The Spread of the Caribbean Fire Coral Millepora Alcicornis in the Eastern Atlantic

Total Page:16

File Type:pdf, Size:1020Kb

The Spread of the Caribbean Fire Coral Millepora Alcicornis in the Eastern Atlantic bioRxiv preprint doi: https://doi.org/10.1101/519041; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Fire ! The spread of the Caribbean fire coral Millepora alcicornis in the Eastern 2 Atlantic. 3 4 Peter Wirtz & Carla Zilberberg 5 6 Peter Wirtz (email [email protected]) Centro de Ciências do Mar, Universidade do 7 Algarve, Campus de Gambelas, PT 8005-139 Faro, Portugal. Carla Zilberberg (email 8 [email protected]) Núcleo em Ecologia e Desenvolvimento Ambiental de Macaé, 9 Universidade Federal do Rio de Janeiro, Macaé, Brazil. 10 11 The Western Atlantic fire coral Millepora alcicornis is recorded from Madeira Island in the Eastern 12 Atlantic for the first time. A large colony of this species has apparently been present at a very exposed 13 site at the northern shore of Madeira Island for more than 15 years. Genetic analyses suggest that the 14 colonies of this tropical fire coral at a mid-Atlantic location (Ascension Island) and at each of three 15 Eastern Atlantic locations (Cape Verde Islands, Canary Islands, Madeira Island) originated from 16 independent long-distance dispersal events from the Caribbean area. 17 18 Key words: Long-distance dispersal, Millepora alcicornis, phylogeography, habitat change 19 20 21 22 23 24 25 ________________________________________________________________________________ 26 bioRxiv preprint doi: https://doi.org/10.1101/519041; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2 27 INTRODUCTION 28 29 Long-distance dispersal events occur rarely but, lying at the heart of island biogeography theory, 30 they play a fundamental role in shaping species large-scale biogeography (Smith et al. 2018). The 31 arrival of a species into a new area can have profound impacts on local ecological communities, 32 leading altered environmental conditions and novel interactions, in particular if that species is a 33 habitat forming one and competing with local endemics. 34 Fire corals (Millepora species) are well known for being important reef builders because of their 35 large calcareous skeletons and for inflicting painful stings to humans (Lewis 2006). The genus is 36 limited to 50 m depth in tropical seas, with a clear distinction between Atlantic and Pacific species 37 (Razak & Hoeksema 2003). There are seven species in the Atlantic Ocean and until recently these 38 were only reported from the tropical western Atlantic and from the Cape Verde Islands in the Eastern 39 Atlantic (Laborel 1974, de Weerdt 1984). The species found at the Cape Verde Islands, Millepora 40 alcicornis Linnaeus, 1758, is common in the western Atlantic and has recently also been documented 41 from Ascension Island in the middle of the Atlantic Ocean (Hoeksema et al. 2017) and from the 42 Canary Islands in the Eastern Atlantic, where it apparently arrived only a short time ago (Clemente et 43 al. 2011, López et al. 2017). 44 In summer 2016, a fisherman from Madeira Island showed a large dried branch of a fire coral 45 (Millepora sp.) to the first author and claimed that it came from the north coast of this island. The 46 previous finding of fire coral at the Canary Islands (28oN) was already quite unexpected; the presence 47 of Millepora in the even colder waters of Madeira Island (32oN) would be an even greater surprise. 48 Here we report that there is indeed a large colony of fire coral at Madeira’s north coast, the type of 49 habitat it occupies, the identity of the species, and the probable origin of the colony. 50 51 52 MATERIAL AND METHODS bioRxiv preprint doi: https://doi.org/10.1101/519041; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 3 53 The Millepora colony was photographed under water and several branches were collected in August 54 2016. Some of these branches are now deposited in the Natural History Museum of Funchal, 55 Madeira, with the registration number MMF 46310. Fragments were preserved in 96% ethanol and 56 sent to the second author for molecular analyses. 57 Total DNA extraction followed the phenol-chlorophorm method performed by Fukami et al. (2004), 58 placing the sample in a CHAOS solution one week prior to extraction. DNA quality and 59 concentration were assessed on a 0.8% agarose gel stained with GelRed (Biotium) and visualized 60 under UV light, using the pattern Lambda DNA (125 ng/μL). 61 For species identification, the 16S rRNA gene of mitochondrial DNA (16S) was obtained from the 62 Madeira Millepora colony and compared with previously reported sequences from other Atlantic 63 Millepora specimens and species from the NCBI database (https://www.ncbi.nlm.nih.gov). A 537bp 64 fragment of the large ribosomal subunit of the mitochondrial DNA (16S) was amplified using the 65 following pair of primers: SHA 5'-ACGGAATGAACTCAAATCATGT-3; SHB 5'- 66 TCGACTGTTTACCAAAAACATA-3’ (Cunningham & Buss 1993). 67 The polymerase chain reactions (PCR) consisted of PCR buffer 1X, dNTP (2 mM), bovine serum 68 albumin (1 mg/ml), MgCl2 (1.5 mM), Taq polymerase (1U), primers (0.5 uM), ~1ng of template 69 DNA. Thermal cycling conditions started with a denaturing step at 95oC for 3 min, followed by 10 70 cycles of 94oC for 1min, 40oC for 1min and 72oC for 1min, 40 cycles at 94oC for 1min, 52oC for 71 1min and 72oC for 1min and a final extension step at 72oC for 5 min. The amplified product was 72 purified with ExoSAP-IT PCR Product Cleanup (Thermo Fisher Scientific) following manufacturer’s 73 instructions and Sanger sequencing was performed in both directions at GATC Biotech (Germany). 74 Electropherograms were edited and a consensus sequence was created with Geneious R7 75 (http://www.geneious.com, Kearse et al., 2012). Alignment was performed using the ClustalW 76 package in Geneious R7. Maximum likelihood (ML) phylogenetic reconstruction analyses and 77 substitution models’ calculations were performed with PhyML 3.0 (Guidon et al. 2010). Substitution 78 model selection was calculated using Smart Model Selection (Lefort et al. 2017) with the Akaike bioRxiv preprint doi: https://doi.org/10.1101/519041; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 4 79 Information Criterion and the ML reconstruction. The substitution model used for the phylogenetic 80 tree reconstruction was the HKY85 +G+I. Maximum likelihood analysis started with a neighbour 81 joining tree followed by a Nearest Neighbour Interchange searching criterion and 1000 bootstraps for 82 branch support. 83 A median-joining haplotype network was constructed using the software Networ v4.6.1.1 (Fluxus 84 Technology Ltd.). This haplotype network included all M. alcicornis sequences used in de Souza et 85 al. (2017), in addition to the sequence generated from the Millepora sample from Madeira Island in 86 this study: Forty-four Millepora alcicornis colonies from the Caribbean Province, 109 colonies from 87 the Brazilian Province, nine colonies from the Cape Verde Islands, a single colony from the Canary 88 Islands, and two colonies from Ascension Island (Hoeksema et al. 2017) were compared with the 89 colony from Madeira Island (Table 1). 90 91 RESULTS 92 93 Colony site and colony morphology 94 95 The Millepora colony of Madeira Island was found in shallow water (3m depth at low tide), in a 96 small bay at a very exposed site on the north coast of Madeira Island (approximately 32o45´N, 16 97 o43´E). Water temperature at this site varies from 16 to 23 degrees C annually (personal observations 98 by the first author). 99 The main colony had a roughly rectangular shape, approximately 4 m long and 3 m wide (figure 1). 100 There were numerous small colonies (hand-sized or smaller) scattered around the large main colony. 101 The fisherman, who guided the first author to this site, reported that there were fewer small colonies 102 previously but that the main colony was already this large size when he first encountered it more than 103 15 years ago. 104 bioRxiv preprint doi: https://doi.org/10.1101/519041; this version posted January 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 5 105 106 Figure 1: Millepora colony at the north coast of Madeira Island. The fins of the diver are 80 cm long. 107 108 The central part of the colony was characterized by erect branches up to 18 cm high, flattened 109 laterally at the tips (Figures 2-3); at the edges and at its base, the colony was encrusting. The strong 110 branches were very solid and difficult to break off, being able to resist the heavy wave action typical 111 for the north coast of Madeira Island.
Recommended publications
  • CORAL REEF COMMUNITIES from NATURAL RESERVES in PUERTO RICO : a Quantitative Baseline Assessment for Prospective Monitoring Programs
    Final Report CORAL REEF COMMUNITIES FROM NATURAL RESERVES IN PUERTO RICO : a quantitative baseline assessment for prospective monitoring programs Volume 2 : Cabo Rojo, La Parguera, Isla Desecheo, Isla de Mona by : Jorge (Reni) García-Sais Roberto L. Castro Jorge Sabater Clavell Milton Carlo Reef Surveys P. O. Box 3015, Lajas, P. R. 00667 [email protected] Final report submitted to the U. S. Coral Reef Initiative (CRI-NOAA) and DNER August, 2001 i PREFACE A baseline quantitative assessment of coral reef communities in Natural Reserves is one of the priorities of the U. S. Coral Reef Initiative Program (NOAA) for Puerto Rico. This work is intended to serve as the framework of a prospective research program in which the ecological health of these valuable marine ecosystems can be monitored. An expanded and more specialized research program should progressively construct a far more comprehensive characterization of the reef communities than what this initial work provides. It is intended that the better understanding of reef communities and the available scientific data made available through this research can be applied towards management programs designed at the protection of coral reefs and associated fisheries in Puerto Rico and the Caribbean. More likely, this is not going to happen without a bold public awareness program running parallel to the basic scientific effort. Thus, the content of this document is simplified enough as to allow application into public outreach and education programs. This is the second of three volumes providing quantitative baseline characterizations of coral reefs from Natural Reserves in Puerto Rico. ACKNOWLEDGEMENTS The authors want to express their sincere gratitude to Mrs.
    [Show full text]
  • Final Report for Florida Middle Ground Project
    Final Report for Florida Middle Ground Project NOAA Coral Award NA05NMF4411045 CY 2005 Coral Project for the period 10/1/05 through 3/31/07 April 22, 2007 Lead PI: David F. Naar Associate Professor College of Marine Science University of South Florida 140 Seventh Avenue South Saint Petersburg, Florida 33701-5016 USA Voice: (727) 553 1637 Cell: (727) 510 9806 Fax: (727) 553 1189 Email: [email protected] Co-PIs: David Mallinson (East Carolina University) Felicia Coleman (FSU) GENERAL OBJECTIVES/LOGISTICS AND SUMMARY OF PROGRESS: We have completed mapping the entire Florida Middle Ground HAPC (Habitat Area of Particular Concern) using a high-resolution 300 kHz multibeam bathymetry and backscatter system (Figures 1-3) . The survey augmented the existing coverage in the area from previous USF cruises. The main scientific objectives of the cruise are to define the fish habitat areas within the Florida Middle Ground HAPC using multibeam bathymetry, multibeam backscatter, and ground truth data (previous and new sediment grab samples and previous video samples). Second, to eventually produce a Habitat Map that defines area of Sediment, rock, and coral reef. Third, to provide a map of the paleoshoreline during a previous glacial period, when sea level was lower. The first objective has been completed and the data DVD’s have been sent to the Gulf of Mexico Fisheries Management Council in March 2007. Drs. Mallinson and Naar have coauthored one paper presented at the international American Geophysical Union Meeting in 2006 (Mallinson et al., 2006) and have another paper submitted to a special volume (Hine et al., 2007) and have a third and final paper summarizing all our work at the Florida Middle Grounds in preparation (Mallinson et al., 2007).
    [Show full text]
  • Hydrozoa, Coelenterata
    Bijdragen lot de Dierkunde, 54 (2): 243-262—1984 Taxonomic characters in Caribbean Millepora species (Hydrozoa, Coelenterata) by Walentina H. de Weerdt Institute of Taxonomie Zoology, University of Amsterdam, P. 0. Box 20125, 1000 HC Amsterdam, The Netherlands Summary size of the and gastropores dactylopores, pore density and structure of the ampullae, have In order to find characters in Millepora species with a been studied in the or were higher diagnostic value than the growth form (on which hardly past con- sidered useless because species delimitation is hitherto based) a comparison is of high intraspecific made of the surface structure, microstructure of the variation 1948 1949 (Boschma, a & b, a, 1950, skeleton, structure of the ampullae coverings, size of the 1964; Martinez Estalella, 1982). In some Atlan- and and in gastropores dactylopores, pore density tic the form of the species, however, growth cor- specimens of the four species occurring in the Caribbean allum is which often im- M. M. and variable, region: Millepora alcicornis, complanata, squarrosa, extremely identification. This M. striata. While most characters are of little taxonomic pedes a good variability sizes and densities useful. The value, pore are surprisingly be the fact may partly explained by that species are diagnosed and some biogeographical remarks various Millepora has a high adaptability to en- are given. vironmental circumstances, like depth, water movement, current, and turbidity. Résumé In in a previous paper (De Weerdt, 1981), Afin de trouver dans les espèces de Millepora des caractères which I reviewed the taxonomie problems in de valeur caractè- diagnostique supérieure par rapport aux Millepora, the need to search for other characters res du habitus (sur lesquels la délimitation des espèces est is stressed.
    [Show full text]
  • Dry Tortugas National Park - a SPAW Listed Site
    eet Factsh The Protocol on Specially Protected Areas and Wildlife in the Wider Caribbean (SPAW): Dry Tortugas National Park - A SPAW listed site - Identification Country: USA Name of the area: Dry Tortugas National park Administrative region: Southeast United States Date of establishment: 10/26/1992 Contacts: Geographic location: Contact adress: P.O. Box 6208 Key West, FL 33041 Longitude X: -82.872813 Website: www.nps.gov/drto Latitude Y: 24.627874 Email address: [email protected] Date of listing under SPAW: 23 October 2012 Introduction The Dry Tortugas National Park (DTNP) protects a 265 sq. km. area and green sea turtles, sooty terns, frigate birds, and numerous of coral reefs, sandy shoals, seagrass beds and seven small islands migratory bird species.” The Park has four management zones to or keys. The marine area includes reefs with high densities of live achieve desired resource conditions and provide a range of com- coral cover and massive coral heads that are unique to the Tortu- patible visitor uses, including a Research Natural Area where gas region and rare in the Florida Keys. Rare migratory seabirds fishing and anchoring are prohibited to protect and restore coral utilize the keys for rookeries and sea turtles nest on the sand and fish species and to scientifically evaluate their condition. beaches. DTNP was established by the U.S. Congress: “to preserve and protect for the education, inspiration, and enjoyment of present and future generations nationally significant natural, his- toric, scenic, marine, and scientific
    [Show full text]
  • Coral Bleaching Early Warning Network Current Conditions Report #20090827
    Mote Marine Laboratory / Florida Keys National Marine Sanctuary Coral Bleaching Early Warning Network Current Conditions Report #20090827 Updated August 27, 2009 Summary: Based on climate predictions, current conditions, and field observations, the threat for mass coral bleaching within the FKNMS remains MODERATE. Weather and Sea Temperatures NOAA Coral Reef Watch Coral Bleaching Thermal Stress Outlook August -November, 2009 (Updated Aug. 25th) Figure 2. NOAA’s Coral Bleaching HotSpot Map for August 27, 2009. www.osdpd.noaa.gov/PSB/EPS/SST/climohot.html Figure 1. NOAA’s Coral Bleaching Thermal Stress Outlook for Aug. – Nov. 2009. According to the latest NOAA Coral Reef Watch Coral Bleaching Thermal Stress Outlook there continues to be significant potential for coral bleaching throughout the Caribbean in 2009 especially in the Lesser Antilles, with higher than normal thermal stress, reminiscent of that seen in 2005. (Fig. 1). Current remote sensing analysis by NOAA’s Coral Reef Watch program indicates that while the Florida Keys region continues to experience elevated levels of thermal stress, there has been no significant increase in those levels over the past two weeks. NOAA’s recent Coral Bleaching HotSpot Map (Fig. 2), which provides current SST’s compared to the historically expected SST’s for the region, shows that temperature anomalies for the Florida Keys National Marine Sanctuary and surrounding waters continue to remain above-average but have decreased slightly since Figure 3. NOAA’s Degree Heating Weeks Map for August 27, 2009. mid-August. Similarly, NOAA’s latest Degree Heating Weeks (DHW) www.osdpd.noaa.gov/PSB/EPS/SST/dhw_retro.html map, which illustrates the accumulation of elevated temperature in an area Water Temperatures (August 13-27, 2009) based on the previous 12 weeks, indicates that cumulative temperature 35 stress in the Florida Keys region remains elevated but has not increased significantly over the past two weeks (Fig.
    [Show full text]
  • Millepora Species Complex in the Caribbean Dannise V Ruiz-Ramos1,2, Ernesto Weil1 and Nikolaos V Schizas1*
    Ruiz-Ramos et al. Zoological Studies 2014, 53:4 http://www.zoologicalstudies.com/content/53/1/4 RESEARCH Open Access Morphological and genetic evaluation of the hydrocoral Millepora species complex in the Caribbean Dannise V Ruiz-Ramos1,2, Ernesto Weil1 and Nikolaos V Schizas1* Abstract Background: The hydrocoral Millepora is an important framework builder that dominates shallow turbulent environments in the Indo-Pacific and the Atlantic-Caribbean. The Caribbean representatives of the genus are classified in four species - Millepora alcicornis, Millepora complanata, Millepora striata, and Millepora squarrosa - but their taxonomic boundaries are not clearly defined. We used mitochondrial gene sequences to delineate the four Millepora species and evaluated whether morphological traits and mitochondrial sequence divergence were correlated for two most common species M. alcicornis and M. complanata. Results: Samples were collected from Puerto Rico, Guadeloupe, Curaçao, Grand Cayman, and Panama during 2006 to 2007. Diameter of dactylopores distinguished the branching and encrusting morphotypes of M. alcicornis and M. complanata, and gastropore diameter discriminated between M. alcicornis and M. complanata. High levels of haplotypic diversity (Hd = 0.94) were observed, with the most common haplotypes shared by M. alcicornis and M. complanata. Sequence divergence ranged from 0% to 3% among M. alcicornis, M. complanata, and M. striata to 25% between these three species and M. squarrosa. Bayesian analysis of cytochrome oxidase subunit I (COI) gene indicated the presence of three Caribbean taxa: M. squarrosa, M. striata, and the ‘species complex’ encompassing the morphologies displayed by M. complanata and M. alcicornis. Conclusions: The branched M. alcicornis and encrusted M. alcicornis and M.
    [Show full text]
  • The Aquaculture of Live Rock, Live Sand, Coral and Associated Products
    AQUACULTURE OF LIVE ROCKS, LIVE SAND, CORAL AND ASSOCIATED PRODUCTS A DISCUSSION AND DRAFT POLICY PAPER FISHERIES MANAGEMENT PAPER NO. 196 Department of Fisheries 168 St. Georges Terrace Perth WA 6000 April 2006 ISSN 0819-4327 The Aquaculture of Live Rock, Live Sand, Coral and Associated Products A Discussion and Draft Policy Paper Project Managed by Andrew Beer April 2006 Fisheries Management Paper No. 196 ISSN 0819-4327 Fisheries Management Paper No. 196 CONTENTS OPPORTUNITY FOR PUBLIC COMMENT...............................................................IV DISCLAIMER V ACKNOWLEDGEMENT..................................................................................................V SECTION 1 EXECUTIVE SUMMARY & PROPOSED POLICY OPTIONS ....... 1 SECTION 2 INTRODUCTION.................................................................................... 5 2.1 BACKGROUND ............................................................................................. 5 2.2 OBJECTIVES................................................................................................. 5 2.3 WHY LIVE ROCK, SAND AND CORAL AQUACULTURE? ............................... 6 2.4 MARKET...................................................................................................... 6 SECTION 3 THE TAXONOMY AND BIOLOGY OF LIVE ROCK, SAND AND CORAL ..................................................................................................... 9 3.1 LIVE ROCK .................................................................................................
    [Show full text]
  • Target Substrata
    TARGET SUBSTRATA OVERVIEW CORALS AND THEIR RELATIVES STONY HEXACORALS OTHER HEXACORALS OCTOCORALS HYDROZOANS Acropora Sea Anemones Soft Corals Fire Coral Non-Acropora Zoanthids Sea Fans Lace Coral Black Coral Blue Coral Hydroids Corallimorpharians Organ Pipe OTHER SUBSTRATA Sponge Macroalgae Dead Coral Rock Coralline Algae Dead Coral With Algae Rubble Algal Assemblage Turf Algae Sand Silt CORALS AND THEIR RELATIVES STONY CORALS ACROPORA Phylum Cnidaria | Class Anthozoa | Sub-Class Hexacorallia | Order Scleractinia (Hard Corals) | Family Acroporidae | Genus Acropora Acropora is one genus within the family of Acroporidae; Generally, the species are characterized by the presence of an axial (terminal) corallite (skeleton of an individual polyp) at the branch tips surrounded by radial corallites; The name Acropora is derived from the Greek “akron” which means summit. Acropora Branching Barefoot Conservation | TARGET SUBSTRATA | July 2016 1 Acropora Bottlebrush Acropora Digitate Acropora Tabulate Barefoot Conservation | TARGET SUBSTRATA | July 2016 2 Acropora Submassive Acropora Encrusting Non-Acropora Phylum Cnidaria | Class Anthozoa | Sub-Class Hexacorallia | Order Scleractinia (Hard Corals) | Family Acroporidae Coral Branching Barefoot Conservation | TARGET SUBSTRATA | July 2016 3 (continued) Coral Branching Coral Massive Barefoot Conservation | TARGET SUBSTRATA | July 2016 4 Coral Encrusting Coral Foliose Coral Submassive Barefoot Conservation | TARGET SUBSTRATA | July 2016 5 (continued) Coral Submassive Coral Mushroom Barefoot Conservation
    [Show full text]
  • Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama
    Caribbean Journal of Science, Vol. 41, No. 3, 638-707, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Photographic Identification Guide to Some Common Marine Invertebrates of Bocas Del Toro, Panama R. COLLIN1,M.C.DÍAZ2,3,J.NORENBURG3,R.M.ROCHA4,J.A.SÁNCHEZ5,A.SCHULZE6, M. SCHWARTZ3, AND A. VALDÉS7 1Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Republic of Panama. 2Museo Marino de Margarita, Boulevard El Paseo, Boca del Rio, Peninsula de Macanao, Nueva Esparta, Venezuela. 3Smithsonian Institution, National Museum of Natural History, Invertebrate Zoology, Washington, DC 20560-0163, USA. 4Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil. 5Departamento de Ciencias Biológicas, Universidad de los Andes, Carrera 1E No 18A – 10, Bogotá, Colombia. 6Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL 34949, USA. 7Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. This identification guide is the result of intensive sampling of shallow-water habitats in Bocas del Toro during 2003 and 2004. The guide is designed to aid in identification of a selection of common macroscopic marine invertebrates in the field and includes 95 species of sponges, 43 corals, 35 gorgonians, 16 nem- erteans, 12 sipunculeans, 19 opisthobranchs, 23 echinoderms, and 32 tunicates. Species are included here on the basis on local abundance and the availability of adequate photographs. Taxonomic coverage of some groups such as tunicates and sponges is greater than 70% of species reported from the area, while coverage for some other groups is significantly less and many microscopic phyla are not included.
    [Show full text]
  • Status of Coral Reefs of the World: 2002
    Status of Coral Reefs of the World: 2002 Edited by Clive Wilkinson PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor Dedication This book is dedicated to all those people who are working to conserve the coral reefs of the world – we thank them for their efforts. It is also dedicated to the International Coral Reef Initiative and partners, one of which is the Government of the United States of America operating through the US Coral Reef Task Force. Of particular mention is the support to the GCRMN from the US Department of State and the US National Oceanographic and Atmospheric Administration. I wish to make a special dedication to Robert (Bob) E. Johannes (1936-2002) who has spent over 40 years working on coral reefs, especially linking the scientists who research and monitor reefs with the millions of people who live on and beside these resources and often depend for their lives from them. Bob had a rare gift of understanding both sides and advocated a partnership of traditional and modern management for reef conservation. We will miss you Bob! Front cover: Vanuatu - burning of branching Acropora corals in a coral rock oven to make lime for chewing betel nut (photo by Terry Done, AIMS, see page 190). Back cover: Great Barrier Reef - diver measuring large crown-of-thorns starfish (Acanthaster planci) and freshly eaten Acropora corals (photo by Peter Moran, AIMS). This report has been produced for the sole use of the party who requested it. The application or use of this report and of any data or information (including results of experiments, conclusions, and recommendations) contained within it shall be at the sole risk and responsibility of that party.
    [Show full text]
  • Protected Species Order 2015
    Protected Species Order 2015 August 2015 GOVERNMENT OF BERMUDA MINISTRY OF HEALTH, SENIORS AND ENVIRONMENT Department of Conservation Services Protected Species Order 2015 – Protected Species Act 2003 2015 Bermuda and the surrounding reef platform, 1998 Bermuda and the surrounding reef platform, 1998 Protected Species Order 2015 – Protected Species Act 2003 Table of Contents 1.0. Introduction ................................................................................................................................................................................................ 1 Purpose of legislation ...................................................................................................................................................................................... 2 Goal ................................................................................................................................................................................................................. 2 Objectives ........................................................................................................................................................................................................ 2 How species are nominated ............................................................................................................................................................................. 2 Levels of protection for protected species ......................................................................................................................................................
    [Show full text]
  • Millepora Alcicornis (CNIDARIA: HYDROZOA) AS SUBSTRATE for BENTHIC FAUNA
    NOTE BRAZILIAN JOURNAL OF OCEANOGRAPHY, 57(2):153-155, 2009 Millepora alcicornis (CNIDARIA: HYDROZOA) AS SUBSTRATE FOR BENTHIC FAUNA Tatiane Martins Garcia 1; Helena Matthews-Cascon 1,2* and Wilson Franklin-Junior 1 1Instituto de Ciências do Mar – LABOMAR (Av. Abolição, 3207, 60165-081 Fortaleza, CE, Brasil) 2Universidade Federal do Ceará - Departamento de Biologia (Bloco 906 Campus do Pici, 60455-760 Fortaleza, CE, Brasil) *E-mail: [email protected] More than half of the world´s species live removal of the vagile epifauna. In order to inside or on other organisms, where they find measure the colonies´ respective volumes, they conditions favorable to their growth (TOWNSEND et were placed in containers with a known volume of al., 2006) and the majority of hard substrata, including water. The colonies were carefully broken up, with the coralline ones, are colonized by perforating and hammer and chisel, and the animals carefully fouling organisms (ZUSCHIN et al., 2001). The living removed to prevent damage. The organisms found corals create a variety of habitats for a large number of were preserved in 70% alcohol before sorting and species, giving support for sedentary organisms and identification. The macrofauna was analyzed with food or shelter for mobile ones (REED; the use of Shannon-Weaner´s diversity (H'), Pielou´s MIKKELSEN, 1987; DÍAZ-CASTAÑEDA; equitability (J´) and Margalef‘s species richness ALMEDA-JAUREGUI, 1999). indices, using the Primer 5 (Windows 5.2.4.) program. Many taxonomic groups are found associated The density (ind./cm³), the number of individuals (n) with corals, including non-colonial organisms such as and the number of species (s) were compared to the Crustacea, Mollusca, Polychaeta and Sipuncula, and size of the colonies and the epifauna was compared colonial ones such as Porifera.
    [Show full text]