Types of Nuclear Power Reactor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spent Nuclear Fuel Pools in the US
Spent Nuclear Fuel Pools in the U.S.: Reducing the Deadly Risks of Storage front cover WITH SUPPORT FROM: WITH SUPPORT FROM: By Robert Alvarez 1112 16th St. NW, Suite 600, Washington DC 20036 - www.ips-dc.org May 2011 About the Author Robert Alvarez, an Institute for Policy Studies senior scholar, served as a Senior Policy Advisor to the Secre- tary of Energy during the Clinton administration. Institute for Policy Studies (IPS-DC.org) is a community of public scholars and organizers linking peace, justice, and the environment in the U.S. and globally. We work with social movements to promote true democracy and challenge concentrated wealth, corporate influence, and military power. Project On Government Oversight (POGO.org) was founded in 1981 as an independent nonprofit that investigates and exposes corruption and other misconduct in order to achieve a more effective, accountable, open, and ethical federal government. Institute for Policy Studies 1112 16th St. NW, Suite 600 Washington, DC 20036 http://www.ips-dc.org © 2011 Institute for Policy Studies [email protected] For additional copies of this report, see www.ips-dc.org Table of Contents Summary ...............................................................................................................................1 Introduction ..........................................................................................................................4 Figure 1: Explosion Sequence at Reactor No. 3 ........................................................4 Figure 2: Reactor No. 3 -
Developing an Intergovernmental Nuclear Regulatory Organization
Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Bachelor of Science in Mechanical Engineering, May 1988 Seattle University, Seattle, WA Master of Science in Technical Management, May 1997 The Johns Hopkins University, Baltimore, MD Master of Arts in International Science and Technology Policy, May 2009 The George Washington University, Washington, DC A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 10, 2020 Dissertation directed by Kathryn Newcomer Professor of Public Policy and Public Administration The Columbian College of Arts and Sciences of The George Washington University certifies that Clarence Eugene Carpenter, Jr. has passed the Final Examination for the degree of Doctor of Philosophy as of November 26, 2019. This is the final and approved form of the dissertation. Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Dissertation Research Committee: Kathryn Newcomer, Professor of Public Policy and Public Administration, Dissertation Director Philippe Bardet, Assistant Professor, -
Russia's Nuclear Security Policy
Innovative approaches to peace and security from the Stanley Foundation POLICYANALYSISBRIEF THE STANLEY FOUNDATION | MAY 2015 Russia’s Nuclear Security Policy: Priorities and Potential Areas for Cooperation The crisis over Ukraine has led to a drastic reduction in regular official Russian-US contacts in most areas, including those where it is in the two countries’ mutual national security interests to work together. Bilateral cooperation on nuclear nonproliferation and nuclear security has been among the affected areas. The United States has suspended contacts with Russia in the framework of the G-8 and in the Russian-US Bilateral Presidential Commission’s Nuclear Energy and Nuclear Security Working Group. Implementation of the September 2013 agreement on Cooperation in Nuclear- and Energy- Related Scientific Research and Development (R&D Agreement), which Anton Khlopkov prioritizes joint efforts on nuclear nonproliferation and nuclear security, has also been put on hold, and exchanges between nuclear scientists of the two Author countries have been frozen. In turn, Russia has decided not to take part in Anton Khlopkov1 is director of the preparations for the 2016 Nuclear Security Summit. Moscow also notified Moscow-based Center for Energy and Washington that most of the joint nuclear security projects in Russia would Security Studies and editor in chief of the not be extended beyond December 31, 2014. journal Nuclear Club. He is a member of the Advisory Board under the Security This trend is a serious cause for concern, given that Russia and the United Council of the Russian Federation and States, which are depositaries of the Treaty on the Non-Proliferation of chairman of the Moscow Nonproliferation Nuclear Weapons (NPT), bear special responsibility for maintaining the Conference. -
Small Modular Reactors and the Future of Nuclear Power in the United States
Energy Research & Social Science 3 (2014) 161–177 Contents lists available at ScienceDirect Energy Research & Social Science jou rnal homepage: www.elsevier.com/locate/erss Review Small modular reactors and the future of nuclear power in the United States ∗ Mark Cooper Institute for Energy and the Environment, Vermont Law School, Yale University, United States a r t i c l e i n f o a b s t r a c t Article history: Small modular reactors are the latest “new” technology that nuclear advocates tout as the game changer Received 30 May 2014 that will overcome previous economic failures of nuclear power. The debate over SMRs has been particu- Received in revised form 28 July 2014 larly intense because of the rapid failure of large “nuclear renaissance” reactors in market economies, the Accepted 31 July 2014 urgent need to address climate change, and the dramatic success of alternative, decentralized resources in lowering costs and increasing deployment. This paper assesses the prospects for SMR technology from Keywords: three perspectives: the implications of the history of cost escalation in nuclear reactor construction for SMR technology learning, economies of scale and other process that SMR advocates claim will lower cost; the challenges Nuclear cost escalation SMR technology faces in terms of high costs resulting from lost economies of scale, long lead time needed Decentralized resources to develop a new design, the size of the task to create assembly lines for modular reactors and intense concern about safety; and the cost and other characteristics – e.g. scalability, speed to market, flexibility, etc. -
Survey of Design and Regulatory Requirements for New Small Reactors, Contract No
Canadian Nuclear Safety Commission - R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report - July 3, 2014 RSP-0299 Canadian Nuclear Safety Commission R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report July 3, Released for Brian Gihm 0 Victor Snell Jim Sarvinis Milan Ducic 2014 Use Victor Snell Date Rev. Status Prepared By Checked By Approved By Approved By Client - CNSC H346105-0000-00-124-0002, Rev. 0 Page i © Hatch 2015 All rights reserved, including all rights relating to the use of this document or its contents. Canadian Nuclear Safety Commission - R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report - July 3, 2014 Executive Summary The objectives of this report are to perform a design survey of small modular reactors (SMRs) with near-term deployment potential, with a particular emphasis on identifying their innovative safety features, and to review the Canadian nuclear regulatory framework to assess whether the current and proposed regulatory documents adequately address SMR licensing challenges. SMRs are being designed to lower the initial financing cost of a nuclear power plant or to supply electricity in small grids (often in remote areas) which cannot accommodate large nuclear power plants (NPPs). The majority of the advanced SMR designs is based on pressurized water reactor (PWR) technology, while some non-PWR Generation IV technologies (e.g., gas-cooled reactor, lead-cooled reactor, sodium-cooled fast reactor, etc.) are also being pursued. -
Small Isn't Always Beautiful Safety, Security, and Cost Concerns About Small Modular Reactors
Small Isn't Always Beautiful Safety, Security, and Cost Concerns about Small Modular Reactors Small Isn't Always Beautiful Safety, Security, and Cost Concerns about Small Modular Reactors Edwin Lyman September 2013 © 2013 Union of Concerned Scientists All rights reserved Edwin Lyman is a senior scientist in the Union of Concerned Scientists Global Security Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with citizens across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. More information is available about UCS at www.ucsusa.org. This report is available online (in PDF format) at www.ucsusa.org/SMR and may also be obtained from: UCS Publications 2 Brattle Square Cambridge, MA 02138-3780 Or, email [email protected] or call (617) 547-5552. Design: Catalano Design Front cover illustrations: © LLNL for the USDOE (background); reactors from top to bottom: © NuScale Power, LLC, © Holtec SMR, LLC, © 2012 Babcock & Wilcox Nuclear Energy, Inc., and © Westinghouse Electric Company. Back cover illustrations: © LLNL for the USDOE (background); © Westinghouse Electric Company (reactor). Acknowledgments This report was made possible by funding from Park Foundation, Inc., Wallace Research Foundation, an anonymous foundation, and UCS members. The author would like to thank Trudy E. Bell for outstanding editing, Rob Catalano for design and layout, Bryan Wadsworth for overseeing production, and Scott Kemp, Lisbeth Gronlund, and David Wright for useful discussions and comments on the report. The opinions expressed herein do not necessarily reflect those of the organizations that funded the work or the individuals who reviewed it. -
Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste
Hitachi Review Vol. 63 (2014), No. 9 602 Featured Articles Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste Tetsushi Hino, Dr. Sci. OVERVIEW: One of the problems with nuclear power generation is the Masaya Ohtsuka, Dr. Eng. accumulation in radioactive waste of the long-lived TRUs generated as Kumiaki Moriya byproducts of the fission of uranium fuel. Hitachi is developing a nuclear reactor that can burn TRU fuel and is based on a BWR design that is Masayoshi Matsuura already in use in commercial reactors. Achieving the efficient fission of TRUs requires that the spectrum of neutron energies in the nuclear reactor be modified to promote nuclear reactions by these elements. By taking advantage of one of the features of BWRs, namely that their neutron energy spectrum is more easily controlled than that of other reactor types, the new reactor combines effective use of resources with a reduction in the load on the environment by using TRUs as fuel that can be repeatedly recycled to burn these elements up. This article describes the concept behind the INTRODUCTION RBWR along with the progress of its development, NUCLEAR power generation has an important role to as well as its specifications and features. play in both energy security and reducing emissions of carbon dioxide. One of its problems, however, is the accumulation in radioactive waste from the long- RBWR CONCEPT lived transuranium elements (TRUs) generated as Plutonium Breeding Reactor byproducts of the fission of uranium fuel. The TRUs The original concept on which the RBWR is based include many different isotopes with half-lives ranging was the plutonium generation boiling water reactor from hundreds to tens of thousands of years or more. -
France USA Research
atw Vol. 61 (2016) | Issue 2 ı February safety and was subject to a separate After joint examination of this file global markets, and submitted the set of “conventional” permits. with IRSN, ASN convened the Advi- license application to the NRC in Hanhikivi1 will be a 1,200mega sory Committee for nuclear pressure September. watt VVER pressurised water reactor equipment (GP ESPN) on 30 Septem Westinghouse and Toshiba Corpo 141 of the Russian AES-2006 type. Start of ber 2015. The GP ESPN submitted its ration are working collaboratively on commissioning is scheduled for 2022 opinion and its recommendation to a limited number of customized mate and commercial operation for 2024. ASN. On this basis, ASN issued a rials and/or reinforcements that will | www.fennovoima.fi | 7304 position statement on the procedure allow new units to be built in areas adopted by Areva, with a certain that have a higher seismic condition. NEWS number of observations and add This Specialized Seismic Option will itional requests. provide the same advanced safety France The results of the new test pro features, modular design and simpli gramme will be crucial to ASN’s fied systems as the standard, NRC- Flamanville 3 EPR: ASN has decision on the suitability for service certified AP1000 plant technology. no objection to the initiation of the Flamanville 3 RPV closure head | www.westinghousenuclear.com of a new test programme and bottom head. This test pro | 7283 (asn) On 12 December 2015, ASN gramme will take several months. issued a position statement concern | www.asn.fr | 7290 ing the approach used to demonstrate the mechanical properties of the Research Flamanville 3 EPR reactor pressure vessel (RPV) closure head and bottom USA IPP: The first plasma: head proposed by Areva. -
E-Mail: [email protected]
ATOMENERGOMASH JSC Nuclear and Power Engineering Address: 28/3 Ozerkovsakaya nab., Moscow, 115184 Telephone: +7(495) 668-20-93 Fax: +7(495) 668-20-95 Website: http://www.aem-group.ru/en/ E-mail: [email protected] www.aem-group.ru/en/ 3 JSC Atomenergomash ABOUT US Аtomenergomash JSC (AEM, Сompany, Group) is a machine building division of ROSATOM State Atomic Energy Corporation. One of the leading Russian power engineering companies, a supplier of efficient integrated solutions for nuclear and thermal power plants, natural gas and petrochemical industry, shipbuilding, hydroelectricity, demineralization, water treatment, water purification and special steel market. FIGURES AND FACTS ATOMENERGOMASH • The key developer and equipment manu- • AEM was established in 2006 as part of facturer for the reactor facility of the ROSATOM State Atomic Energy Corporation. water-water energetic reactor (VVER). • The Holding includes about 20 • The key developer and equipement man- power engineering companies, R&D, ufacturer of fast nuclear reactors (FNR). manufacturing, construction and • Equipment manufacturer for the turbine construction companies located in Russia, island of NPP with VVER. Ukraine, the Czech Republic, and Hungary. • The only Russian manufacturer of steam • The Holding’s equipment is installed in generators and main circulation pumps more than 20 countries. for Russian-built NPPs. • 14% of global Nuclear Power Plants (NPP) • The key developer and manufacturer of and 40% of Thermal Power Plants (TPP) marine reactor plants for the Navy and in Russia and the former Soviet Union nuclear icebreakers. countries run our equipment. • One of the largest manufacturers of power plant boilers and Heat Recovery Steam Generator (HRSG) for medium and large Combined Cycle Gas Turbine (CCGT) units. -
Safety Analysis for Boiling Water Reactors
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Safety Analysis for Boiling Water Reactors A Summary GRS - 98 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Safety Analysis for Boiling Water Reactors A Summary E. Kersting J. von Linden D. Müller-Ecker W. Werner Translation by F. Janowski July 1993 GRS - 98 ISBN 3-923875-48-7 Note This report is the translation of GRS-95 "Sicherheitsanalyse für Siedewasserreaktoren - Zusammenfassende Darstellung". Recent analysis results - concerning the chapters on accident management, fire and earthquake - that were not included in the German text have been added to this translation. In cases of doubt, GRS-102 (main volume) is the factually correct version. Keywords Safety analysis, PSA, boiling water reactor, accidents, event-sequence analysis, systems analysis, fault-tree analysis, reliability data, accident management Abstract After completing the German Risk Study for pressurised water reactors, the Gesell schaft für Anlagen- und Reaktorsicherheit (GRS) has now conducted for the first time a probabilistic safety analysis for boiling water reactors (BWR) on behalf of the Federal Minister for Research and Technology (BMFT). Reactor safety is constantly developed in line with research findings and operating experience. Thus reactor safety is a dynamic process in which safety analyses play an important role. Probabilistic safety analyses determine the frequency of certain events (e.g. leaks in pipes) and the failure probabilities of the safety systems needed to control such events. The failure of safety systems initially leads to a hazard to the cooling of the reactor core. When such hazard states occur, there are accident management measures which can still be carried out in order to prevent core melt. -
Press Release
Press release The ATMEA1 reactor pre-qualified in Argentina Paris, July 12, 2012 The national utility Nucleoeléctrica Argentina (NA-SA) has informed ATMEA that it had pre-qualified the ATMEA1 technology for the next Request For Proposals that will be issued for the construction of its fourth nuclear power plant. By pre-selecting the ATMEA1 technology, NA-SA acknowledges that the ATMEA1 reactor is a qualified design that could meet the most stringent safety requirements and fit needs of the NA-SA. “After Jordan pre-selection of the ATMEA1 design last May and as confirmed by the recent positive statement of the French Safety Authority ASN on the ATMEA1 reactor’s safety options, this NA-SA decision confirms the trust being placed in the ATMEA1 technology. I’m confident that its design will fulfil stringent Argentina’s requirements, with its highest safety level as a Generation III+ reactor, its proven technology and its superior operation performance”, outlined Philippe Namy, ATMEA President. In 2006, Argentina announced the reactivation of a strategic plan for the country’s nuclear power sector, including the construction of a fourth nuclear reactor. The ATMEA1 reactor is a pressurized water reactor of 1,100 MWe, intended for any types of electrical networks and in particular for medium power grids. It was designed and developed by ATMEA, the 50/50 Joint Venture created in 2007 by Mitsubishi Heavy Industries and AREVA. Taking support on these two parent companies, ATMEA capitalizes on their experience of about 130 nuclear power plants which are operating in the world for around 50 years, and representing approximately 3300 cumulative reactor years of operation. -
From Gen I to Gen III
From Gen I to Gen III Gabriel Farkas Slovak University of Technology in Bratislava Ilkovicova 3, 81219 Bratislava [email protected] 14. 9. 2010 1 Evolution of Nuclear Reactors Generation I - demonstration reactors Generation II - working in the present Generation III - under construction 14. 9. 2010 2 Generation IV - R&D 14. 9. 2010 3 Expected development in nuclear technologies Prolongation of lifetieme of existing nuclear reactors Construction of new reactors in frame of Gen. III and IV . Figure 1 Replacement staggered over a 30-year period (2020 - 2050) Rate of construction : 2,000 MW/year 70000 60000 Lifetime 50000 prolongation 40000 Generation IV 30000 Actual reactors 20000 Generation III+ 10000 0 197519801985199019952000200520102015202020252030203520402045205020552060 14. 9. 2010 Average plant life : 48 years 4 Nuclear in Europe (Nuclear ~ 32% of total EU electricity production) SE, 7.3% UK, 7.9% SP, 5.8% BE,4.8% CZ, 2.5% GE, 16.3% FI, 2.4% BU, 1.8% Other 12.4% SK, 1.7% HU, 1.4% LT, 1.1% FR, 45.5% SI, 0.6% NL, RO, 0.5% 0.4% Source PRIS 14. 9. 2010 5 Central & Eastern Europe - Nuclear Landscape Russia Lithuania Ukraine 6 VVER440 Poland 1 RBMK 1300 2 VVER440 8 VVER1000 Min. of Energy 13 VVER1000 NNEGC State owned 11 RBMK 1 BN600 4 Graph Mod BWR Czech Republic Rosenergoatom State 4 VVER440 owned 2 VVER1000 CEZ/ 67% State Romania owned 2 Candu PHW Nuclearelectrica State owned Slovak Republic 4/6 VVER440 Bulgaria ENEL 67% owned 2/4 VVER1000 NEC State owned Hungary Armenia 4 VVER 440 1 VVER440 MVM State owned Armatomenergo, State owned 14.