Genetics and Metabolics Abbreviations and Diagnosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reframing Psychiatry for Precision Medicine
Reframing Psychiatry for Precision Medicine Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication. -
Epidemiology of Mucopolysaccharidoses Update
diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed. -
The Advantage of Genome-Wide Microarrays Over Targeted Approaches
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/70828 Please be advised that this information was generated on 2021-09-24 and may be subject to change. COPY NUMBER VARIATION AND MENTAL RETARDATION opmaak koolen.indd 1 10-09-2008 10:11:31 Copy number variation and mental retardation The studies presented in this thesis were performed at the Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands. The research was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMw). Publication of this thesis was financially supported by the Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands. ISBN/EAN 978-90-6464-290-6 © 2008 D.A. Koolen All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, by print or otherwise, without permission in writing from the author. Cover photo: Printed by: Ponsen & Looijen B.V., Wageningen opmaak koolen.indd 2 10-09-2008 10:11:31 Copy number variation and mental retardation Een wetenschappelijke proeve op het gebied van de Medische Wetenschappen Proefschrift ter verkrijging van de graad doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op donderdag 6 november 2008 om 15.30 uur precies door David Aljosja Koolen geboren op 22 juni 1976 te ‘s-Gravenhage opmaak koolen.indd 3 10-09-2008 10:11:32 Promotor: Prof. -
Long-Term Outcomes of Systemic Therapies for Hurler Syndrome: an International Multicenter Comparison
© American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Long-term outcomes of systemic therapies for Hurler syndrome: an international multicenter comparison Julie B. Eisengart, PhD1, Kyle D. Rudser, PhD2, Yong Xue, MD, PhD3, Paul Orchard, MD4, Weston Miller, MD4, Troy Lund, MD, PhD4, Ans Van der Ploeg, MD, PhD5, Jean Mercer, RGN, RSCN6, Simon Jones, MBChB7, Karl Eugen Mengel, MD8, Seyfullah Gökce, MD8, Nathalie Guffon, MD9, Roberto Giugliani, MD, PhD10, Carolina F.M. de Souza, MD, PhD10, Elsa G. Shapiro, PhD1,11 and Chester B. Whitley, PhD, MD12 Purpose: Early treatment is critical for mucopolysaccharidosis type I Results: Survival was worse when comparing ERT versus HCT, and (MPS I), justifying its incorporation into newborn screening. Enzyme Untreated versus ERT. The cumulative incidences of hydrocephalus replacement therapy (ERT) treats MPS I, yet presumptions that ERT – and cervical spinal cord compression were greater in ERT versus HCT. cannot penetrate the blood brain barrier (BBB) support recommen- Findings persisted in the sensitivity analysis. dations that hematopoietic cell transplantation (HCT) treat the severe, neurodegenerative form (Hurler syndrome). Ethics precludes rando- Conclusion: As newborn screening widens treatment opportunity for mized comparison of ERT with HCT, but insight into this comparison Hurler syndrome, this examination of early treatment quantifies some is presented with an international cohort of patients with Hurler ERT benefit, supports presumptions about BBB impenetrability, and syndrome who received long-term ERT from a young age. aligns with current guidelines to treat with HCT. Methods: Long-term survival and neurologic outcomes were Genet Med compared among three groups of patients with Hurler syndrome: 18 advance online publication 8 March 2018 treated with ERT monotherapy (ERT group), 54 who underwent HCT (HCT group), and 23 who received no therapy (Untreated). -
Pathophysiology of Mucopolysaccharidosis
Pathophysiology of Mucopolysaccharidosis Dr. Christina Lampe, MD The Center for Rare Diseases, Clinics for Pediatric and Adolescent Medicine Helios Dr. Horst Schmidt Kliniken, Wiesbaden, Germany Inborn Errors of Metabolism today - more than 500 diseases (~10 % of the known genetic diseases) 5000 genetic diseases - all areas of metabolism involved - vast majority are recessive conditions 500 metabolic disorders - individually rare or very rare - overall frequency around 1:800 50 LSD (similar to Down syndrome) LSDs: 1: 5.000 live births MPS: 1: 25.000 live births 7 MPS understanding of pathophysiology and early diagnosis leading to successful therapy for several conditions The Lysosomal Diseases (LSD) TAY SACHS DIS. 4% WOLMAN DIS. ASPARTYLGLUCOSAMINURIA SIALIC ACID DIS. SIALIDOSIS CYSTINOSIS 4% SANDHOFF DIS. 2% FABRY DIS. 7% POMPE 5% NIEMANN PICK C 4% GAUCHER DIS. 14% Mucopolysaccharidosis NIEMANN PICK A-B 3% MULTIPLE SULPH. DEF. Mucolipidosis MUCOLIPIDOSIS I-II 2% Sphingolipidosis MPSVII Oligosaccharidosis GM1 GANGLIOSIDOSIS 2% MPSVI Neuronale Ceroid Lipofuszinois KRABBE DIS. 5% MPSIVA others MPSIII D A-MANNOSIDOSIS MPSIII C MPSIIIB METACHROMATIC LEUKOD. 8% MPS 34% MPSIIIA MPSI MPSII Initial Description of MPS Charles Hunter, 1917: “A Rare Disease in Two Brothers” brothers: 10 and 8 years hearing loss dwarfism macrocephaly cardiomegaly umbilical hernia joint contractures skeletal dysplasia death at the age of 11 and 16 years Description of the MPS Types... M. Hunter - MPS II (1917) M. Hurler - MPS I (1919) M. Morquio - MPS IV (1929) M. Sanfilippo - MPS III (1963) M. Maroteaux-Lamy - MPS IV (1963) M. Sly - MPS VII (1969) M. Scheie - MPS I (MPS V) (1968) M. Natowicz - MPS IX (1996) The Lysosome Lysosomes are.. -
Nutrition 102 – Class 3
Nutrition 102 – Class 3 Angel Woolever, RD, CD 1 Nutrition 102 “Introduction to Human Nutrition” second edition Edited by Michael J. Gibney, Susan A. Lanham-New, Aedin Cassidy, and Hester H. Vorster May be purchased online but is not required for the class. 2 Technical Difficulties Contact: Erin Deichman 574.753.1706 [email protected] 3 Questions You may raise your hand and type your question. All questions will be answered at the end of the webinar to save time. 4 Review from Last Week Vitamins E, K, and C What it is Source Function Requirement Absorption Deficiency Toxicity Non-essential compounds Bioflavonoids: Carnitine, Choline, Inositol, Taurine, and Ubiquinone Phytoceuticals 5 Priorities for Today’s Session B Vitamins What they are Source Function Requirement Absorption Deficiency Toxicity 6 7 What Is Vitamin B1 First B Vitamin to be discovered 8 Vitamin B1 Sources Pork – rich source Potatoes Whole-grain cereals Meat Fish 9 Functions of Vitamin B1 Converts carbohydrates into glucose for energy metabolism Strengthens immune system Improves body’s ability to withstand stressful conditions 10 Thiamine Requirements Groups: RDA (mg/day): Infants 0.4 Children 0.7-1.2 Males 1.5 Females 1 Pregnancy 2 Lactation 2 11 Thiamine Absorption Absorbed in the duodenum and proximal jejunum Alcoholics are especially susceptible to thiamine deficiency Excreted in urine, diuresis, and sweat Little storage of thiamine in the body 12 Barriers to Thiamine Absorption Lost into cooking water Unstable to light Exposure to sunlight Destroyed -
Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment
International Journal of Molecular Sciences Review Mucopolysaccharidosis Type II: One Hundred Years of Research, Diagnosis, and Treatment Francesca D’Avanzo 1,2 , Laura Rigon 2,3 , Alessandra Zanetti 1,2 and Rosella Tomanin 1,2,* 1 Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children ‘s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy; [email protected] (F.D.); [email protected] (A.Z.) 2 Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; [email protected] 3 Molecular Developmental Biology, Life & Medical Science Institute (LIMES), University of Bonn, 53115 Bonn, Germany * Correspondence: [email protected] Received: 17 January 2020; Accepted: 11 February 2020; Published: 13 February 2020 Abstract: Mucopolysaccharidosis type II (MPS II, Hunter syndrome) was first described by Dr. Charles Hunter in 1917. Since then, about one hundred years have passed and Hunter syndrome, although at first neglected for a few decades and afterwards mistaken for a long time for the similar disorder Hurler syndrome, has been clearly distinguished as a specific disease since 1978, when the distinct genetic causes of the two disorders were finally identified. MPS II is a rare genetic disorder, recently described as presenting an incidence rate ranging from 0.38 to 1.09 per 100,000 live male births, and it is the only X-linked-inherited mucopolysaccharidosis. The complex disease is due to a deficit of the lysosomal hydrolase iduronate 2-sulphatase, which is a crucial enzyme in the stepwise degradation of heparan and dermatan sulphate. -
Genes in Eyecare Geneseyedoc 3 W.M
Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease. -
Biotinidase Deficiency: a Survey of 10 Cases
Arch Dis Child: first published as 10.1136/adc.63.10.1244 on 1 October 1988. Downloaded from Archives of Disease in Childhood, 1988, 63, 1244-1249 Biotinidase deficiency: a survey of 10 cases H J WASTELL,* K BARTLET,t G DALE,* AND A SHEIN *Department of Clinical Biochemistry, Newcastle General Hospital, and tDepartments of Child Health and Clinical Biochemistry, Newcastle University Medical School, Newcastle upon Tyne SUMMARY Ten patients with biotinidase deficiency were studied. Clinical findings at presenta- tion varied with dermatological signs (dermatitis and alopecia), neurological abnormalities (fits, hypotonia, and ataxia), and recurrent infections being the most common features, although none of these occurred in every case. Biochemically the disease is characterised by metabolic acidosis and organic aciduria. Treatment with biotin results in pronounced, rapid, clinical and biochemical improvement, but some patients have residual neurological damage comprising neurosensory hearing loss, visual pathway defects, ataxia, and mental retardation. The cause of this permanent damage remains obscure and it is not clear if the early introduction of treatment will prevent it. Biotin is a cofactor required by acetyl CoA carboxy- a functional biotin deficiency (biotinidase deficiency) lase (ACC) [EC 6.4.1.2], pyruvate carboxylase (PC) caused by failure to recycle endogenous biotin and [EC 6.4.1.1], propionyl CoA carboxylase (PCC) to liberate dietary biotin, or by defective biotinylation copyright. [EC 6.4.1.3] and 3 methylcrotonyl CoA carboxylase of apocarboxylase because of a mutant holocarboxy- (MCC) [EC 6.4.1.4.].' It is covalently attached to lase synthetase that has an increased Km with the apocarboxylases by the epsilon amino group of a respect to biotin. -
Bone Disorder and Reduction of Ascorbic Acid Concentration Induced by Biotin Deficiency in Osteogenic Disorder Rats Unable to Synthesize Ascorbic Acid
J. Clin. Biochem. Nutr., 12, 171-182, 1992 Bone Disorder and Reduction of Ascorbic Acid Concentration Induced by Biotin Deficiency in Osteogenic Disorder Rats Unable to Synthesize Ascorbic Acid Yuji FURUKAWA,1,* Akiko KINOSHITA,1,•õ1 Hiroichi SATOH,1,•õ2 Hiroko KIKUCHI,1, •õ3 Shoko OHKOSHI,1,•õ4 Masaru MAEBASHI,2 Yoshio MAKINO,3 Takao SATO,4 Michiko ITO,1 and Shuichi KIMURA1 1 Laboratory of Nutrition, Department of Food Chemistry, Faculty of Agriculture, Tohoku University, Aoba-ku, Sendai 981, Japan 2 The Second Department of Internal Medicine, School of Medicine, Tohoku University, Aoba-ku, Sendai 980, Japan 3 Makino Dermatology Clinic, Aoba-ku, Sendai 981, Japan 4 Division of Internal Medicine, National Sendai Hospital, Miyagino-ku, Sendai 983, Japan (Received January 13, 1992) Summary The developmental mechanism of the bone disorder in- duced by biotin deficiency was studied in osteogenic disorder rats, animals that have a hereditary defect in ascorbic acid-synthesizing ability. The osteogenic disorder rats fed a biotin-deficient diet containing raw egg white were afflicted with bone abnormality including a hunch in the vertebral column. In the case of biotin deficiency, although the ascorbic acid content in the diet was in excess of the required amount, ascorbic acid levels of the plasma and the organs in the rats were significant lower than those of control rats. This suggests that the bone disorder induced by biotin deficiency in the rats may result from the promotion of ascorbic acid consumption or the impairment of ascorbic acid incorporation in the animal tissues. Key Words: osteogenic disorder rat, biotin deficiency, ascorbic acid, bone disorder, acetyl-CoA carboxylase Biotin serves as an essential cofactor for four carboxylases, namely, acetyl- *To whom correspondence should be addressed . -
Biotin Fact Sheet for Consumers
Biotin Fact Sheet for Consumers What is biotin and what does it do? Biotin is a B-vitamin found in many foods. Biotin helps turn the carbohydrates, fats, and proteins in the food you eat into the energy you need. How much biotin do I need? The amount of biotin you need each day depends on your age. Average daily recommended amounts are listed below in micrograms (mcg). Life Stage Recommended Amount Birth to 6 months 5 mcg Infants 7–12 months 6 mcg Children 1–3 years 8 mcg Children 4–8 years 12 mcg Biotin is naturally present in some Children 9–13 years 20 mcg foods, such as salmon and eggs. Teens 14–18 years 25 mcg Adults 19+ years 30 mcg Pregnant teens and women 30 mcg Breastfeeding teens and women 35 mcg What foods provide biotin? Many foods contain some biotin. You can get recommended amounts of biotin by eating a variety of foods, including the following: • Meat, fish, eggs, and organ meats (such as liver) • Seeds and nuts • Certain vegetables (such as sweet potatoes, spinach, and broccoli) What kinds of biotin dietary supplements are available? Biotin is found in some multivitamin/multimineral supplements, in B-complex supplements, and in supplements containing only biotin. Am I getting enough biotin? Most people get enough biotin from the foods they eat. However, certain groups of people are more likely than others to have trouble getting enough biotin: • People with a rare genetic disorder called “biotinidase deficiency” • People with alcohol dependence • Pregnant and breastfeeding women 2 • BIOTIN FACT SHEET FOR CONSUMERS What happens if I don’t get enough biotin? Biotin and healthful eating Biotin deficiency is very rare in the United States. -
MED12 Related Disorders FTNW
MED12 related disorders rarechromo.org What are the MED12 related disorders? MED12 related disorders are a group of disorders that primarily affect boys. Most boys with MED12 related disorders have intellectual disability/ developmental delay, behavioural problems and low muscle tone. MED12 related disorders occur when the MED12 gene has lost its normal function. Genes are instructions which have important roles in our growth and development. They are made of DNA and are incorporated into organised structures called chromosomes. Chromosomes therefore contain our genetic information. Chromosomes are located in our cells, the building blocks of our bodies. The MED12 gene is located on the X chromosome. The X chromosome is one of the sex chromosomes that determine a person’s gender. Men have one X chromosome and one Y chromosome, while women have two X chromosomes. Because the MED12 gene is located on the X chromosome, men have only one copy of the gene, while women have two copies. A change in the MED12 gene can cause symptoms in men. Women with a change in the MED12 gene usually have no symptoms. They carry a second copy of the gene that does function normally. Women may show mild features such as learning difficulties. The MED12 related disorders are FG syndrome , Lujan syndrome and the X- linked recessive form of Ohdo syndrome . Although these syndromes differ, they also have the overlapping features listed on page 2. The way that these conditions are inherited is called ‘X-linked’ or ‘X-linked’ recessive. In 2007 it was discovered that changes in the MED12 gene were responsible for the symptoms and features in several boys with FG syndrome.