Optimum Boiling Water Reactor Fuel Design Strategies to Enhance Reactor Shutdown by the Standby Liquid Control System
Total Page:16
File Type:pdf, Size:1020Kb
OPTIMUM BOILING WATER REACTOR FUEL DESIGN STRATEGIES TO ENHANCE REACTOR SHUTDOWN BY THE STANDBY LIQUID CONTROL SYSTEM By MICHAEL LORNE FENSIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING UNIVERSITY OF FLORIDA 2004 Copyright 2004 by Michael Lorne Fensin This document is dedicated to the memory of my late grandmothers Bernice Anker and Edna Fensin. ACKNOWLEDGMENTS I would like to acknowledge Dr. Samim Anghaie for chairing my committee, supplying a connection to Global Nuclear Fuels of America, and providing excellent tutoring and advice as my graduate advisor. I would also like to thank Dr. Bob Coldwell Dr. Edward Dugan, Dr. Alireza Haghighat, Dr. David Hintenlang, Dr. Travis Knight, Dr. Alan Jacobs, Dr. Tim Olson, Dr. Benard Mair, Proffessor Jim Tulenko and Dr. William Vernetson for providing me countless hours of instruction in all areas of nuclear engineering and mathematical computation during my graduate studies. I would like to acknowledge Global Nuclear Fuels of America for the sponsorship of its computer codes, time and efforts. From Global Nuclear Fuels of America I would specifically like to thank Dr. Mehdi Asgari, Kenneth Gardner, Roland Jackson, J.D. Kavaal, Thomas Marcille, V.W. Mills, Dr. Brian Moore and Tony Reese for supplying intriguing knowledge and guidance during the course of the study. I want to thank my family for being a constant source of support and pushing me to completion. Without their support none of this would have been possible. iv TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................................................................................. iv LIST OF TABLES............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii ABSTRACT....................................................................................................................... xi CHAPTER 1 INTRODUCTION ........................................................................................................1 The Boiling Water Reactor System ..............................................................................4 Boiling Water Reactor History .....................................................................................8 History of Fuel Bundle Development.........................................................................10 The SLCS Event .........................................................................................................12 Project Scope ..............................................................................................................13 2 MODEL AND METHODOLOGIES .........................................................................15 Standby Liquid Control System and Shutdown Margin.............................................15 Modeling Tools...........................................................................................................17 TGBLA 6.............................................................................................................17 PANAC11............................................................................................................18 Utilized Temperature States, Boron Concentrations and Lattice Types.....................19 Measurement of SLCS and SDM during the Lattice Development Stage .................20 Fuel Bundle Geometry................................................................................................21 Thermal Limit Design Considerations........................................................................24 3 MAXIMIZING HOT-COLD BORATED k∞ DIFFERENCE UTILIZING ENRICHMENT ..........................................................................................................28 Homogeneous Enrichment Distribution .....................................................................28 Determining the Most Limiting Lattice Axial Zone and Void Concentration ....29 Understanding the Exposure Dependent HUCU### Curve ................................31 Enrichment and Boron Concentration Effects.....................................................34 Power Peaking Distribution.................................................................................35 v Heterogeneous Enrichment Distribution ....................................................................39 Localized Enrichment Perturbation.....................................................................39 Gross Enrichment Perturbation ...........................................................................41 4 MAXIMIZING HOT-COLD BORATED k∞ DIFFERENCE UTILIZING GADOLINIUM ..........................................................................................................44 Spatial Self-Shielding Effects of Gadolinium Rods on HUCU###............................44 The Effects of Increasing the Amount of Gadolinium Rods on HUCU###...............47 The Effects of Increasing the Gadolinium Concentration on HUCU###...................50 The Importance of Gadolinium Rod Location............................................................51 Fuel Lattice Design Conclusions................................................................................55 5 FULL CORE SLCS MODELING..............................................................................57 Enhancing SLCS by Perturbing the Location of Gadolinium Rods...........................59 Axial Power Shape Characteristics.............................................................................65 Enhancing SLCS through Axial Power Shaping Utilizing Enrichment Differencing ...........................................................................................................66 Enhancing SLCS by Means of Axial Power Shaping Utilizing Gadolinium Insertion .................................................................................................................74 6 CONCLUSIONS ........................................................................................................83 7 FUTURE WORK........................................................................................................86 LIST OF REFERENCES...................................................................................................88 BIOGRAPHICAL SKETCH .............................................................................................90 vi LIST OF TABLES Table page 3-1 Gross enrichment perturbation scheme for figure 3-10............................................41 5-1 Critical eigenvalue at specified exposure points for the gadolinium rod location perturbation cases that exhibited greatest enhancement in SLCS............................62 5-2 Exposure dependent MFLPD for the gadolinium rod location perturbation cases that exhibited greatest enhancement in SLCS..........................................................63 5-3 Exposure dependent MFLCPR for the gadolinium rod location perturbation cases that exhibited greatest enhancement in SLCS..........................................................64 5-4 Critical eigenvalue at specified exposure points for the gadolinium rod location perturbation case and enrichment differencing case that exhibited greatest enhancement in SLCS. .............................................................................................71 5-5 Exposure dependent MFLPD for the gadolinium rod location perturbation case and the enrichment differencing case that exhibited greatest enhancement in SLCS. ...72 5-6 Exposure dependent MFLCPR for the gadolinium rod location perturbation cases that exhibited greatest enhancement in SLCS..........................................................73 5-7 Critical eigenvalue at specified exposure points for the gadolinium insertion into the DOM (case 27) and gadolinium insertion into the PSZ (case 26) that exhibited greatest enhancement in SLCS.................................................................................76 5-8 MFLPD at specified exposure points for the gadolinium insertion into the DOM (case 27) and gadolinium insertion into the PSZ (case 26) that exhibited greatest enhancement in SLCS. .............................................................................................79 5-9 MFLCPR at specified exposure points for the gadolinium insertion into the DOM (case 27) and gadolinium insertion into the PSZ (case 26) that exhibited greatest enhancement in SLCS. .............................................................................................80 vii LIST OF FIGURES Figure page 1-1 BWR pressure vessel system......................................................................................5 1-2 A typical BWR fuel assembly and fuel rod................................................................6 1-3 A four fuel assembly group with cruciform control blade.........................................7 2-1 A cross sectional view of the modeled fuel bundle..................................................23 2-2 The geometric setup of the fuel lattice axial zones. .................................................24 3-1 Exposure dependent HUCU660 for the DOM at 3.95% enrichment.......................29 3-2 Exposure dependent HUCU660 at varied void fraction and axial zone for the C lattice at an enrichment of 3.95%.............................................................................31