Sporotrichosis

Total Page:16

File Type:pdf, Size:1020Kb

Sporotrichosis 8/6/2011 Sporotrichosis • Alternative name –Rose Handler’s Disease Named due to fungal infection resulting from thorn pricks or barbs, Sporotrichosis handling of sphagnum moss or by slivers from Pam Galioto, Megan Lileas, Tom wood or lumber Mariani, and Katie Olenick – Kingdom: Fungi • Only one active species – Phylum: Ascomycota –Sporothrix schenckii • Thermally dimorphic – Class: Euascomycetes fungus which is distributed worldwide – Order: Ophiostomatales • Isolated from soil, living and decomposing plants, woods, and peat moss – Family: Ophiostomataceae – Genus: Sporothrix Geographical Distribution Life Cycle Phase 1 – Hyphal Phase • Exists worldwide, but uncommon in •25°C, grows slowly United States •Conidospores • Peru has hyperendemicity for infection •Pigmented white, cream, or black • More common in temperate or tropical •Flower formation zones Phase 2 – Yeast Phase •37°C •Pigmented white or greyish-yellow •Spherical/budding yeast colonies 1 8/6/2011 Epidemiology Pathogenesis At risk - Prevention – •Generally enters body through skin •Handling thorny plants, baled •Wear gloves when handling prick, cuts, or small punctures hay, moss wires, bushes, etc. •Can be inhaled •Nursery workers •Avoid contact with •Cutaneous, pulmonary, or •Children playing on baled hay sphagnum moss disseminated infection •Rose gardeners •Proper handling of •Joints, lungs, and central nervous •Greenhouse workers laboratory equipment system have occurred •First nodule in 1 to 12 weeks •Can infect animals •Can cause arthritis, meningitis, pneumonitis, or other visceral infections Diagnosis Histopathology • Microscopic Analysis • Physical Exam – Dimorphic fungus: mold in environment and yeast in the body – Small, painless red lumps – Usually on upper extremities – Microconidia: small, unicellular, round spores that develop laterally along hyphae in ‘sleeve-like’ pattern – Can be delayed up to 3 months – Lesions will ulcerate if left untreated • a secondary bacterial skin infection called cellulitis can • Culture appear – Sample can be taken from pus, sputum, or synovial fluid in joints • Antibody Testing – ‘Gold standard’ of diagnosis – Blood test to detect antibodies to Sporothrix schenckii – Sporothrix schenckii – Variable sensitivity and specificity Clinical Manifestations Treatment and Management of • Cutaneous Lymphatic Type (common) Cutaneous Lymphatic Sporotrichosis – Small, usually painless nodules ranging in color from pink to purple • Saturated Potassium Iodide – Lesion will grow larger and darker, eventually forming – Oral dose for 3 – 6 months an ulcer – Additional bumps may develop along lymphatic • Antifungal medication chains (lymph nodes) – Itraconazole or Fluconazole • Pulmonary Type (rare) • Incision & Drainage – Nodules in the lungs • Heat • Disseminated Type (rare) – May provide temporary pain relief – Immunocompromised patients – Deadliest form 2 8/6/2011 Case Report 1 Case Report 1 (cont) • Admitted with multiple painful • Diagnosing with ascending lymphangitis ulcers spreading from elbow to – Classic sign of cutaneous sporotrichosis armpit • Parents previously noted a scratch on patients • Axillary lymph node was palpable arm made by pet cat • Previously diagnosed with impetigo (No change after given – Noted lesions on cat that did not go away amoxicillin for treatment) • Swab of lesions came back positive for Sporothrix schenckii • Girl sent home with antifungal therapy (itraconazole) Case Report 2 Case Report 2 (cont) • Due to locations of lesions told to • 41 year old female meet with oncology presents with skin ulcer on left chest wall • After biopsies found nothing • Noticed 3 weeks prior patient asked for infectious to clinical visit disease consult • No pathogens present • 10 weeks after original and sent home with appearance specimens were doxycycline submitted for culture – Identified as Sporothrix schenckii with microscopic mold morphology References References (cont) "Sporothrix schenckii - Material Safety Data Sheets (MSDS) ." Public Health Agency of "A Resident's Fungal Morphology." UCSF Departments of Pathology and Canada. Health Canada, 18 Feb 2011. Web. 5 Aug 2011. Laboratory Medicine. Web. 1 Aug. 2011. "Sporothrix Species." Doctor Fungus. N.p., n.d. Web. 5 Aug 2011. <http://labmed.ucsf.edu/education/residency/fung_morph/fungal_site/dimor phpage.html>. "Sporotrichosis: General Information." Center for Disease Control. N.p., 17 Jul 2009. Costa da Silva, Maria do Socorro, Ellem Ramos Ferreira, Leonardo Rodrigues Web. 4 Aug 2011. Campos, Marcio Tadeu Vierira Brito, Patricia Ferreira, and Rodrigo Silva Grilo. "Sporotrichosis - Overview." Health in Plain English. Web. 1 Aug. 2011. "Painful ulcers in a 5-year-old girl." European Journal for Pediatrics 170.7 <http://www.healthinplainenglish.com/health/infectious_diseases/sporotrichosis/ (2011): 949-950. index.htm>. Greenfield M.D., Ronald A. "Sporotrichosis Clinical Presentation." Medscape "Sporotrichosis - PubMed Health." Web. 1 Aug. 2011. Reference. Web. 01 Aug. 2011. <http://emedicine.medscape.com/article/228723-clinical>. <http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0002314/>. Smitha Prabhu, et al. "Zoonotic sporotrichosis of lymphocutaneous type in a man Rosenthal, Ken S., and James S. Tan. Rapid Review Microbiology and Immunology. acquired from a domesticated feline source: report of a first case in southern Philadelphia, PA: Mosby/Elsevier, 2007. Print. Karnataka, India." International Journal Of Dermatology 48.11 (2009): 1198- Rees, Rachel, and John Swartzberg. "Feline-trasmitted Sporotrichosis: A case study 1200. MEDLINE with Full Text. EBSCO. Web. 3 Aug. 2011. from California." Dermatology Online Journal 17.6 (2011): 2. Dermatology Online. Spickler, Anna. "Sporotrichosis." Center for Food Security and Public Health. N.p., n.d. Web. 5 Aug 2011. Web. 1 Aug. 2011. "Sporothrix schenkii." Mycology Online. N.p., 2011. Web. 3 Aug 2011. http://pets.webmd.com/cats/slideshow-skin-problems-in-cats http://www.dogsinfo.net/html/Health/2010/1125/Sporotrichosis.html 3 8/6/2011 References (cont) Question 1 http://www.emedmag.com/html/pre/dia/dia/041090029.asp http://www.soomro.us/social_corner/sporotrichosis/sporotrichosis.htm http://diggingri.wordpress.com/2010/02/ What is an alternative name to Sporotrichosis? http://labmed.ucsf.edu/education/residency/fung_morph/fungal_site/dimorphpa ge.html A.) Gardener’s disease http://www.shopihl.com/category/Thyroid-Support B.) Florist’s disease http://dermatology.cdlib.org/1706/2_case_presentations/2_11- 00118/article.html C.) Flower handler’s disease http://dermatology.cdlib.org/1706/2_case_presentations/2_11- 00118/article.html D.) Rose handler’s disease http://web.ebscohost.com.proxy.ohiolink.edu:9099/ehost/imageQuickView?sid=3 696a1f8-9073-4d86-bf62- 537385882c3a@sessionmgr14&vid=7&ui=12836368&id=44757928&parentui =20064175&tag=AN&db=mnh http://jcm.asm.org/cgi/content/full/43/3/1348 http://accessmedicine.net/search/searchAMResultImg.aspx?searchStr=geographi c+helicoid+peripapillary+choroidopathy&fullTextStr=geographic+helicoid+peri papillary+choroidopathy&searchType=2 http://cid.oxfordjournals.org/content/36/1/34.full Question 2 Question 3 How is Sporotrichosis contracted? How is sporotrichosis treated? A.) Solely through inhalation A.) With surgery B.) Through surgery B.) Amphotericin B C.) Through food C.) Potassium Iodide with Intraconazole or D.) Mainly through puncture of the skin Fluconazole D.) Applied heat Question 4 Question 5 Microscopic analysis of Sporothrix Schenckii What does Sporotrichosis present as during a shows what? physical exam? A.) A monomorphic fungi that only grows as a yeast A.) Dark scaly lumps on lower extremities B.) A monomorphic fungi that only grows as a mold B.) Small painless red lumps on upper extremities C.) A dimorphic fungi that grows as a yeast at 25°C C.) Large ulcerated lumps on entire body and a mold at 37°C D.) Large painful lumps on upper extremities D.) A dimorphic fungi that grows as a mold at 25°C and a yeast at 37°C 4.
Recommended publications
  • Xyleborus Bispinatus Reared on Artificial Media in the Presence Or
    insects Article Xyleborus bispinatus Reared on Artificial Media in the Presence or Absence of the Laurel Wilt Pathogen (Raffaelea lauricola) Octavio Menocal 1,*, Luisa F. Cruz 1, Paul E. Kendra 2 ID , Jonathan H. Crane 1, Miriam F. Cooperband 3, Randy C. Ploetz 1 and Daniel Carrillo 1 1 Tropical Research & Education Center, University of Florida 18905 SW 280th St, Homestead, FL 33031, USA; luisafcruz@ufl.edu (L.F.C.); jhcr@ufl.edu (J.H.C.); kelly12@ufl.edu (R.C.P.); dancar@ufl.edu (D.C.) 2 Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Rd., Miami, FL 33158, USA; [email protected] 3 Otis Laboratory, USDA-APHIS-PPQ-CPHST, 1398 W. Truck Road, Buzzards Bay, MA 02542, USA; [email protected] * Correspondence: omenocal18@ufl.edu; Tel.: +1-786-217-9284 Received: 12 January 2018; Accepted: 24 February 2018; Published: 28 February 2018 Abstract: Like other members of the tribe Xyleborini, Xyleborus bispinatus Eichhoff can cause economic damage in the Neotropics. X. bispinatus has been found to acquire the laurel wilt pathogen Raffaelea lauricola (T. C. Harr., Fraedrich & Aghayeva) when breeding in a host affected by the pathogen. Its role as a potential vector of R. lauricola is under investigation. The main objective of this study was to evaluate three artificial media, containing sawdust of avocado (Persea americana Mill.) and silkbay (Persea humilis Nash.), for rearing X. bispinatus under laboratory conditions. In addition, the media were inoculated with R. lauricola to evaluate its effect on the biology of X. bispinatus. There was a significant interaction between sawdust species and R.
    [Show full text]
  • MYCOTAXON Volume 104, Pp
    MYCOTAXON Volume 104, pp. 399–404 April–June 2008 Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae T. C. Harrington1*, S. W. Fraedrich2 & D. N. Aghayeva3 *[email protected] 1Department of Plant Pathology, Iowa State University 351 Bessey Hall, Ames, IA 50011, USA 2Southern Research Station, USDA Forest Service Athens, GA 30602, USA 3Azerbaijan National Academy of Sciences Patamdar 40, Baku AZ1073, Azerbaijan Abstract — An undescribed species of Raffaelea earlier was shown to be the cause of a vascular wilt disease known as laurel wilt, a severe disease on redbay (Persea borbonia) and other members of the Lauraceae in the Atlantic coastal plains of the southeastern USA. The pathogen is likely native to Asia and probably was introduced to the USA in the mycangia of the exotic redbay ambrosia beetle, Xyleborus glabratus. Analyses of rDNA sequences indicate that the pathogen is most closely related to other ambrosia beetle symbionts in the monophyletic genus Raffaelea in the Ophiostomatales. The asexual genus Raffaelea includes Ophiostoma-like symbionts of xylem-feeding ambrosia beetles, and the laurel wilt pathogen is named R. lauricola sp. nov. Key words — Ambrosiella, Coleoptera, Scolytidae Introduction A new vascular wilt pathogen has caused substantial mortality of redbay [Persea borbonia (L.) Spreng.] and other members of the Lauraceae in the coastal plains of South Carolina, Georgia, and northeastern Florida since 2003 (Fraedrich et al. 2008). The fungus apparently was introduced to the Savannah, Georgia, area on solid wood packing material along with the exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff (Coleoptera: Curculionidae: Scolytinae), a native of southern Asia (Fraedrich et al.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Recovery Plan for Laurel Wilt of Avocado
    Recovery Plan for Laurel wilt of Avocado (caused by Raffaelea lauricola) 22 March 2011 Contents Page Executive Summary 2-3 Reviewer and Contributors 4 I. Introduction 4 - 7 II. Symptoms 7 - 8 III. Spread 8 - 11 IV. Monitoring and Detection 11 - 12 V. Response 13 - 143 VI. Permit and Regulatory Issues 14 VII. Economic Impact 14 VIII. Mitigation and Disease Management 14 - 17 IX. Infrastructure and Experts 17 - 18 X. Research, Extension and Education Priorities 18 - 19 XI. Timeline for Recovery 20 References 21 -24 Web Resources 24 This recovery plan is one of several disease-specific documents produced as part of the National Plant Disease Recovery System (NPDRS) called for in Homeland Security Presidential Directive Number 9 (HSPD-9). The purpose of the NPDRS is to insure that the tools, infrastructure, communication networks, and capacity required to mitigate the impact of high consequence plant disease outbreaks such that a reasonable level of crop production is maintained. Each disease-specific plan is intended to provide a brief primer on the disease, assess the status of critical recovery components, and identify disease management research, extension, and education needs. These documents are not intended to be stand-alone documents that address all of the many and varied aspects of plant disease outbreak and all of the decisions that must be made and actions taken to achieve effective response and recovery. They are, however, documents that will help USDA guide further efforts directed toward plant disease recovery. Executive Summary Laurel wilt kills American members of the Lauraceae plant family, including avocado (Persea americana).
    [Show full text]
  • Mycosphere Notes 225–274: Types and Other Specimens of Some Genera of Ascomycota
    Mycosphere 9(4): 647–754 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/4/3 Copyright © Guizhou Academy of Agricultural Sciences Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota Doilom M1,2,3, Hyde KD2,3,6, Phookamsak R1,2,3, Dai DQ4,, Tang LZ4,14, Hongsanan S5, Chomnunti P6, Boonmee S6, Dayarathne MC6, Li WJ6, Thambugala KM6, Perera RH 6, Daranagama DA6,13, Norphanphoun C6, Konta S6, Dong W6,7, Ertz D8,9, Phillips AJL10, McKenzie EHC11, Vinit K6,7, Ariyawansa HA12, Jones EBG7, Mortimer PE2, Xu JC2,3, Promputtha I1 1 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand 2 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China 3 World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan Province, People’s Republic of China 4 Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China 5 Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China 6 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 7 Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 8 Department Research (BT), Botanic Garden Meise, Nieuwelaan 38, BE-1860 Meise, Belgium 9 Direction Générale de l'Enseignement non obligatoire et de la Recherche scientifique, Fédération Wallonie-Bruxelles, Rue A.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States Timothy M
    Clemson University TigerPrints All Dissertations Dissertations 5-2016 Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States Timothy M. Shearman Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Shearman, Timothy M., "Impacts of Laurel Wilt Disease on Native Persea of the Southeastern United States" (2016). All Dissertations. 1656. https://tigerprints.clemson.edu/all_dissertations/1656 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. IMPACTS OF LAUREL WILT DISEASE ON NATIVE PERSEA OF THE SOUTHEASTERN UNITED STATES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Forest Resources by Timothy M. Shearman May 2016 Accepted by: Dr. G. Geoff Wang, Committee Chair Dr. Saara J. DeWalt Dr. Donald L. Hagan Dr. Julia L. Kerrigan Dr. William C. Bridges ABSTRACT Laurel Wilt Disease (LWD) has caused severe mortality in native Persea species of the southeastern United States since it was first detected in 2003. This study was designed to document the range-wide population impacts to LWD, as well as the patterns of mortality and regeneration in Persea ecosystems. I used Forest Inventory and Analysis (FIA) data from the U.S. Forest Service to estimate Persea borbonia (red bay) populations from 2003 to 2011 to see if any decline could be observed since the introduction of LWD causal agents.
    [Show full text]
  • Ophiostomatoid Fungi Associated with Three Spruce-Infesting Bark Beetles
    Ophiostomatoid fungi associated with three spruce-infesting bark beetles in Slovenia Andreja Repe, Thomas Kirisits, Barbara Piškur, Maarten Groot, Bojka Kump, Maja Jurc To cite this version: Andreja Repe, Thomas Kirisits, Barbara Piškur, Maarten Groot, Bojka Kump, et al.. Ophiostomatoid fungi associated with three spruce-infesting bark beetles in Slovenia. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2013, 70 (7), pp.717-727. 10.1007/s13595-013-0311-y. hal-01201512 HAL Id: hal-01201512 https://hal.archives-ouvertes.fr/hal-01201512 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annals of Forest Science (2013) 70:717–727 DOI 10.1007/s13595-013-0311-y ORIGINAL PAPER Ophiostomatoid fungi associated with three spruce-infesting bark beetles in Slovenia Andreja Repe & Thomas Kirisits & Barbara Piškur & Maarten de Groot & Bojka Kump & Maja Jurc Received: 5 December 2012 /Accepted: 1 July 2013 /Published online: 26 July 2013 # INRA and Springer-Verlag France 2013 Abstract & Methods Bark beetles were sampled in four phytogeo- & Context Ophiostomatoid fungi can severely affect the graphic regions in Slovenia. The fungi found on the bark health and economic value of Norway spruce trees (Picea beetles were identified based on morphology, DNA se- abies).
    [Show full text]
  • Ophiostoma Stenoceras and O. Grandicarpum (Ophiostomatales), First Records in the Czech Republic
    C z e c h m y c o l . 56 (1-2), 2004 Ophiostoma stenoceras and O. grandicarpum (Ophiostomatales), first records in the Czech Republic David N ovotny1 and P etr ŠrŮ tka2 1 Research Institute of Crop Production - Division of Plant Medicine, Drnovská 507,'161 06 Praha 6 - Ruzyně, Czech Republic, e-mail: [email protected] 2 Department of Forest Protection, Faculty of Forestry, Czech Agricultural University, Kamýcká 129, 165 21 Praha 6 - Suchdol, Czech Republic Novotný D. and Šrůtka P. (2004): Ophiostoma stenoceras and O. grandicarpum (Ophiostomatales), first records in the Czech Republic. - Czech Mycol. 56: 19-32 Two species of ophiostomatoid fungi were observed in oaks. Ophiostoma stenoceras was isolated during a study of endophytic mycobiota of the roots and seedlings of a sessile oak (Quercus petraea). Ophiostoma grandicarpum was recorded in the stem of a pedunculate oak ( Q . robur). These fungi have not yet been reported from the Czech Republic. The knowledge on the occurrence of ophiostomatoid fungi in the Czech Republic is reviewed. Key words: ophiostomatoid fungi, distribution, oak, roots, bark, Ceratocystis, Quercus petraea, Quercus robur Novotný D. a Šrůtka P. (2004): Ophiostoma stenoceras a O. grandicarpum (Ophiosto­ matales), první nálezy v České republice. - Czech Mycol. 56: 19-32 Během studia mykobioty dubů byly pozorovány dva druhy ophiostomatálních hub. Druh Ophiostoma stenoceras byl izolován při studiu endofytické mykobioty kořenů dubů a mladých dubových semenáčků ( Quercus petraea). D ruh Ophiostoma grandicarpum byl nalezen na kmeni dubu letního (Q. robur). V případě obou druhů se jedná o první nálezy z České republiky. V článku je uveden přehled dosud zjištěných druhů ophiostomatálních hub z České republiky.
    [Show full text]
  • Fungi of Raffaelea Genus (Ascomycota: Ophiostomatales) Associated to Platypus Cylindrus (Coleoptera: Platypodidae) in Portugal
    FUNGI OF RAFFAELEA GENUS (ASCOMYCOTA: OPHiostomATALES) ASSOCIATED to PLATYPUS CYLINDRUS (COLEOPTERA: PLATYPODIDAE) IN PORTUGAL FUNGOS DO GÉNERO RAFFAELEA (ASCOMYCOTA: OPHiostomATALES) ASSOCIADOS A PLATYPUS CYLINDRUS (COLEOPTERA: PLATYPODIDAE) EM PORTUGAL MARIA LURDES INÁCIO1, JOANA HENRIQUES1, ARLINDO LIMA2, EDMUNDO SOUSA1 ABSTRACT Key-words: Ambrosia beetle, ambrosia fun- gi, cork oak, decline. In the study of the fungi associated to Platypus cylindrus, several fungi were isolated from the insect and its galleries in cork oak, RESUMO among which three species of Raffaelea. Mor- phological and cultural characteristics, sensitiv- No estudo dos fungos associados ao insec- ity to cycloheximide and genetic variability had to xilomicetófago Platypus cylindrus foram been evaluated in a set of isolates of this genus. isolados, a partir do insecto e das suas ga- On this basis R. ambrosiae and R. montetyi were lerias no sobreiro, diversos fungos, entre os identified and a third taxon segregated witch quais três espécies de Raffaelea. Avaliaram-se differs in morphological and molecular charac- características morfológicas e culturais, sensibi- teristics from the previous ones. In this work we lidade à ciclohexamida e variabilidade genética present and discuss the parameters that allow num conjunto de isolados do género. Foram the identification of specimens of the threetaxa . identificados R. ambrosiae e R. montetyi e The role that those ambrosia fungi can have in segregou-se um terceiro táxone que difere the cork oak decline is also discussed taking em características morfológicas e molecula- into account that Ophiostomatales fungi are res dos dois anteriores. No presente trabalho pathogens of great importance in trees, namely são apresentados e discutidos os parâmetros in species of the genus Quercus.
    [Show full text]
  • Pest Risk Assessment for Dutch Elm Disease
    Evira Research Reports 1/2016 Pest Risk Assessment for Dutch elm disease Evira Research Reports 1/2016 Pest Risk Assessment for Dutch elm disease Authors Salla Hannunen, Finnish Food Safety Authority Evira Mariela Marinova-Todorova, Finnish Food Safety Authority Evira Project group Salla Hannunen, Finnish Food Safety Authority Evira Mariela Marinova-Todorova, Finnish Food Safety Authority Evira Minna Terho, City of Helsinki Anne Uimari, Natural Resources Institute Finland Special thanks J.A. (Jelle) Hiemstra, Wageningen UR Tytti Kontula, Finnish Environment Institute Åke Lindelöw, Swedish University of Agricultural Sciences Michail Yu Mandelshtam, Saint Petersburg State Forest Technical University Alberto Santini, Institute for Sustainable Plant Protection, Italy Juha Siitonen, Natural Resources Institute Finland Halvor Solheim, Norwegian Institute of Bioeconomy Research Joan Webber, Forest Research, UK Cover pictures: Audrius Menkis DESCRIPTION Publisher Finnish Food Safety Authority Evira Title Pest Risk Assessment for Dutch elm disease Authors Salla Hannunen, Mariela Marinova-Todorova Abstract Dutch elm disease (DED) is a fungal disease that causes high mortality of elms. DED and its vector beetles are widely present in most of the countries in the Northern Hemisphere, but they are not known to be present in Finland. DED is a major risk to plant health in Finland. DED and its vectors are moderately likely to enter Finland by natural spread aided by hitchhiking, because they are present in areas close to Finland. Entry via other pathways is much less likely, mainly due to the low volume of trade of untreated wood and plants for planting. DED and its vectors could likely establish in the southern parts of the country, since they currently occur in similar climatic conditions in other countries.
    [Show full text]
  • Four New Ophiostoma Species Associated with Conifer- and Hardwood-Infesting Bark and Ambrosia Beetles from the Czech Republic and Poland
    Antonie van Leeuwenhoek (2019) 112:1501–1521 https://doi.org/10.1007/s10482-019-01277-5 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Four new Ophiostoma species associated with conifer- and hardwood-infesting bark and ambrosia beetles from the Czech Republic and Poland Robert Jankowiak . Piotr Bilan´ski . Beata Strzałka . Riikka Linnakoski . Agnieszka Bosak . Georg Hausner Received: 30 November 2018 / Accepted: 14 May 2019 / Published online: 28 May 2019 Ó The Author(s) 2019 Abstract Fungi under the order Ophiostomatales growth rates, and their insect associations. Based on (Ascomycota) are known to associate with various this study four new taxa can be circumscribed and the species of bark beetles (Coleoptera: Curculionidae: following names are provided: Ophiostoma pityok- Scolytinae). In addition this group of fungi contains teinis sp. nov., Ophiostoma rufum sp. nov., Ophios- many taxa that can impart blue-stain on sapwood and toma solheimii sp. nov., and Ophiostoma taphrorychi some are important tree pathogens. A recent survey sp. nov. O. rufum sp. nov. is a member of the that focussed on the diversity of the Ophiostomatales Ophiostoma piceae species complex, while O. pityok- in the forest ecosystems of the Czech Republic and teinis sp. nov. resides in a discrete lineage within Poland uncovered four putative new species. Phylo- Ophiostoma s. stricto. O. taphrorychi sp. nov. together genetic analyses of four gene regions (ITS1-5.8S-ITS2 with O. distortum formed a well-supported clade in region, ß-tubulin, calmodulin, and translation elonga- Ophiostoma s. stricto close to O. pityokteinis sp. nov. tion factor 1-a) indicated that these four species are O.
    [Show full text]