Damping Package Design Using Structural Corrugated Board

Total Page:16

File Type:pdf, Size:1020Kb

Damping Package Design Using Structural Corrugated Board RESEARCH ARTICLE Damping Package Design Using Structural Corrugated Board PREFACE API 2015 Qi Zhang Katsuhiko Saito Kobe University Kobe University [email protected] [email protected] Katsushige Nagaoka TSK Coporation [email protected] ABSTRACT Packaging is designed to protect products from shock and vibration during transport. In recent years, paper cushioning materials, such as corrugated board and pulp molded packaging, are being increasingly used because they are environmentally friendly and easy to recycle. However, because no efficient packaging-design method yet exists for paper cushioning material, packaging engineers must rely on previous experience and the so-called trial-and-error method to design packaging. One reason for this situation is that, for most cases, the paper cushioning material used for protective packaging has a complicated structure and deforms after being subjected to repetitive shock and vibration. To address this shortcoming, we propose a damping design method for corrugated-board packaging that includes shock-absorbing and vibration damping elements. To verify that the resultant packaging functions as intended, we test three types of packaging in the following way: First, we use an existing design method to create cushioned packages and examine them via free-fall drop tests. Next, to test the robustness of packaging against vibration (i.e., for packaging destined for various modes of transport), we study the three packaging types by subjecting them to (i) vibration-only tests and (ii) drop-plus-vibration tests. For vibration-only tests, the packaging with highest static stress gives the best result, its “vibration fatigue” accounts for approximately 52% of the worst result given by packaging with the lowest static stress. In the drop-plus-vibration tests, the best packaging is that with the lowest static stress; its “vibration fatigue” is approximately 31% of the worst packaging, which has an intermediate value of static stress. This approach allows us to determine the packaging with the best shock-absorbing and vibration damping characteristics. Damping package design using structural corrugated board 19 KEY WORDS paper cushioning material, structural corrugated board, cushioning package design, vibration test INTRODUCTION However, for paper cushioning material, no studies yet exist for efficient and accurate methods Expanded plastic cushioning material and to design shock-absorbing and vibration damping paper cushioning material are two main cushion- packaging, so packaging engineers must still rely ing materials used for protective packaging. For on previous experience and the so-called trial-and- expanded plastic, methods to design shock-absorb- error method to design packaging. In recent years, ing and vibration damping packaging are widely paper cushioning material, such as corrugated applied because the cushion curves and methods to board and molded pulp, have seen increasing use analyze the frequency response function (FRF) are because they are environmentally friendly and easy highly developed. For example, Ge et al.1 compared to recycle. Meanwhile, expanded plastic cushion- the cushion curves of flat foam and corner foam ing material is being increasingly replaced by paper (with shear force) and recommended that the con- cushioning material because of increasing stringent ventional cushion curve should be shifted toward environmental regulations and to improve the man- higher static loading for corner foam by approx- ufacturer’s image. Thus, a strong demand exists for imately 23%–35%. Kitazawa et al.2 investigated a method to design cushioned packaging that uses how various combinations of peak acceleration paper cushioning material. and velocity affect the repetitive-shock-induced To address this need, the present study proposes damage to products because of cumulative fatigue. a method to design damping packaging that uses Wang et al.3 address vibration damping packag- corrugated board in shock-absorbing and vibra- ing design in a study about a double-substructure tion damping package. To verify that the packaging multi-coordinate coupled system and measure the works as intended, we test three types of packaging system-level FRFs to predict the substructure- in three ways: First, we use an existing method to level FRFs. The trend of the latter was found to be design the package6 and test shock-absorbing perfor- consistent with that of the directly measured sub- mance by using free-fall drop tests. Next, we focus on structure-level FRFs. Lamb et al.4 discuss how to vibration damping packaging design (i.e., for pack- separate the linear component of a system’s FRF aging destined for transport) and apply (i) vibration- by using a reverse multiple-input–single-output only tests and (ii) drop-plus-vibration tests. Analyz- (RMISO) algorithm. The RMISO-based technique ing and comparing the “vibration fatigue” reveals estimates the linear component of the FRF, which the optimum packaging for each use. allows traditional modal-parameter-extraction techniques to be used to analyze nonlinear cush- DESIGN OF CUSHIONED PACKAGING ioning systems. Finally, Zhang et al.5 proposed a damping design that combines both shock-absorb- ing and vibration damping packaging and used a Cushioning characteristics of structural multibody dynamics simulation to analyze the corrugated board subjected to shear force vibration response of the packaging. Journal of Applied Packaging Research 20 Material Shear Force For these tests, we used single-wall A-flute cor- When using corrugated-board cushioned pack- rugated board. Both surface liner and reverse liner aging, the space between the product and the outer were 210 g/m2 with over 263 N ring crush com- box is supported by a structural pad made of corru- pressive strength; the medium paper was 120 g/m2 gated board. For actual packaging with corrugated with over 96 N ring crush compressive strength. board, the cushioning pad is made from a corru- All materials used in these tests were exposed to gated board to keep the pad stable and facilitate a temperature of 23 °C and a relative humidity of the fabrication process. Some amount of space is 50% for over 24 h. The corrugated board lies in the left (see lower-left corner in Fig. 2) that generates a plane defined by the machine direction and trans- shear force when shock occurs. verse direction (see Fig. 1), which are the two direc- tions most often solicited to support products. The Test specimen transverse direction is often solicited in cushioned The test specimens of corrugated-board packaging because it has much higher compressive padding are designed as shown in Fig. 3 and Fig. strength than the machine direction and so is able to 4. The upper and lower flaps generate shear if the absorb more shock energy. package is dropped, which leads to more realis- tic data from the tests. The length of corrugated board that absorbs the shock energy in the drop test is 100 mm × 2 = 200 mm and the upper and lower flaps are separated by 40 mm (see Fig. 4). Test equipment Fig. 4 shows a schematic diagram of the dynamic compression test apparatus used to analyze the response of the cushioning material. The test apparatus uses an adjustable weight on Fig. 1: Coordinate system for corrugated board top of which is mounted an acceleration sensor. When the weight drops onto the test specimen, the acceleration sensor records the acceleration as a function of time at a sampling rate of 0.05 ms filtered by a 300 Hz low-pass filter. In addition, a displacement sensor records the displacement of the top edge of the test specimen as a function of time during compression (see Fig. 4). The weight is dropped from a height of 60 cm above the top surface of the packaging. Fig. 2: Example of cushioning pad and direction of shear force Damping package design using structural corrugated board 21 Fig. 3: Structure of test specimen Fig. 4: Test specimen (left) and apparatus for dynamic compression test (right) Dynamic Compression Tests Fig. 5 also shows some photographs of test Conduct dynamic compression tests using specimens after the tests. Specimen I(1.13 N/cm) the specimen and equipment in Fig.4, the weight is too stiff to absorb significant shock energy, is drop on the specimen from 60cm and peak whereas specimen II(2.11 N/cm), which has a lower acceleration value is obtained by the accelera- peak acceleration, is more suitable for cushioning. tion sensor mounted at the top of the weight. In Specimen III has a static load of 3.58 N/cm, which order to obtain peak acceleration values gener- is over the dead line, so the test specimen “bottoms ated by different weights, we change the weight out” (i.e., the upper flap collides with the lower flap). after every 5 tests (for an average value) and each The results in Fig. 5 show that the lowest test uses a new specimen. Fig. 5 shows the cush- peak acceleration occurs for a static load per ioning-property graph obtained from the data for unit perimeter of 2.84 N/cm, so this is the ideal dynamic compression. The horizontal axis gives value for this parameter and for design of cush- the static load per unit perimeter. When design- ioned packaging. In contrast, the peak accelera- ing cushioned packaging from expanded plastic tion increases for a static load per unit perimeter material, the cushion curve is commonly used. greater than 2.84 N/cm because the corrugated The horizontal axis of the cushion curve gives the test specimen cannot absorb the shock; therefore, static stress (i.e., weight divided by bearing area). the weight contacts the metal block below the However, for corrugated board, the bearing area packaging (e.g., specimen III). Thus, a static load is hard to determine owing to the thinness of the per unit perimeter greater than 2.84 N/cm is not board and the shear force generated by the flaps.
Recommended publications
  • The Dupont Tyvek® Medical Packaging Transition Project – Collaboration with the Radiation Processing Industry
    THE DUPONT TYVEK® MEDICAL PACKAGING TRANSITION PROJECT – COLLABORATION WITH THE RADIATION PROCESSING INDUSTRY Selena Qin Nov 7 2013 IRRADIATION FOR LIFE: Safe, Green and Growing Medical Packaging Transition Project (“MPTP”) Objective – To Ensure Continuity and Flexibility of Future Supply • Goal of the Transition Project is to demonstrate functional equivalence of Styles 1073B and 1059B • Functional equivalence means that the attribute you are measuring may be different, even statistically, but it still meets functional and performance requirements, so that it will perform similarly to current Tyvek® in your process and applications • More than $30 Million investment by DuPont covering: – Global regulatory and industry support – Raw materials for multiple line and polymer testing – Developmental package creation and testing – Transition Protocol package creation and testing – Third-party laboratory testing – Phantom Protocol – Product Stewardship IRRADIATION FOR LIFE: Safe, Green and Growing MPTP Progress Possible Through Industry Collaboration • Amcor Flexibles • NAMSA • ATMI LifeSciences • Nelson Laboratories • Barger, a division of Placon • Nordion • Beacon Converters, Inc. • Oliver-Tolas® Healthcare Packaging • Bischof + Klein GmbH & Co. • PeelMaster Packaging Corporation • E-BEAM Services, Inc. • Perfecseal, Inc. • Encaplast srl • Printpack Inc., Medical Packaging • Faxcim Corporation Division • Ferric, Inc. • Rollprint Packaging Products, Inc. • Mangar Medical Packaging • Sealed Air Nelipak • MEDIPACK AG • SteriPack Asia Sdn. Bhd
    [Show full text]
  • Medical Design Briefs.Pdf
    Welcome to your September 2020 Digital Edition of Medical Design Briefs and Medical Manufacturing & Machining Medical Design Briefs Medical Manufacturing & Machining www.medicaldesignbriefs.com September 2020 September 2020 Maximizing Throughput, Speed, and Efficiency with Robotics Developing a Path for Package Testing Preparing for the UDI Adapting PPE Testing for COVID-19 Plasma Surface Treatment for Diagnostics Medical Manufacturing & Machining SPECIAL SECTION: SPECIAL SECTION: Technology Leaders Technology Leaders Low Latency Manufacturing in Electronics in Electronics for Medical Device Packaging COVID-19: Increasing Ventilator Display Mount Production Supplement to Medical Design Briefs From the Publishers of Click Here Click Here How to Navigate the Magazine: At the bottom of each page, you will see a navigation bar with the following buttons: Arrows: Click on the right or left facing arrow to turn the page forward or backward. Introduction: Click on this icon to quickly turn to this page. Cover: Click on this icon to quickly turn to the front cover. Table of Contents: Click on this icon to quickly turn to the table of contents. Zoom In: Click on this magnifying glass icon to zoom in on the page. Zoom Out: Click on this magnifying glass icon to zoom out on the page. Find: Click on this icon to search the document. You can also use the standard Acrobat Reader tools to navigate through each magazine. We’ve Added More Value-Added To Our Added Value! What, the best technology and best service aren’t enough for you? The recognized world
    [Show full text]
  • Packaging Testing Laboratory Rutgers Packaging Engineering Program
    Packaging Testing Laboratory Rutgers Packaging Engineering Program Rutgers The first and only university to offer packaging engineering with- in the School of Engineering, Founded in 1965, Rutgers holds title as the sec- ond oldest packaging program nationally. Students from Packaging Engineering Program have a strong background in mathematics, chemistry, physics, and computers and interdisciplinary skill in materials, chemical, industrial, and mechanical engineering. Packaging Laboratory As an integral part of the Rutgers Packaging Engineering Program for more than 20 years, our testing laboratory is ap- proximately 3000 square feet of laboratory space and is decocted to package testing in the Center for Packaging Engineering and the School of Engineer- ing A-building. Over the years through procurement and donation, a great variety of general and specialized equipment has been accumulated to measure package di- The Package mensions, functionality and product compatibility. Much equipment is devot- Testing ed to measuring conformance to industry or regulatory dictated perfor- mance including UPS, National Institute of Standards and Technology (NIST) Laboratory is and American Society of Testing and Materials (ASTM) standards. Tradition- ally, University laboratories are devoted to supporting the instructional pro- uniquely suited to gram and serve as a resource for research at the undergraduate, graduate and faculty level. The Package Testing Laboratory is uniquely suited to sup- support the port the academic program, university research projects and in addition pro- academic program, vide a service for fee to local industry. university research Testing Program In line with the University’s strategy to form partner- ships with local businesses, a Package Testing Commercial Service Program projects and has been initiated to allow clients to sponsor packaging research projects in addition and request fee based package testing procedures be conducted on their products.
    [Show full text]
  • Variables Affecting Film Permeability Requirements for Modified-Atmosphere Storage of Apples
    11111 2.8 2 5 :; 1111/2.8 11111 2.5 l.:.i 11111 . 1.0 .~ = I.iA I~ ~"I~ 2.2 ~.OOI~ I ~ ... I~ ... I~ I:.l I.l.: ~ I~ L:: I~ .0 '"L:. u I ....'"' ~~u t.:~"'" --1.1 --1.1 -- -- --. -- ii 4 11111 L25 111111. 111111.6 111111.25111111.4111111_6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963·A NATIONAL BUREAU OF STANDARDS-1963-A Variables Affecting Film Permeability Requirements for Modified-Atmosphere Storage of Apples Technical Bulletin No. 1422 Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE Washington, D.C. ~ued May 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 • Price 60 cents CONTENTS SUInInary _________________________________________________________Page 1 Introduction ______________________________________________________ 1 General Inaterials and Inethods __ __ __ __ ___ ___ ___ _ __ __ ___ _ _ _ __ _ __ _ 2 Liners ________________________________________________________ 2 Tp.st fruits _____________________________________________________ 2 Modified atInOllpheres in liners _____ __ ___ __ __ ___ __ ___ ___ _ _ __ _ _ __ __ __ .(. Alnnospheres produced ____________ .----__________________________ 4 Pro~osed definition of liner atInosphere _____ .. ______________ .. ___ . _ _ 6 Effects of boxes on perIneability of liners _ _ _ __ _ ________ _ __ _ _ __ ____ _ 7 Ethylene in liner atInospheres _________________ .__________________ 8 VoluIne shrinkage in liners ____________________________________ • __ 9 General condition of apples stored in test liners _ _ __ _ _ __ _ __ __ _ _ _ _ 9 Storage conditions ________________________________________________ 13 Tenlperature in storage roo.ns ___________________________ .
    [Show full text]
  • Guidelines on Stability Testing of Cosmetics
    COSMETICS EUROPE: GUIDELINES ON STABILITY TESTING OF COSMETIC PRODUCTS ALL RIGHTS RESERVED TO CTFA AND COSMETICS EUROPE MARCH 2004 03/094 - MC GUIDELINES ON STABILITY TESTING OF COSMETIC PRODUCTS March 2004 I. GENERAL CONSIDERATIONS 1. INTRODUCTION General The purpose of stability testing cosmetic products is to ensure that a new or modified product meets the intended physical, chemical and microbiological quality standards as well as functionality and aesthetics when stored under appropriate conditions. Because the development cycle of cosmetic products is relatively short, and also, in order that the testing activity does not become economically disproportionate in view of the multitude of product launches each year, each manufacturer must have at their disposal tests that are adapted to their activity. Each manufacturer should design their stability testing program such that it is reasonable and efficiently addresses the testing required. This document aims to set out guidelines in order to predict and assure the stability of products in the market place. Its purpose is to aid manufacturers of cosmetic products in the selection and the refinement of the appropriate stability tests. Although this guideline can provide a helpful starting point, it is important that manufacturers carefully evaluate new products and technologies and, where appropriate, adapt their testing to reflect differences between product types and formulations. However, all methods assuring the final stability of a cosmetic product against the categories cited in paragraph below, if it is at least equivalent to the recommendations of the following chapters, are considered as valid. Procedures must be put in place and documented within the manufacturer’s internal system.
    [Show full text]
  • Paper Recycling Technology Detailed Part 1A
    Paper Recycling Technology and Science Dr. Richard A. Venditti Paper Science and Engineering Forest Biomaterials Department North Carolina State University Lecture: Paper recycling and technology course introduction and objectives Dr. Richard Venditti Faculty member in the Paper Science and Engineering Program in the Forest Biomaterials Department at North Carolina State University PhD in Chemical Engineering, BS in Pulp and Paper Science and Chemical Engineering Research areas: � Paper recycling � Utilization of forest/agricultural materials for new applications � Life cycle analysis Named a TAPPI Fellow in 2012 Relevant research projects: – The detection of adhesive contaminants – The changes in fibers upon recycling – Automatic sorting of recovered papers – Flotation deinking surfactants – Agglomeration deinking – Screening phenomena and pressure sensitive adhesives – Deposition of adhesive contaminants – Neural networks to control deinking operations – Sludge conversion to bio-ethanol and to bio- materials Course Outline The US Paper Recycling Industry Recovered Paper Grades and Contaminants Effect of Recycling on Fibers/Paper Unit Operations � Pulping, Cleaning, Screening, Washing, Flotation, Dispersion, Bleaching, ….. Image Analysis, Deinking Chemicals System Design Advanced/Additional Topics Course Activities Viewing of the Videos of Lectures � Base lectures by Venditti � Guest lectures from industry leaders Homework assignments Final Exam Critical Issues in Recycling: Going deeper into the recovered paper stream
    [Show full text]
  • The HP Molded Fiber Advanced Tooling Solution White Paper | the HP Molded Fiber Advanced Tooling Solution
    White paper The HP Molded Fiber Advanced Tooling Solution White paper | The HP Molded Fiber Advanced Tooling Solution Macrotrends driving the packaging market The packaging market is transitioning from foam/plastic to molded fiber (also known as molded pulp) packaging for sustainability reasons, with environmental packaging (i.e., replacing foam with paper) favoring the growth of this segment. The molded fiber packaging market is a worldwide industry, valued at $8 billion, and is the fastest-growing segment in the packaging market, with growth being fueled by growing consumer demand for sustainable and environmentally friendly packaging solutions, as well as the increase in take-out food and e-commerce.1 Asia-Pacific countries (APAC) are the biggest geographical market, especially China, Hong Kong, and Taiwan. The region is experiencing the highest growth and is expected to be the largest market by 2024. This growth can be attributed to the rising importance of disposable packaging,2 as well as the lower cost of tooling production in these areas, which presents a significant price advantage over other regions. The primary segments currently are food and beverage and electronics, which are estimated to have the highest growth. The increasing use of molded pulp products for the packaging of various electronic products (including mobile phones and accessories, computers, printers, modems, trimmers, and projectors, among others) due to its convenience, improved sustainability, and low cost are some of the factors contributing to the growth of this segment.2 Molded fiber manufacturing The thermoformed tooling segment is expected to outgrow other segments, propelled by increased consumer demand for high-quality molded fiber packaging and ongoing innovation driving down thermoforming-packaging manufacturing costs.
    [Show full text]
  • Permeation and Its Impact on Packaging
    Room Environment Barrier or Package Product Wall FIGURE 1. Permeation diagram. Permeation and its impact on Packaging Permeation: The migration of a gas or vapor through a packaging material (FIGURE 1.) Michelle Stevens MOCON, Inc. Minneapolis, MN USA IMPACT OF PERMEATION: Shelf life is the length of time that foods, beverages, cases can be avoided with a proper testing protocol. pharmaceutical drugs, chemicals, and many other Under-packaging (inadequate barriers, improper gauges, perishable items are given before they are considered wrong material choices, etc.) allows the transmission unsuitable for sale, use, or consumption. Permeation of some compound(s) at a rate that causes product greatly influences the shelf life of these products as the degradation faster than the desired shelf-life. Repercussions loss or gain of oxygen, water vapor, carbon dioxide and from under-packaging can range from product complaints odors and aromas can rob the product of flavor, color, and returns all the way potentially to voided warranties, law texture, taste, and nutrition. Oxygen, for example, causes suits and legal action. adverse reactions in many foods such as potato chips. By measuring the rate at which O2 permeates through the Over-packaging probably will not result in legal action but package material, one can begin to determine the shelf-life can be a significant waste of money and material resources. or amount of time the unopened package will still provide Often times, a lack of product knowledge will lead a ‘good’ chips. manufacturer to use the best package available within a given budget in order to prevent under-packaging.
    [Show full text]
  • Food Laboratory Services Guide
    Food Laboratory Services Guide FDA Import Detention Services Food Adulteration, GMO & Quality Control Food Allergens Food Chemistry Food Microbiology Natural Toxins Nutritional Analysis Packaging Analysis Shelf Life Studies Specialty Chemistry Analysis Vitamins & Minerals The EMSL Diamond Standard EMSL Analytical, Inc., (EMSL) is a national network of laboratories located in key cities and regions nationwide and Canada. Established in 1981, the company has expanded its analytical services and ca- pabilities and now operates more than thirty-one locations all striving for excellence in providing quality laboratory services in a timely and cost competitive manner. Our diverse staff of over 585 employees includes a wide range of expertise, educational background and capabilities. These dedicated and capable employees follow the lead and standard of care demon- strated by the owner and founder of the company, Dr. Peter Frasca, who, as a hands on owner maintains daily involvement in our laboratory operations, and dictates that our work is consistent with his EMSL Diamond Standard. This “Diamond Standard” includes the following: u Quality Data - Strict Adherence to our Quality programs and regulatory requirements which comply with the ISO 17025 guidelines so that our data is tracked, managed, reported, and verified to be accurate and reliable. u Customer Dedication - We strive to create lasting, mutually beneficial relationships with all clients. We solicit feedback from our clients and we are committed to responding quickly to any questions or concerns that may arise before, during, or after an assignment. u Analytical Expertise - We employ highly qualified and experienced chemists, geologists, physicists, mycologists, microbiologists, biologists, materials scientists and industrial hygienists to enhance our analytical abilities and expertise.
    [Show full text]
  • 49 CFR Ch. I (10–1–14 Edition) § 172.102
    § 172.102 49 CFR Ch. I (10–1–14 Edition) LIST OF MARINE POLLUTANTS—Continued LIST OF MARINE POLLUTANTS—Continued S.M.P. Marine pollutant S.M.P. Marine pollutant (1) (2) (1) (2) Silver cyanide PP White phosphorus, wet Silver orthoarsenite White spirit, low (15-20%) aromatic PP Sodium copper cyanide, solid PP Yellow phosphorus, dry PP Sodium copper cyanide solution PP Yellow phosphorus, wet PP Sodium cuprocyanide, solid PP Sodium cuprocyanide, solution Zinc bromide Sodium cyanide, solid Zinc cyanide Sodium cyanide, solution Sodium dinitro-o-cresolate, dry or wetted with less than 15 per cent water, by mass [Amdt. 172–173, 55 FR 52474, Dec. 21, 1990] Sodium dinitro-ortho-cresolate, wetted with not less than 15 per cent water, by mass EDITORIAL NOTE: For FEDERAL REGISTER ci- PP Sodium pentachlorophenate tations affecting § 172.101, see the List of CFR Strychnine or Strychnine salts Sections Affected, which appears in the Sulfotep Finding Aids section of the printed volume PP Sulprophos and at www.fdsys.gov. Tallow nitrile Temephos TEPP § 172.102 Special provisions. PP Terbufos Tetrabromoethane (a) General. When column 7 of the Tetrabromomethane § 172.101 table refers to a special provi- 1,1,2,2-Tetrachloroethane sion for a hazardous material, the Tetrachloroethylene Tetrachloromethane meaning and requirements of that pro- Tetraethyl dithiopyrophosphate vision are as set forth in this section. PP Tetraethyl lead, liquid When a special provision specifies Tetramethrin Tetramethyllead packaging or packaging require- Thallium chlorate ments— Thallium compounds, n.o.s. Thallium compounds (pesticides) (1) The special provision is in addi- Thallium nitrate tion to the standard requirements for Thallium sulfate all packagings prescribed in § 173.24 of Thallous chlorate Thiocarbonyl tetrachloride this subchapter and any other applica- Triaryl phosphates, isopropylated ble packaging requirements in subparts PP Triaryl phosphates, n.o.s.
    [Show full text]
  • Premium Ventilation Package Testing
    Premium Ventilation Package Testing Pre-Installation Report – Task 5 Final Submittal August 29, 2008 Prepared by: Reid Hart, PE Delivered via electronic copy to BPA and partners. Contract No. 00038702 RTU AirCarePlus & Premium Ventilation Program COTR - Jack Callahan (503) 230-4496 / [email protected] COR - Rachel Kulak (503) 230-5091 / [email protected] PORTLAND ENERGY CONSERVATION, INC Table of Contents PROJECT OVERVIEW..................................................................................................................................... 3 COST EFFECTIVENESS ........................................................................................................................................ 3 TESTING PROJECT SCOPE & SCHEDULE ............................................................................................................. 4 Project Graphic Schedule............................................................................................................................. 5 RECRUITMENT GUIDANCE .......................................................................................................................... 6 TELE-CONFERENCE: AUGUST 12, 2007..................................................................................................... 7 MONITORING PLAN........................................................................................................................................ 8 PURPOSE OF MONITORING ................................................................................................................................
    [Show full text]
  • Variability in Compression Strength and Deflection of Corrugated Containers As a Function of Positioning, Operators, and Climatic Conditions
    CORE Metadata, citation and similar papers at core.ac.uk Provided by DigitalCommons@CalPoly Variability in Compression Strength and Deflection of Corrugated Containers as a Function of Positioning, Operators, and Climatic Conditions 2 J. SINGHl .*, P. BAINBRIDGE , S. P. SINGH3 and E. OLSEN4 lAssociate Professor, Industrial Technology, Cal Poly State University, San Luis Obispo, CA. 2Research Assistant, Industrial Technology, Cal Poly State University, San Luis Obispo, CA. 3Professor, School ofPackaging, Michigan State University, East Lansing, MI 4Assistant Professor, Industrial Technology, Cal Poly State University, San Luis Obispo, CA. ABSTRACT: ASTM D642 is a commonly used standard for measuring the ability of containers to resist external compressive loads applied to its faces, to diagonally opposite edges, or to corners. The procedure recommends testing by centering the specimen on the lower platen of the testing machine in the desired orientation, so as not to incur ec­ centric loading. It is also recommended by the standard that the load be applied with a continuous motion of the movable platen of the test­ ing machine at a speed of 0.5 ± 0,1 in. (12.7 ± .25 cm)/min until failure or a specified load, has been reached. It is recommended that the tests be conducted at "standard environmental" conditions of 23°C and 50% relative humidity. However, the vast majority of compression testers are not placed in rooms where humidity is controlled and multi­ ple operators may perform the tests thereby increasing the possibility of variation of reported data. No recent studies involving the effect of variation in the container location or the test speed on the compres­ sion strength values, however, are available.
    [Show full text]