Permeation and Its Impact on Packaging
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Dupont Tyvek® Medical Packaging Transition Project – Collaboration with the Radiation Processing Industry
THE DUPONT TYVEK® MEDICAL PACKAGING TRANSITION PROJECT – COLLABORATION WITH THE RADIATION PROCESSING INDUSTRY Selena Qin Nov 7 2013 IRRADIATION FOR LIFE: Safe, Green and Growing Medical Packaging Transition Project (“MPTP”) Objective – To Ensure Continuity and Flexibility of Future Supply • Goal of the Transition Project is to demonstrate functional equivalence of Styles 1073B and 1059B • Functional equivalence means that the attribute you are measuring may be different, even statistically, but it still meets functional and performance requirements, so that it will perform similarly to current Tyvek® in your process and applications • More than $30 Million investment by DuPont covering: – Global regulatory and industry support – Raw materials for multiple line and polymer testing – Developmental package creation and testing – Transition Protocol package creation and testing – Third-party laboratory testing – Phantom Protocol – Product Stewardship IRRADIATION FOR LIFE: Safe, Green and Growing MPTP Progress Possible Through Industry Collaboration • Amcor Flexibles • NAMSA • ATMI LifeSciences • Nelson Laboratories • Barger, a division of Placon • Nordion • Beacon Converters, Inc. • Oliver-Tolas® Healthcare Packaging • Bischof + Klein GmbH & Co. • PeelMaster Packaging Corporation • E-BEAM Services, Inc. • Perfecseal, Inc. • Encaplast srl • Printpack Inc., Medical Packaging • Faxcim Corporation Division • Ferric, Inc. • Rollprint Packaging Products, Inc. • Mangar Medical Packaging • Sealed Air Nelipak • MEDIPACK AG • SteriPack Asia Sdn. Bhd -
Medical Design Briefs.Pdf
Welcome to your September 2020 Digital Edition of Medical Design Briefs and Medical Manufacturing & Machining Medical Design Briefs Medical Manufacturing & Machining www.medicaldesignbriefs.com September 2020 September 2020 Maximizing Throughput, Speed, and Efficiency with Robotics Developing a Path for Package Testing Preparing for the UDI Adapting PPE Testing for COVID-19 Plasma Surface Treatment for Diagnostics Medical Manufacturing & Machining SPECIAL SECTION: SPECIAL SECTION: Technology Leaders Technology Leaders Low Latency Manufacturing in Electronics in Electronics for Medical Device Packaging COVID-19: Increasing Ventilator Display Mount Production Supplement to Medical Design Briefs From the Publishers of Click Here Click Here How to Navigate the Magazine: At the bottom of each page, you will see a navigation bar with the following buttons: Arrows: Click on the right or left facing arrow to turn the page forward or backward. Introduction: Click on this icon to quickly turn to this page. Cover: Click on this icon to quickly turn to the front cover. Table of Contents: Click on this icon to quickly turn to the table of contents. Zoom In: Click on this magnifying glass icon to zoom in on the page. Zoom Out: Click on this magnifying glass icon to zoom out on the page. Find: Click on this icon to search the document. You can also use the standard Acrobat Reader tools to navigate through each magazine. We’ve Added More Value-Added To Our Added Value! What, the best technology and best service aren’t enough for you? The recognized world -
How Chemical Mixtures and Temperature Affect Permeation
Technical Data Sheet How Chemical Mixtures and Temperature Affect Permeation Selecting appropriate chemical protective clothing and Mixtures ensuring its proper use are important responsibilities of every employer. Standard methods, practices, guidelines, Each combination of barrier and chemical has a characteristic performance criteria and evaluations of hazardous situations in breakthrough time and permeation rate. This unique the workplace can help employers make informed decisions. relationship is due to a combination of physical and chemical However, these decisions can be complicated when mixtures interactions. Mixtures often have chemical and physical are involved or when temperatures vary. That’s because characteristics that are different from those of their additional issues must be considered, including: components. Take the classic mixture known as “aqua regia” (royal water), for example. Aqua regia is a mixture of two • How does permeation change when chemicals are mixed mineral acids. Individually, neither will dissolve gold; but in a together? specific ratio, they will. • On which chemical should permeation be measured? Because mixtures have unique chemical and physical • How does permeation change when the makeup of the characteristics, it is reasonable to expect that the permeation mixture is changed? of the mixtures will be different from the permeation of the components. Some differences can be explained. For example, • How does permeation change when temperature some rubber-like barrier materials swell when exposed to changes? certain solvents. This swelling is a change in the physical structure of the barrier. If there are other chemicals present, Before attempting to address these issues, a review of the permeation might be different because the physical permeation might be useful. -
Packaging Testing Laboratory Rutgers Packaging Engineering Program
Packaging Testing Laboratory Rutgers Packaging Engineering Program Rutgers The first and only university to offer packaging engineering with- in the School of Engineering, Founded in 1965, Rutgers holds title as the sec- ond oldest packaging program nationally. Students from Packaging Engineering Program have a strong background in mathematics, chemistry, physics, and computers and interdisciplinary skill in materials, chemical, industrial, and mechanical engineering. Packaging Laboratory As an integral part of the Rutgers Packaging Engineering Program for more than 20 years, our testing laboratory is ap- proximately 3000 square feet of laboratory space and is decocted to package testing in the Center for Packaging Engineering and the School of Engineer- ing A-building. Over the years through procurement and donation, a great variety of general and specialized equipment has been accumulated to measure package di- The Package mensions, functionality and product compatibility. Much equipment is devot- Testing ed to measuring conformance to industry or regulatory dictated perfor- mance including UPS, National Institute of Standards and Technology (NIST) Laboratory is and American Society of Testing and Materials (ASTM) standards. Tradition- ally, University laboratories are devoted to supporting the instructional pro- uniquely suited to gram and serve as a resource for research at the undergraduate, graduate and faculty level. The Package Testing Laboratory is uniquely suited to sup- support the port the academic program, university research projects and in addition pro- academic program, vide a service for fee to local industry. university research Testing Program In line with the University’s strategy to form partner- ships with local businesses, a Package Testing Commercial Service Program projects and has been initiated to allow clients to sponsor packaging research projects in addition and request fee based package testing procedures be conducted on their products. -
30 Years of Membrane Technology for Gas Separation Paola Bernardo, Gabriele Clarizia*
1999 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 32, 2013 of Chemical Engineering Online at: www.aidic.it/cet Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright © 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 30 Years of Membrane Technology for Gas Separation Paola Bernardo, Gabriele Clarizia* Istituto di Ricerca per la Tecnologia delle Membrane, ITM-CNR, Via P. Bucci, cubo 17/C, 87030 Arcavacata di Rende, CS, Italy [email protected] Membrane technology applied to the separation of gaseous mixtures competes with conventional unit operations (e.g., distillation, absorption, adsorption) on the basis of overall economics, safety, environmental and technical aspects. Since the first industrial installations for hydrogen separation in the early eighties, significant improvements in membrane quality have been achieved in air separation as well as in CO2 separation. However, beside the improvement in the materials as well as in membrane module design, an important point is represented by a correct engineering of these separation processes. The recovery of high value co-products from different industrial streams (e.g. organic vapours from off-gas streams, helium from natural gas) is an interesting application, which created a new market for gas separation membranes, coupling environmental and economic benefits. The opportunity to integrate membrane operations in ongoing production cycles for taking advantage from their peculiar characteristics has been proved as a viable approach. In this ambit, membrane systems in appropriate ranges of operating conditions meet the main requirements such as purity, productivity, energy demand of specific industrial processes. -
Variables Affecting Film Permeability Requirements for Modified-Atmosphere Storage of Apples
11111 2.8 2 5 :; 1111/2.8 11111 2.5 l.:.i 11111 . 1.0 .~ = I.iA I~ ~"I~ 2.2 ~.OOI~ I ~ ... I~ ... I~ I:.l I.l.: ~ I~ L:: I~ .0 '"L:. u I ....'"' ~~u t.:~"'" --1.1 --1.1 -- -- --. -- ii 4 11111 L25 111111. 111111.6 111111.25111111.4111111_6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963·A NATIONAL BUREAU OF STANDARDS-1963-A Variables Affecting Film Permeability Requirements for Modified-Atmosphere Storage of Apples Technical Bulletin No. 1422 Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE Washington, D.C. ~ued May 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 • Price 60 cents CONTENTS SUInInary _________________________________________________________Page 1 Introduction ______________________________________________________ 1 General Inaterials and Inethods __ __ __ __ ___ ___ ___ _ __ __ ___ _ _ _ __ _ __ _ 2 Liners ________________________________________________________ 2 Tp.st fruits _____________________________________________________ 2 Modified atInOllpheres in liners _____ __ ___ __ __ ___ __ ___ ___ _ _ __ _ _ __ __ __ .(. Alnnospheres produced ____________ .----__________________________ 4 Pro~osed definition of liner atInosphere _____ .. ______________ .. ___ . _ _ 6 Effects of boxes on perIneability of liners _ _ _ __ _ ________ _ __ _ _ __ ____ _ 7 Ethylene in liner atInospheres _________________ .__________________ 8 VoluIne shrinkage in liners ____________________________________ • __ 9 General condition of apples stored in test liners _ _ __ _ _ __ _ __ __ _ _ _ _ 9 Storage conditions ________________________________________________ 13 Tenlperature in storage roo.ns ___________________________ . -
Damping Package Design Using Structural Corrugated Board
RESEARCH ARTICLE Damping Package Design Using Structural Corrugated Board PREFACE API 2015 Qi Zhang Katsuhiko Saito Kobe University Kobe University [email protected] [email protected] Katsushige Nagaoka TSK Coporation [email protected] ABSTRACT Packaging is designed to protect products from shock and vibration during transport. In recent years, paper cushioning materials, such as corrugated board and pulp molded packaging, are being increasingly used because they are environmentally friendly and easy to recycle. However, because no efficient packaging-design method yet exists for paper cushioning material, packaging engineers must rely on previous experience and the so-called trial-and-error method to design packaging. One reason for this situation is that, for most cases, the paper cushioning material used for protective packaging has a complicated structure and deforms after being subjected to repetitive shock and vibration. To address this shortcoming, we propose a damping design method for corrugated-board packaging that includes shock-absorbing and vibration damping elements. To verify that the resultant packaging functions as intended, we test three types of packaging in the following way: First, we use an existing design method to create cushioned packages and examine them via free-fall drop tests. Next, to test the robustness of packaging against vibration (i.e., for packaging destined for various modes of transport), we study the three packaging types by subjecting them to (i) vibration-only tests and (ii) drop-plus-vibration tests. For vibration-only tests, the packaging with highest static stress gives the best result, its “vibration fatigue” accounts for approximately 52% of the worst result given by packaging with the lowest static stress. -
Summary of Gas Cylinder and Permeation Tube Standard Reference Materials Issued by the National Bureau of Standards
A111D3 TTbS?? o z C/J NBS SPECIAL PUBLICATION 260-108 o ^EAU U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard Reference Materials: Summary of Gas Cylinder and Permeation Tube Standard Reference Materials Issued by the National Bureau of Standards QC 100 U57 R. Mavrodineanu and T. E. Gills 260-108 1987 m he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal i s t0 strengthen and advance the nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research to assure international competitiveness and leadership of U.S. industry, science arid technology. NBS work involves development and transfer of measurements, standards and related science and technology, in support of continually improving U.S. productivity, product quality and reliability, innovation and underlying science and engineering. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering. The National Measurement Laboratory Provides the national system of physical and chemical measurement; • Basic Standards 2 coordinates the system with measurement systems of other nations and • Radiation Research furnishes essential services leading to accurate and uniform physical and • Chemical Physics chemical measurement throughout the Nation's scientific community, • Analytical Chemistry industry, and commerce; provides advisory and research services to other Government agencies; conducts physical and chemical research; develops, produces, and distributes Standard Reference Materials; provides calibration services; and manages the National Standard Reference Data System. -
Guidelines on Stability Testing of Cosmetics
COSMETICS EUROPE: GUIDELINES ON STABILITY TESTING OF COSMETIC PRODUCTS ALL RIGHTS RESERVED TO CTFA AND COSMETICS EUROPE MARCH 2004 03/094 - MC GUIDELINES ON STABILITY TESTING OF COSMETIC PRODUCTS March 2004 I. GENERAL CONSIDERATIONS 1. INTRODUCTION General The purpose of stability testing cosmetic products is to ensure that a new or modified product meets the intended physical, chemical and microbiological quality standards as well as functionality and aesthetics when stored under appropriate conditions. Because the development cycle of cosmetic products is relatively short, and also, in order that the testing activity does not become economically disproportionate in view of the multitude of product launches each year, each manufacturer must have at their disposal tests that are adapted to their activity. Each manufacturer should design their stability testing program such that it is reasonable and efficiently addresses the testing required. This document aims to set out guidelines in order to predict and assure the stability of products in the market place. Its purpose is to aid manufacturers of cosmetic products in the selection and the refinement of the appropriate stability tests. Although this guideline can provide a helpful starting point, it is important that manufacturers carefully evaluate new products and technologies and, where appropriate, adapt their testing to reflect differences between product types and formulations. However, all methods assuring the final stability of a cosmetic product against the categories cited in paragraph below, if it is at least equivalent to the recommendations of the following chapters, are considered as valid. Procedures must be put in place and documented within the manufacturer’s internal system. -
PREPARATION, CHARACTERIZATION and GAS PERMEATION STUDY of Psf/Mgo NANOCOMPOSITE MEMBRANE
Brazilian Journal of Chemical ISSN 0104-6632 Printed in Brazil Engineering www.abeq.org.br/bjche Vol. 30, No. 03, pp. 589 - 597, July - September, 2013 PREPARATION, CHARACTERIZATION AND GAS PERMEATION STUDY OF PSf/MgO NANOCOMPOSITE MEMBRANE S. M. Momeni and M. Pakizeh* Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, P.O. Box 91775-1111, Iran. E-mail: [email protected] (Submitted: June 3, 2012 ; Revised: August 13, 2012 ; Accepted: September 22, 2012) Abstract - Nanocomposite membranes composed of polymer and inorganic nanoparticles are a novel method to enhance gas separation performance. In this study, membranes were fabricated from polysulfone (PSf) containing magnesium oxide (MgO) nanoparticles and gas permeation properties of the resulting membranes were investigated. Membranes were prepared by solution blending and phase inversion methods. Morphology of the membranes, void formations, MgO distribution and aggregates were observed by SEM analysis. Furthermore, thermal stability, residual solvent in the membrane film and structural ruination of membranes were analyzed by thermal gravimetric analysis (TGA). The effects of MgO nanoparticles on the glass transition temperature (Tg) of the prepared nanocomposites were studied by differential scanning calorimetry (DSC). The Tg of nanocomposite membranes increased with MgO loading. Fourier transform infrared (FTIR) spectra of nanocomposite membranes were analyzed to identify the variations of the bonds. The results obtained from gas permeation experiments with a constant pressure setup showed that adding MgO nanoparticles to the polymeric membrane structure increased the permeability of the membranes. At 30 wt% -16 -16 2 MgO loading, the CO2 permeability was enhanced from 25.75×10 to 47.12×10 mol.m/(m .s.Pa) and the CO2/CH4 selectivity decreased from 30.84 to 25.65 when compared with pure PSf. -
The Viable Fabrication of Gas Separation Membrane Used by Reclaimed Rubber from Waste Tires
polymers Article The Viable Fabrication of Gas Separation Membrane Used by Reclaimed Rubber from Waste Tires Yu-Ting Lin 1, Guo-Liang Zhuang 1, Ming-Yen Wey 1,* and Hui-Hsin Tseng 2,3,* 1 Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan; [email protected] (Y.-T.L.); [email protected] (G.-L.Z.) 2 Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan 3 Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan * Correspondence: [email protected] (M.-Y.W.); [email protected] (H.-H.T.); Tel.: +886-4-22840441 (ext. 533) (M.-Y.W.); +886-4-24730022 (ext. 12115) (H.-H.T.) Received: 14 September 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Improper disposal and storage of waste tires poses a serious threat to the environment and human health. In light of the drawbacks of the current disposal methods for waste tires, the transformation of waste material into valuable membranes has received significant attention from industries and the academic field. This study proposes an efficient and sustainable method to utilize reclaimed rubber from waste tires after devulcanization, as a precursor for thermally rearranged (TR) membranes. The reclaimed rubber collected from local markets was characterized by thermogravimetric analyzer (TGA) and Fourier transfer infrared spectroscopy (FT-IR) analysis. The results revealed that the useable rubber in the as-received sample amounted to 57% and was classified as styrene–butadiene rubber, a type of synthetic rubber. Moreover, the gas separation measurements showed that the C7-P2.8-T250 membrane with the highest H2/CO2 selectivity of 4.0 and sufficient hydrogen permeance of 1124.61 GPU exhibited the Knudsen diffusion mechanism and crossed the Robeson trade-off limit. -
Food Laboratory Services Guide
Food Laboratory Services Guide FDA Import Detention Services Food Adulteration, GMO & Quality Control Food Allergens Food Chemistry Food Microbiology Natural Toxins Nutritional Analysis Packaging Analysis Shelf Life Studies Specialty Chemistry Analysis Vitamins & Minerals The EMSL Diamond Standard EMSL Analytical, Inc., (EMSL) is a national network of laboratories located in key cities and regions nationwide and Canada. Established in 1981, the company has expanded its analytical services and ca- pabilities and now operates more than thirty-one locations all striving for excellence in providing quality laboratory services in a timely and cost competitive manner. Our diverse staff of over 585 employees includes a wide range of expertise, educational background and capabilities. These dedicated and capable employees follow the lead and standard of care demon- strated by the owner and founder of the company, Dr. Peter Frasca, who, as a hands on owner maintains daily involvement in our laboratory operations, and dictates that our work is consistent with his EMSL Diamond Standard. This “Diamond Standard” includes the following: u Quality Data - Strict Adherence to our Quality programs and regulatory requirements which comply with the ISO 17025 guidelines so that our data is tracked, managed, reported, and verified to be accurate and reliable. u Customer Dedication - We strive to create lasting, mutually beneficial relationships with all clients. We solicit feedback from our clients and we are committed to responding quickly to any questions or concerns that may arise before, during, or after an assignment. u Analytical Expertise - We employ highly qualified and experienced chemists, geologists, physicists, mycologists, microbiologists, biologists, materials scientists and industrial hygienists to enhance our analytical abilities and expertise.