host Attraction Hanula, J.L. et al. 2008. J. Econ. Entomol. 101:1276 Hanula, J.L and Sullivan, B. 2008. Environ. Entomol. 37:1403 • Adults active year round, peak in September (GA and SC) • Brood development takes about 60 days; multiple gen/year • Diseased + beetle-infested redbay wood is not more attractive than uninfested wood RAB Biology and Host Attraction Hanula, J.L.
    [Show full text]
  • Ophiostoma Stenoceras and O. Grandicarpum (Ophiostomatales), First Records in the Czech Republic
    C z e c h m y c o l . 56 (1-2), 2004 Ophiostoma stenoceras and O. grandicarpum (Ophiostomatales), first records in the Czech Republic David N ovotny1 and P etr ŠrŮ tka2 1 Research Institute of Crop Production - Division of Plant Medicine, Drnovská 507,'161 06 Praha 6 - Ruzyně, Czech Republic, e-mail: [email protected] 2 Department of Forest Protection, Faculty of Forestry, Czech Agricultural University, Kamýcká 129, 165 21 Praha 6 - Suchdol, Czech Republic Novotný D. and Šrůtka P. (2004): Ophiostoma stenoceras and O. grandicarpum (Ophiostomatales), first records in the Czech Republic. - Czech Mycol. 56: 19-32 Two species of ophiostomatoid fungi were observed in oaks. Ophiostoma stenoceras was isolated during a study of endophytic mycobiota of the roots and seedlings of a sessile oak (Quercus petraea). Ophiostoma grandicarpum was recorded in the stem of a pedunculate oak ( Q . robur). These fungi have not yet been reported from the Czech Republic. The knowledge on the occurrence of ophiostomatoid fungi in the Czech Republic is reviewed. Key words: ophiostomatoid fungi, distribution, oak, roots, bark, Ceratocystis, Quercus petraea, Quercus robur Novotný D. a Šrůtka P. (2004): Ophiostoma stenoceras a O. grandicarpum (Ophiosto­ matales), první nálezy v České republice. - Czech Mycol. 56: 19-32 Během studia mykobioty dubů byly pozorovány dva druhy ophiostomatálních hub. Druh Ophiostoma stenoceras byl izolován při studiu endofytické mykobioty kořenů dubů a mladých dubových semenáčků ( Quercus petraea). D ruh Ophiostoma grandicarpum byl nalezen na kmeni dubu letního (Q. robur). V případě obou druhů se jedná o první nálezy z České republiky. V článku je uveden přehled dosud zjištěných druhů ophiostomatálních hub z České republiky.
    [Show full text]
  • Fungi of Raffaelea Genus (Ascomycota: Ophiostomatales) Associated to Platypus Cylindrus (Coleoptera: Platypodidae) in Portugal
    FUNGI OF RAFFAELEA GENUS (ASCOMYCOTA: OPHiostomATALES) ASSOCIATED to PLATYPUS CYLINDRUS (COLEOPTERA: PLATYPODIDAE) IN PORTUGAL FUNGOS DO GÉNERO RAFFAELEA (ASCOMYCOTA: OPHiostomATALES) ASSOCIADOS A PLATYPUS CYLINDRUS (COLEOPTERA: PLATYPODIDAE) EM PORTUGAL MARIA LURDES INÁCIO1, JOANA HENRIQUES1, ARLINDO LIMA2, EDMUNDO SOUSA1 ABSTRACT Key-words: Ambrosia beetle, ambrosia fun- gi, cork oak, decline. In the study of the fungi associated to Platypus cylindrus, several fungi were isolated from the insect and its galleries in cork oak, RESUMO among which three species of Raffaelea. Mor- phological and cultural characteristics, sensitiv- No estudo dos fungos associados ao insec- ity to cycloheximide and genetic variability had to xilomicetófago Platypus cylindrus foram been evaluated in a set of isolates of this genus. isolados, a partir do insecto e das suas ga- On this basis R. ambrosiae and R. montetyi were lerias no sobreiro, diversos fungos, entre os identified and a third taxon segregated witch quais três espécies de Raffaelea. Avaliaram-se differs in morphological and molecular charac- características morfológicas e culturais, sensibi- teristics from the previous ones. In this work we lidade à ciclohexamida e variabilidade genética present and discuss the parameters that allow num conjunto de isolados do género. Foram the identification of specimens of the threetaxa . identificados R. ambrosiae e R. montetyi e The role that those ambrosia fungi can have in segregou-se um terceiro táxone que difere the cork oak decline is also discussed taking em características morfológicas e molecula- into account that Ophiostomatales fungi are res dos dois anteriores. No presente trabalho pathogens of great importance in trees, namely são apresentados e discutidos os parâmetros in species of the genus Quercus.
    [Show full text]
  • The Bark and Ambrosia Beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) of American Samoa
    Zootaxa 4808 (1): 171–195 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4808.1.11 http://zoobank.org/urn:lsid:zoobank.org:pub:9BE4A28B-EC09-4526-99E6-8F1F716A6F24 The bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) of American Samoa ROBERT J. RABAGLIA1,*, ROGER A. BEAVER2, ANDREW J. JOHNSON3, MARK A. SCHMAEDICK4 & SARAH M. SMITH5 1USDA Forest Service, Forest Health Protection, Washington DC, 20250, U.S.A. �[email protected]; https://orcid.org/0000-0001-8591-5338 2161/2 Mu 5, Soi Wat Pranon, T. Donkaew, A. Maerim, Chiangmai 50180, Thailand. �[email protected]; https://orcid.org/0000-0003-1932-3208 3School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA. �[email protected]; https://orcid.org/0000-0003-3139-2257 4American Samoa Community College, Pago Pago, 96799, American Samoa, �[email protected]; https://orcid.org/0000-0002-1629-8556 5Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, U.S.A. �[email protected]; https://orcid.org/0000-0002-5173-3736 *Corresponding author Abstract A survey of five of the islands of American Samoa was conducted from 2016–2018 utilizing multi-funnel traps baited with ethanol and quercivorol (attractants for xyleborine ambrosia beetles). Specimens of Scolytinae and Platypodinae from this survey, as well as specimens in the American Samoa Community College Collection were identified. A total of 53 species of Scolytinae and two species of Platypodinae are reported. Fourteen species of Scolytinae and one species of Platypodinae are reported as new to American Samoa.
    [Show full text]
  • Insects of the Subfamily Scolytinae (Insecta: Coleoptera, Curculionidae) Collected with Pitfall and Ethanol Traps in Primary Forests of Central Amazonia
    Hindawi Publishing Corporation Psyche Volume 2012, Article ID 480520, 8 pages doi:10.1155/2012/480520 Research Article Insects of the Subfamily Scolytinae (Insecta: Coleoptera, Curculionidae) Collected with Pitfall and Ethanol Traps in Primary Forests of Central Amazonia Raimunda Liege Souza de Abreu, Greicilany de Araujo´ Ribeiro, Bazilio Frasco Vianez, and Ceci Sales-Campos Department of Forest Products, National Institute for Amazon Research, Av. Andr´eAraujo,´ 2936. 69060-001 Manaus, AM, Brazil Correspondence should be addressed to Raimunda Liege Souza de Abreu, [email protected] Received 30 September 2011; Revised 28 November 2011; Accepted 29 November 2011 Academic Editor: David G. James Copyright © 2012 Raimunda Liege Souza de Abreu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An experiment was conducted in a primary forest area of the Tropical Forest Experimental Station, 45 km from Manaus-Boa Vista Highway, in order to compare the insect fauna of the subfamily Scolytinae, in flight activity and on the ground. Five impact traps of the type Escolitideo/Curitiba, with ethanol baits, were installed at the height of 3 m above the ground, and five pitfall traps were buried in the same area of the above ground traps. The data collections were evaluated through abundance, richness, and Simpson diversity index, and, to compare these data with the pitfalls and the months collection, the ANOVA was used. The Pearson correlation test was also carried out to evaluate the meteorological factors (temperature and rainfall).
    [Show full text]
  • Scope: Munis Entomology & Zoology Publishes a Wide Variety of Papers
    471 _____________Mun. Ent. Zool. Vol. 13, No. 2, June 2018__________ PATHOGENICITY OF THE ENTOMOPATHOGENIC FUNGUS, PURPUREOCILLIUM LILACINUM TR1 AGAINST AMBROSIA BEETLES, XYLOSANDRUS GERMANUS (BLANDFORD) AND XYLEBORUS DISPAR (FABRICIUS) (COLEOPTERA: CURCULIONIDAE: SCOLYTINAE) Seyma Toksöz*, Erçin Oksal**, İslam Saruhan* and İlker Kepenekci*** * Ondokuz Mayıs University, Faculty of Agriculture, Department of Plant Protection, Samsun, TURKEY. ** İnönü University, Faculty of Agriculture, Department of Plant Protection, Malatya, TURKEY. *** Gaziosmanpaşa University, Faculty of Agriculture, Department of Plant Protection, Tokat, TURKEY. E-mail: [email protected] [Toksöz, S., Oksal, E., Saruhan, İ. & Kepenekci, İ. 2018. Pathogenicity of The Entomopathogenic Fungus, Purpureocillium lilacinum TR1 Against Ambrosia Beetles, Xylosandrus germanus (Blandford) and Xyleborus dispar (Fabricius) (Coleoptera: Curculionidae: Scolytinae). Munis Entomology & Zoology, 13 (2): 471-481] ABSTRACT: Xylosandrus germanus and Xyleborus dispar (Coleoptera: Curculionidae: Scolytinae) should be considered a high-risk quarantine pest. These ambrosia beetles are very polyphagous. It attacks many deciduous trees, probably all in its distribution range. Chemical control of them is very difficult and expensive due to its protected breeding sites and its resistance to many insecticides. In this study, it is searched the effects of entomopathogenic fungi, [Purpureocillium lilacinum TR1 (syn: Paecilomyces lilacinus)] on the BTBB and PBB adults in three conidial suspensions (106, 107and 108cfu ml-1) in laboratory conditions. The data for mortality was recorded after 2, 4, 6 and 8 days intervals. The mortality rate was found respectively after 8 days %94.72 for Xylosandrus germanus and %100 for Xyleborus dispar in 108cfu ml-1. It will be appropriate that the results obtained from this first study performed in laboratory conditions should also to be tried in the field conditions for the control of ambrosia beetles, Xylosandrus germanus and Xyleborus dispar.
    [Show full text]
  • Evolution of Cooperation in Ambrosia Beetles
    Evolution of Cooperation in Ambrosia Beetles Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Peter Hans Wilhelm Biedermann von Trofaiach / Österreich Leiter der Arbeit: Prof. Dr. Michael Taborsky Institut für Ökologie und Evolution Abteilung Verhaltensökologie Universität Bern Evolution of Cooperation in Ambrosia Beetles Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Peter Hans Wilhelm Biedermann von Trofaiach / Österreich Leiter der Arbeit: Prof. Dr. Michael Taborsky Institut für Ökologie und Evolution Abteilung Verhaltensökologie Universität Bern Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Der Dekan: Bern, 20. März 2012 Prof. Dr. Silvio Decurtins Supervised by: Prof. Dr. Michael Taborsky Department of Behavioural Ecology Institute of Ecology and Evolution University of Bern Wohlenstrasse 50a CH-3032 Hinterkappelen Switzerland Reviewed by: Prof. Dr. Jacobus J. Boomsma Section for Ecology and Evolution Institute of Biology University of Copenhagen Universitetsparken 15 2100 Copenhagen Denmark Examined by: Prof. Dr. Heinz Richner, University of Bern (Chair) Prof. Dr. Michael Taborsky, University of Bern Prof. Dr. Jacobus J. Boosma, University of Copenhagen Copyright Chapter 1 © PNAS 2011 by the National Academy of Sciences of the United States of America, Washington, USA Chapter 2 © Mitt. Dtsch. Ges. allg. angew. Ent. 2011 by the DGaaE, Müncheberg, Gernany Chapter 4 © Zookeys 2010 by Pensoft Publishers, Sofia, Bulgaria Chapter 5 © Behav. Ecol. & Sociobiol. by Springer-Verlag GmbH, Heidelberg, Germany Chapter 9 © J. Bacteriol. by the American Society for Microbiology, Washington, USA General Introduction, Chapter 3, 6, 7, 8, Appendix 1,2, and Summary & Conclusion © Peter H.W. Biedermann Cover drawing © by Barrett Anthony Klein, Entomoartist, Department of Biology, University of Konstanz, Germany.
    [Show full text]
  • Contemporary Agriculture SUDDEN OCCURRENCE AND
    Contemporary Agriculture Vol. 65, No. 3 - 4, Pp. 57 - 62, 2016. The Serbian Journal of Agricultural Sciences ISSN (Online) 2466-4774 UDC: 63(497.1)(051)-“540.2” www.contagri.info Original scientific paper UDC: 634.11 DOI: 10.1515/contagri-2016-0019 SUDDEN OCCURRENCE AND HARMFULNESS OF XYLEBORUS DISPAR (FABRICIUS) ON PEAR* Snežana TANASKOVIĆ1♦, Miloš MARJANOVIĆ1, Sonja GVOZDENAC2, Nenad POPOVIĆ1, Goran DRAŠKOVIĆ 1, Summary: Decline of pear trees in the region of Čačak (Serbia) is becoming a significant problem and a limiting factor in the production of this fruit species. This phenomenon may be due to the damages caused by xilophagous insects, representatives of the family Scolytidae. Economically the most important species of this family is a pear blight beetle (Xyleborus dispar), which causes symptoms of decline and/or wilting of pear trees. Such damages have not been documented so far in the region of Čačak. The aim of this study was to determine the cause of sudden appearance of pear trees decline in an orchard in this region (locality of Miokovci). The orchard has 180 trees (Stark Delicious, Santa Maria and Williams) in the sixth year of vegetation. Inspections were carried out every 30 days (20 April - 21 August 2016). Visual inspection identified X. dispar activity on 165 trees (about 92% of the trees in the orchard). Holes were registered on the trees up to a height of 160 cm and in all primary branches. The average number of entry openings on a random sample of 20 trees was 27 for the height from the soil surface to the first branch (70 cm), while it was 61 for the height up to 160 cm.
    [Show full text]
  • Vectors of Dutch Elm Disease in Northern Europe
    insects Article Vectors of Dutch Elm Disease in Northern Europe Liina Jürisoo 1,*, Ilmar Süda 2, Ahto Agan 1 and Rein Drenkhan 1 1 Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr.R. Kreutzwaldi 5, 51006 Tartu, Estonia; [email protected] (A.A.); [email protected] (R.D.) 2 Ilmar Süda FIE, Rõõmu tee 12-5, 50705 Tartu, Estonia; [email protected] * Correspondence: [email protected] Simple Summary: Dutch elm disease (DED) has been killing elms for more than a century in northern Europe; the trees’ health status has worsened substantially in recent decades. Elm bark beetles Scolytus spp. are vectors of DED. Our aim was to estimate the distribution range of elm bark beetles and to detect potential new vectors of DED agents in northern Europe. Beetles were caught with bottle traps and manually. Then DNA from each specimen was extracted and analysed by the third generation sequencing method. DED agents were detected on the following bark beetles for Europe: Scolytus scolytus,S. triarmatus, S. multistriatus, S. laevis, and on new vectors: Xyleborus dispar and Xyleborinus saxesenii. The spread of Scolytus triarmatus, S. multistriatus and Xyleborinus saxesenii has been remarkable for the last two decades, and S. triarmatus and X. saxesenii are relatively recent newcomers in the northern Baltics. The problem is that the more vectoring beetles there are, the faster spread of Dutch elm disease from tree to tree. Abstract: Potential Dutch elm disease vector beetle species were caught with pheromone bottle traps and handpicked in 2019: in total, seven species and 261 specimens were collected.
    [Show full text]