Ansari Et Ric Tonnes of Grain

Total Page:16

File Type:pdf, Size:1020Kb

Ansari Et Ric Tonnes of Grain Hellenic Plant Protection Journal 11: 9-18, 2018 DOI 10.2478/hppj-2018-0002 Resistance screening of lentil cultivars against the root-knot nematode Meloidogyne incognita T. Ansari, M. Asif* and M.A. Siddiqui Summary The root-knot nematode Meloidogyne incognita is a major soil parasite of lentil crops. In- creasing restrictions of chemical nematicides have triggered a growing attention and interest in alter- nate root-knot nematode management. The present study was conducted to examine the level of re- sistance and/or susceptibility of fi ve lentil cultivars (PL-456, KLS-218, Desi, DPL-62, Malika), grown in pots, against the root-knot nematode M. incognita. Root-knot nematode reproduction and host dam- age were assessed by recording the nematode infestation levels and reduction percentage of plant growth parameters. Nematode response and plant growth diff erentiated amongst the lentil cultivars. None of the cultivars was found immune or highly resistant. The cultivar Malika was found moderate- ly resistant as it showed the lowest number of galls and egg masses/root as well as the lowest reduc- tion of plant fresh weight (10.4%) and dry weight (6.9%). On the other hand, the cultivar Desi manifest- ed the highest susceptibility exhibiting the highest number of galls and egg masses. There was a sig- nifi cantly negative correlation between the number of galls and plant growth parameters (plant fresh and dry weight and plant height). Additional keywords: cultivars, lentil, Meloidogyne incognita, resistance, root-knot nematode Introduction control because of their short life cycle, high population densities and reproductive po- Lentil (Lens culinaris Medik.) is one of the tential (Sikora and Fernandez, 2005). The im- most important pulse crops and a major mense loss caused by root knot nematodes source of protein (30% weight, second pro- can be minimized by using various strategies tein content legume after soybeans) for the such as soil treatment with chemicals, bio- predominant vegetarian population of In- control agents (Vagelas and Gowen, 2012), dia. India ranks second (after Canada) in cultural practices such as crop rotation, an- lentil production, with lentil cultivation oc- tagonistic plants (Hussain et al., 2011), re- cupying an area of 1,800,000 hectares and sistant cultivars (Tariq et al., 2016) and soil annual production reaching 1,100,000 met- amendments (Asif et al., 2017a, b; Ansari et ric tonnes of grain. The average yield is al., 2016), which are common methods of 6000kg/ha (FAO, 2014). Lentils are an im- nematode control. portant source for the Indian household in- Synthetic nematicides can rapidly re- come. duce nematode population. However, their Meloidogyne spp. cause yield losses in indiscriminate and consistent use can be pulses, which are estimated annually up to toxic to benefi cial soil fl ora and fauna, and 20-35% (Gaur et al., 2001). In India, the aver- may induce emergence of resistant plant age loss caused by root-knot nematodes on parasitic nematodes (Akhtar, 1991). Never- pulses may be 14.6%, and could go as high theless, nematode infestation levels in soil as 50-80% in some crops (Bhatti, 1992). could be reduced by using resistant cul- Root-knot nematodes are diffi cult to tivars with crop rotation strategy of non- hosts. According to Oostenbrink (1966), the cultivation of a resistant cultivar may sup- Section of Plant Pathology and Nematology, Depart- press the nematode population by 10-50% ment of Botany, Aligarh Muslim University, Aligarh, India. of its harmful density. Susceptibility of dif- * Corresponding author: [email protected] ferent pulse crops has been reported by sev- © Benaki Phytopathological Institute 10 Ansari et al. eral researchers such as Pandey et al. (2016) completely randomized design (CRD). The and Montasser et al. (2017). Sasser (1954) experiment had four replications per culti- found that the roots of resistant plants were var and it was repeated twice in time. Three not invaded as rapidly as susceptible ones. weeks after seed germination, thinning was Such variability in tolerance might be relat- performed, leaving one plant per pot. Two ed to their genetic makeup, coding for a re- days after thinning, approximately 1500 sec- sistance mechanism possessed by the par- ond stage juveniles of M. incognita were pi- ticular cultivar (Anwar and McKenry, 2007). petted around each plant by making holes All cultivars referred as resistant to root-knot in soil. A total of eight plants (four inoculat- nematodes have comparatively better crop ed and four uninoculated) of each cultivar yield as compared to susceptible cultivars were used for this experiment. The uninocu- (Mukhtar et al., 2014). lated plants served as controls. Ninety days The present investigation was carried out after inoculation, the plants were uproot- as a resistance screening of fi ve of the most ed gently from the pots and diff erent plant commonly grown cultivars of lentil in India growth parameters were noted. against Meloidogyne incognita (Kofoid and Varietal response against M. incognita in- White) Chitwood under greenhouse condi- festation of diff erent crops is accessed on tions with a view to better exploit the use of the basis of growth parameters and nema- most resistant cultivars for the suppression tode reproduction parameters (Hayat, 2011). of root-knot nematodes in integrated man- Hence, in the present study data were re- agement programmes. corded for plant growth viz., shoot height and root length, dry and fresh shoot and root weight, number of pods, number of Materials and Methods nodules per root system, weight of 100 seeds and nematode reproduction parame- Meloidogyne incognita was collected from ters like number of egg masses, number of naturally infested eggplant (Solanum me- eggs/root system, root-knot index and fi nal longena L.) fi elds near Punjipur village, Ali- nematode population. Physiological param- garh (U.P). Meloidogyne incognita was mass eters like chlorophyll content (MacKinney, cultured from a single egg mass on a sus- 1941) and carotenoid content were also esti- ceptible variety of tomato, S-22, in a green- mated. The percent increase and reduction house of the Section of Plant Pathology and in the growth parameters over the control Plant Nematology, Department of Botany, were calculated by using the formula A.M.U., Aligarh. Second-stage juveniles (J2) were obtained from hatched eggs by incu- % reduction or increase = bating handpicked egg masses in sterile dis- tilled water at 28 ± 1°C. Uninoculated - Inoculated x 100 Seeds of fi ve lentil cultivars namely, PL- ( Uninoculated ) 456, KLS-218, Desi, DPL-62 and Malika were obtained from the Indian Institute of Puls- (Irshad et al., 2012; Mukhtar et al., 2014). es Research, Kanpur, India as these are most Analysis of Variance was conducted and commonly grown and chief cultivars con- the Duncan’s Multiple Range Test was em- cerning with the productivity of lentil in In- ployed for the comparison of means be- dia. Lentil seeds of all fi ve cultivars were sur- tween the cultivars according to Critical face sterilized with 0.1% mercuric chloride Diff erence (C.D.) at P=0.05 level. To detect and sown in clay pots of 15cm diameter con- relation between the parameters, Pearson taining 1kg sterilized sandy loam soil. Four correlation and multiple linear regression lentil seeds of each cultivar were sown per was performed. The data were analysed us- pot, which was considered one replication. ing SPSS 12.00 software (SPSS Inc., Chicago, The pots were placed in a greenhouse at a IL, USA). © Benaki Phytopathological Institute Resistance of lentil cultivars to root-knot nematodes 11 Results er shoot compared to the other cultivars. These heights diff erentiated in the follow- None of the cultivars was found immune ac- ing descending order: KLS-218, PL-456, DPL- cording to the rating scale of Table 1 based 62 and Desi (Table 3). on number of galls on the root system (Ta- Prior to the infestation by the nematode, ble 2). The resistance rating of the cultivars the root length of the cultivars Malika, KLS- was: Malika (moderately resistant), KLS-218 218, PL-456 was signifi cantly higher than the (moderately susceptible), PL-456 (moder- one of the cultivars DPL-62 and Desi. After ately susceptible), DPL-62 (susceptible), Desi infestation, Malika had the least reduction (susceptible). The same trend was observed in root length as compared to the other cul- for the egg masses and the nematode pop- tivars (Table 3). ulation per root system (Table 2). The cultivar Malika had signifi cantly The cultivars Malika, KLS-218, PL-456 had heavier shoot fresh and dry weight than the a comparable shoot height before infesta- other cultivars both before and after nem- tion by M. incognita, which was signifi cant- atode infestation. The cultivars had the fol- ly higher than the one of the DPL-62 and lowing decreasing order in shoot fresh and Desi. After infestation by the nematode, Ma- dry weights: KLS-218, PL-456, DPL-62 and lika continued to have signifi cantly high- Desi. A similar trend was also observed in Table 1: Rating scale for the assessment of level of resistance of plant cultivars against root- knot nematodes, based on number of galls (Sasser and Taylor, 1978). Root knot Index No. of galls/root system Resistance rating 00 Immune 1 1-2 Highly Resistant 2 3-10 Moderately Resistant 3 11-30 Moderately Susceptible 431-100Susceptible 5>100Highly Susceptible Table 2. Reproduction of the root-knot nematode Meloidogyne incognita on fi ve lentil culti- vars and resistance rating of the nematode. No. of No. of eggs/ Nematode Number of Cultivars egg masses/ Reaction egg mass population galls root Control - - - - Desi Susceptible Inoculated 112±0.43a 196±0.40a 2000±0.42a 43±0.84a Control - - - - DPL-62 Susceptible Inoculated 89±0.48b 154±0.45b 1692±0.32b 35±0.76b Control - - - - Moderately PL- 456 Inoculated 58±0.72c 97±0.46c 1590±0.21bc 24±0.72c Susceptible Control - - - - Moderately KLS- 218 Inoculated 26±0.88d 69±0.68d 1440±0.25cd 16±0.88d Susceptible Control - - - - Moderately Malika Inoculated 8±1.20e 25±1.15e 1161±0.19 e 6±1.00e Resistant Values are mean of eight replicates.
Recommended publications
  • Diversity of Root-Knot Nematodes in Moroccan Olive Nurseries And
    Aït Hamza et al. BMC Ecol (2017) 17:41 https://doi.org/10.1186/s12898-017-0153-9 BMC Ecology RESEARCH ARTICLE Open Access Diversity of root‑knot nematodes in Moroccan olive nurseries and orchards: does Meloidogyne javanica disperse according to invasion processes? Mohamed Aït Hamza1,2* , Nadine Ali2,3, Johannes Tavoillot2, Odile Fossati‑Gaschignard2, Hassan Boubaker4, Abdelhamid El Mousadik1† and Thierry Mateille2† Abstract Background: Root-knot nematodes (RKN) are major pest of olive tree (Olea europaea ssp. europaea), especially in nurseries and high-density orchards. Soil samples were collected from main olive growing areas of Morocco, to char‑ acterize Meloidogyne species and to discuss the contribution of biotic and abiotic factors in their spatial distribution. Results: RKN were found in 159 soil samples out of 305 from nurseries (52.1% occurrence) and in 11 out of 49 soil samples from orchards (23.2% occurrence). Biochemical and molecular characterisation (PAGE esterase and SCAR) revealed the dominance of M. javanica both in nurseries and orchards with minor presence of M. incognita only in nurseries, and M. arenaria in only one nursery. RKN were distributed on aggregated basis. Frequent presence of M. javanica in orchards might have come from nurseries. In contrast, the detection of M. incognita in nurseries alone sug‑ gests that this species could not reproduce in orchards because of either the competition with other plant-parasitic nematodes or unft local habitats. The impact of environmental variables (climate, habitat origin and physicochemical characteristics of the substrates) on the distribution of Meloidogyne species is also discussed. Conclusion: Olive nurseries in Morocco are not able to guarantee the safety of rooted plants.
    [Show full text]
  • Diversity, Phylogeny, Characterization and Diagnostics of Root-Knot and Lesion Nematodes
    Diversity, phylogeny, characterization and diagnostics of root-knot and lesion nematodes Toon Janssen Promotors: Prof. Dr. Wim Bert Prof. Dr. Gerrit Karssen Thesis submitted to obtain the degree of doctor in Sciences, Biology Proefschrift voorgelegd tot het bekomen van de graad van doctor in de Wetenschappen, Biologie 1 Table of contents Acknowledgements Chapter 1: general introduction 1 Organisms under study: plant-parasitic nematodes .................................................... 11 1.1 Pratylenchus: root-lesion nematodes ..................................................................................... 13 1.2 Meloidogyne: root-knot nematodes ....................................................................................... 15 2 Economic importance ..................................................................................................... 17 3 Identification of plant-parasitic nematodes .................................................................. 19 4 Variability in reproduction strategies and genome evolution ..................................... 22 5 Aims .................................................................................................................................. 24 6 Outline of this study ........................................................................................................ 25 Chapter 2: Mitochondrial coding genome analysis of tropical root-knot nematodes (Meloidogyne) supports haplotype based diagnostics and reveals evidence of recent reticulate evolution. 1 Abstract
    [Show full text]
  • Transcriptome Profiling of the Root-Knot Nematode Meloidogyne Enterolobii During Parasitism and Identification of Novel Effector Proteins
    Ecole Doctorale de Sciences de la Vie et de la Santé Unité de recherche : UMR ISA INRA 1355-UNS-CNRS 7254 Thèse de doctorat Présentée en vue de l’obtention du grade de docteur en Biologie Moléculaire et Cellulaire de L’UNIVERSITE COTE D’AZUR par NGUYEN Chinh Nghia Etude de la régulation du transcriptome de nématodes parasites de plante, les nématodes à galles du genre Meloidogyne Dirigée par Dr. Bruno FAVERY Soutenance le 8 Décembre, 2016 Devant le jury composé de : Pr. Pierre FRENDO Professeur, INRA UNS CNRS Sophia-Antipolis Président Dr. Marc-Henri LEBRUN Directeur de Recherche, INRA AgroParis Tech Grignon Rapporteur Dr. Nemo PEETERS Directeur de Recherche, CNRS-INRA Castanet Tolosan Rapporteur Dr. Stéphane JOUANNIC Chargé de Recherche, IRD Montpellier Examinateur Dr. Bruno FAVERY Directeur de Recherche, UNS CNRS Sophia-Antipolis Directeur de thèse Doctoral School of Life and Health Sciences Research Unity: UMR ISA INRA 1355-UNS-CNRS 7254 PhD thesis Presented and defensed to obtain Doctor degree in Molecular and Cellular Biology from COTE D’AZUR UNIVERITY by NGUYEN Chinh Nghia Comprehensive Transcriptome Profiling of Root-knot Nematodes during Plant Infection and Characterisation of Species Specific Trait PhD directed by Dr Bruno FAVERY Defense on December 8th 2016 Jury composition : Pr. Pierre FRENDO Professeur, INRA UNS CNRS Sophia-Antipolis President Dr. Marc-Henri LEBRUN Directeur de Recherche, INRA AgroParis Tech Grignon Reporter Dr. Nemo PEETERS Directeur de Recherche, CNRS-INRA Castanet Tolosan Reporter Dr. Stéphane JOUANNIC Chargé de Recherche, IRD Montpellier Examinator Dr. Bruno FAVERY Directeur de Recherche, UNS CNRS Sophia-Antipolis PhD Director Résumé Les nématodes à galles du genre Meloidogyne spp.
    [Show full text]
  • Morphological and Molecular Characterization of <I>Meloidogyne
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2004 Morphological and Molecular Characterization of Meloidogyne mayaguensis Isolates from Florida J. Brito Florida Department of Agriculture and Consumer Services Thomas O. Powers University of Nebraska-Lincoln, [email protected] P. G. Mullin University of Nebraska-Lincoln Florida Department of Agriculture and Consumer Services N. Florida Department of Agriculture and Consumer Services D. W. Dickson University of Florida Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Brito, J.; Powers, Thomas O.; Mullin, P. G.; Florida Department of Agriculture and Consumer Services N.; and Dickson, D. W., "Morphological and Molecular Characterization of Meloidogyne mayaguensis Isolates from Florida" (2004). Papers in Plant Pathology. 242. https://digitalcommons.unl.edu/plantpathpapers/242 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Nematology 36(3):232–240. 2004. © The Society of Nematologists 2004. Morphological and Molecular Characterization of Meloidogyne mayaguensis Isolates from Florida1 J. Brito,2 T. O. Powers,3 P. G. Mullin,4 R. N. Inserra,2 and D. W. Dickson5 Abstract: The discovery of Meloidogyne mayaguensis is confirmed in Florida; this is the first report for the continental United States. Meloidogyne mayaguensis is a virulent species that can reproduce on host cultivars bred for nematode resistance. The perineal patterns of M. mayaguensis isolates from Florida show morphological variability and often are similar to M.
    [Show full text]
  • 1.2 Root Knot Nematodes
    Biological control of root knot nematodes in organic vegetable and flower greenhouse cultivation bioKennis Biological control of root knot nematodes in organic vegetable and flower greenhouse cultivation State of Science Report of a study over the period 2005 - 2010 A.W.G. van der Wurff1, J. Janse1, C.J. Kok2, F.C. Zoon2 1 Wageningen UR Greenhouse Horticulture, Bleiswijk 2 Plant Research International, Wageningen Wageningen UR Greenhouse Horticulture, Bleiswijk September 2010 Report 321 (English version) © 2010 Wageningen, DLO Foundation All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the DLO Foundation. For further information please contact: DLO, more specifically the Wageningen UR Greenhouse Horticulture research institute. DLO is not liable for any harmful effects that may arise from use of the data in this publication. This research has been carried out in the context of the LNV (Netherlands Ministry of Agriculture, Nature and Food Quality) framework programmes System Innovation Protected Organic Farming BO-04-005 and BO-04-012 and BO- 06-003 Innovation and Improvement Management of Closed Cultivations. Financed by the Netherlands Ministry of Agriculture, Nature and Food Quality Most research on organic agriculture and food in the Netherlands takes place in the scope of the cluster Organic Farming, mainly financed by the Ministry of Agriculture, Nature and Food Quality. Bioconnect, the knowledge network for organic agriculture and food, is directing the research programmes (www.bioconnect.nl). Wageningen University and Research Centre and Louis Bolk Institute carry out most of the research activities.
    [Show full text]
  • Nematode Control Alternatives
    Nematodes: ATTRA Alternative Controls A Publication of ATTRA - National Sustainable Agriculture Information Service • 1-800-346-9140 • www.attra.ncat.org By Martin Guerena This publication provides general information on the tiny worm-like organisms called nematodes. It NCAT Agriculture contains detailed descriptions of the genera of nematodes that attack plants, as well as various methods Specialist to diagnose, discourage, and manage plant parasitic nematodes in a least toxic, sustainable manner. © 2006 NCAT Contents Introduction Introduction ..................... 1 ematodes are Symptoms and tiny, worm-like, Sampling .......................... 4 Nmulticellular Preventing Further animals adapted to liv- Spread of Nematodes ....................... 4 ing in water. The num- ber of nematode species Managing Soil Biology ............................... 5 is estimated at half a Crop Rotations and mil lion, many of which Cover Crops ...................... 6 are “free-living” types Botanical found in the oceans, Nematicides ..................... 9 in freshwater habitats, Biocontrols ...................... 10 and in soils. Plant-par- Plant Resistance ............11 asitic species form a Red Plastic Mulch ......... 12 smaller group. Nema- www.insectimages.org Solarization .................... 13 todes are common Flooding .......................... 13 in soils all over the Root-knot nematode—Meloidogyne brevicauda Loos Summary ......................... 13 world (Dropkin, 1980; ©Jonathan D. Eisenback, Virginia Polytechnic Institute and State University References ..................... 14 Yepsen, 1984). As a commentator in the early Further Resources ........17 twentieth cen tury wrote: genera and species have particu lar soil and Web Resources ..............17 climatic requirements. For example, cer- Suppliers .......................... 18 If all the matter in the universe except the tain species do best in sandy soils, while nematodes were swept away, our world would oth ers favor clay soils.
    [Show full text]
  • Diagnostic Methods for Identification of Root-Knot Nematodes Species from Brazil
    Ciência Rural, Santa Maria,Diagnostic v.48: methods 02, e20170449, for identification 2018 of root-knot nematodes specieshttp://dx.doi.org/10.1590/0103-8478cr20170449 from Brazil. 1 ISSNe 1678-4596 CROP PROTECTION Diagnostic methods for identification of root-knot nematodes species from Brazil Tiago Garcia da Cunha1 Liliane Evangelista Visôtto2* Everaldo Antônio Lopes1 Claúdio Marcelo Gonçalves Oliveira3 Pedro Ivo Vieira Good God1 1Instituto de Ciências Agrárias, Universidade Federal de Viçosa (UFV), Campus Rio Paranaíba, Rio Paranaíba, MG, Brasil. 2Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa (UFV), Campus Rio Paranaíba, 38810-000, Rio Paranaíba, MG, Brasil. E-mail: [email protected]. *Corresponding author. 3Instituto Biológico, Campinas, SP, Brasil. ABSTRACT: The accurate identification of root-knot nematode (RKN) species (Meloidogyne spp.) is essential for implementing management strategies. Methods based on the morphology of adults, isozymes phenotypes and DNA analysis can be used for the diagnosis of RKN. Traditionally, RKN species are identified by the analysis of the perineal patterns and esterase phenotypes. For both procedures, mature females are required. Over the last few decades, accurate and rapid molecular techniques have been validated for RKN diagnosis, including eggs, juveniles and adults as DNA sources. Here, we emphasized the methods used for diagnosis of RKN, including emerging molecular techniques, focusing on the major species reported in Brazil. Key words: DNA, esterase, Meloidogyne, molecular biology, morphological pattern. Métodos diagnósticos usados na identificação de espécies do nematoide das galhas do Brasil RESUMO: A identificação acurada de espécies do nematoide das galhas (NG) (Meloidogyne spp.) é essencial para a implementação de estratégias de manejo.
    [Show full text]
  • Diversity of Root-Knot Nematodes in Moroccan Olive Nurseries and Orchards
    Aït Hamza et al. BMC Ecol (2017) 17:41 https://doi.org/10.1186/s12898-017-0153-9 BMC Ecology RESEARCH ARTICLE Open Access Diversity of root‑knot nematodes in Moroccan olive nurseries and orchards: does Meloidogyne javanica disperse according to invasion processes? Mohamed Aït Hamza1,2* , Nadine Ali2,3, Johannes Tavoillot2, Odile Fossati‑Gaschignard2, Hassan Boubaker4, Abdelhamid El Mousadik1† and Thierry Mateille2† Abstract Background: Root-knot nematodes (RKN) are major pest of olive tree (Olea europaea ssp. europaea), especially in nurseries and high-density orchards. Soil samples were collected from main olive growing areas of Morocco, to char‑ acterize Meloidogyne species and to discuss the contribution of biotic and abiotic factors in their spatial distribution. Results: RKN were found in 159 soil samples out of 305 from nurseries (52.1% occurrence) and in 11 out of 49 soil samples from orchards (23.2% occurrence). Biochemical and molecular characterisation (PAGE esterase and SCAR) revealed the dominance of M. javanica both in nurseries and orchards with minor presence of M. incognita only in nurseries, and M. arenaria in only one nursery. RKN were distributed on aggregated basis. Frequent presence of M. javanica in orchards might have come from nurseries. In contrast, the detection of M. incognita in nurseries alone sug‑ gests that this species could not reproduce in orchards because of either the competition with other plant-parasitic nematodes or unft local habitats. The impact of environmental variables (climate, habitat origin and physicochemical characteristics of the substrates) on the distribution of Meloidogyne species is also discussed. Conclusion: Olive nurseries in Morocco are not able to guarantee the safety of rooted plants.
    [Show full text]
  • Response of Eggplant Genotypes to Avirulent and Virulent
    Türk. entomol. derg., 2019, 43 (3): 287-300 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.562208 E-ISSN 2536-491X Original article (Orijinal araştırma) Response of eggplant genotypes to avirulent and virulent populations of Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae)1 Melodidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae)’nın virülent ve avirülent popülasyonlarına patlıcan genotiplerinin tepkisi Serap ÖÇAL2 Zübeyir DEVRAN2* Abstract Eggplant is widely grown throughout the world. HoweVer, some eggplant genotypes are susceptible to Meloidogyne spp., so Solanum torvum (Sw.) is commonly used as a resistant rootstock for root-knot nematodes. Further investigations of resistant sources to root-knot nematodes are still necessary for breeding programs. In this study, a total of 60 eggplant genotypes, including wild sources, wild rootstocks, wild × wild eggplant rootstocks, wild × cultivated eggplant rootstocks, cultivated eggplant rootstocks, pure lines, standard commercial cultivars and commercial hybrids, were tested with avirulent S6 and Mi-1 virulent V14 populations of Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Tylenchida: Meloidogynidae) under controlled conditions. The study was conducted in 2016-2017. The seedlings were inoculated with 1000 second-stage juVeniles of M. incognita. Plants were uprooted 8 weeks after nematode inoculation, and the numbers of egg masses and galls on the roots and juveniles in the soil of pots were counted. Solanum torvum (Y28) was found to be resistant to S6 and V14 populations of M. incognita. The remaining genotypes were susceptible to both populations. These results could be used for breeding and management purposes for the control of root-knot nematode.
    [Show full text]
  • For Controlling the Root-Knot Nematode, Meloidogyne Incognita (Tylenchida: Heteroderidae) Si-Hua Yang1,2, Dan Wang1,2, Chun Chen1, Chun-Ling Xu1 & Hui Xie1*
    www.nature.com/scientificreports There are amendments to this paper OPEN Evaluation of Stratiolaelaps scimitus (Acari: Laelapidae) for controlling the root-knot nematode, Meloidogyne incognita (Tylenchida: Heteroderidae) Si-Hua Yang1,2, Dan Wang1,2, Chun Chen1, Chun-Ling Xu1 & Hui Xie1* Root-knot nematodes are one of the most harmful plant-parasitic nematodes (PPNs). In this paper, the predation of Stratiolaelaps scimitus against Meloidogyne incognita was tested in an individual arena, and the control efciency of the mite on the nematode in the water spinach (Ipomoea aquatica) rhizosphere was studied with a pot experiment. The results showed that S. scimitus could develop normally and complete its life cycle by feeding on second-stage juveniles of M. incognita (Mi-J2). The consumption rate of a 24 h starving female mite on Mi-J2 increased with the increase of prey density at 25 °C. Among the starvation treatments, the nematode consumption rate of a female mite starved for 96 h at 25 °C was highest; and among temperature treatments, the maximum consumption rate of a 24 h starving female mite on Mi-J2 was at 28 °C. The number of M. incognita in the spinach rhizosphere could be reduced efectively by releasing S. scimitus into rhizosphere soil, and 400 mites per pot was the optimum releasing density in which the numbers of root knots and egg masses decreased by 50.9% and 62.8%, respectively. Though we have gained a greater understanding of S. scimitus as a predator of M. incognita, the biocontrol of M. incognita using S. scimitus under feld conditions remains unknown and requires further study.
    [Show full text]
  • Morphological Comparison of Second-Stage Juveniles of Six Populations of Meloidogyne Hapla by SEM~
    Peroxidases h'om MeIoidogyne spp.: Starr 5 In: The Worthington Manual, Worthington 6. HUSSEY. R. S., and J. N. SASSER. 1973. Biochemical Corp., Freehold, New Jersey. Peroxidase from Meloidogyne incognita. 2. ttI3AN(;, C. W,, L. H. I,IN, and S. P. HUAN(;. Pltysiol, Plant I'athol. 3:223-229. 1971. Alteratimls in peroxidase activity in- 7. LOWRY, O. H., N. J. ROSENBROUGH, A. L. tliiced bv root-klu)t llelnatodes on tomato. FARR, and R. J. RANDALL. 1951. Protein Bot. Buli. Academia Sinica XII:74-83. measuremellt with the Folin phenol reagent. 3. HUAN(;, C. W., L. H. LIN, and S. P. HUANG. J. Biol, Chem. 193:265-275. 1971. Changes in peroxidase isoenzymes in 8. STARR, J. L. 1977. A micro-polyacrylamide gel tomato galls induced by Meloidogyne incog- electrophoresis system for analysis of nema- nita. Nematologica 17:460-466. tode enzymes. J. Nematol. 9:284-285 (Abstr.). 4. I-[tlSSEY, R. S. 1971. A technique for obtaining 9. STARR, J. L. 1977. Peroxidase activity in dif- quantities of living Meloidogyne females. J. ferent developmental stages of Meloidogyne Nematol. 3:99-100. spp. J. Nematol. 9:285 (Abslr.). 5. HUSSEY, R. S., J. N. SASSER, and 10, VRAIN, T. C, 1977. A technique for the collec- D. HU1SINGH. 1972. Disc-electrophoretic tion of larvae of Meloidogyne spp. and a studies of soluble proteins and enzymes of comparison of eggs and larvae as inocula. J. Meloidogyne incognita and M. arenaria. J. Nematol. 9:249-251. Nematol. 4:183-189. Morphological Comparison of Second-Stage Juveniles of Six Populations of Meloidogyne hapla by SEM~ J.
    [Show full text]
  • 1 Meloidogyne Species - a Diverse Group of Novel and Important Plant Parasites
    1 Meloidogyne Species - a Diverse Group of Novel and Important Plant Parasites Maurice Moens1, Roland N. Perry2 and James L. Starr3 1 Institute for Agricultural and Fisheries Research, Merelbeke, Belgium and Ghent University, Ghent, Belgium; 2 Rothamsted Research, Harpenden, Hertfordshire, UK and Ghent University, Ghent, Belgium; 3 Texas A&M University, College Station, Texas, USA 1.1 Introduction I 1.2 Impact 2 1.3 History of the Genus 2 1.4 Current Trends in Species Identification 2 1.5 Life Cycle 3 1.6 Diversity in Biology 6 1.7 Major and Emerging Species 8 1.8 Interactions with Other Plant Pathogens 11 1.9 Management and Control 11 1.10 Conclusions and Future Directions 12 1.11 References 13 1.1 Introduction out showing external symptoms on the harvested products, e.g. symptomless potato tubers. The Root-knot nematodes are members or the genus rapid rate of developmem and reproduction on Meloidogyne (Gbldi, 1892), Meloidogyne is of Greek good hosts results, in the majority or species, in origin and means 'apple-shaped female'. They are several generations during one cropping season, an economically important polyphagous group or leading to severe crop damage. Damage may highly adapted obligate plant parasites, are dis• consist of various degrees of stunting, lack or vig• tributed worldwide and parasitize ncarly every our, and wilting under moisture stress. Secondary species of higher plant. Typically thcy reproduce infection by other pathogens often results in and feed on modified living plant cells within extensive decay of nematode-inlected tissues. The plant roots, where they induce small to large galls common explanation for these above-ground or root-knots, hence their vernacular name.
    [Show full text]